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Abstract
Major determinants of the biological background or reserve, such as age, biological sex, comorbidities (diabetes,
hypertension, obesity, etc.), and medications (e.g., anticoagulants), are known to affect outcome after traumatic
brain injury (TBI). With the unparalleled data richness of coronavirus disease 2019 (COVID-19; *375,000 and
counting!) as well as the chronic form, long-COVID, also called post-acute sequelae SARS-CoV-2 infection
(PASC), publications (*30,000 and counting) covering virtually every aspect of the diseases, pathomechanisms,
biomarkers, disease phases, symptomatology, etc., have provided a unique opportunity to better understand and
appreciate the holistic nature of diseases, interconnectivity between organ systems, and importance of biological
background in modifying disease trajectories and affecting outcomes. Such a holistic approach is badly needed
to better understand TBI-induced conditions in their totality. Here, I briefly review what is known about long-
COVID/PASC, its underlying—suspected—pathologies, the pathobiological changes induced by TBI, in other
words, the TBI endophenotypes, discuss the intersection of long-COVID/PASC and TBI-induced pathobiologies,
and how by considering some of the known factors affecting the person’s biological background and the inclu-
sion of mechanistic molecular biomarkers can help to improve the clinical management of TBI patients.
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Background and Introduction
Major determinants of the biological background or re-
serve, such as age,1–5 biological sex,6–8 pre-existing
conditions (diabetes, hypertension, obesity, etc.),9,10

and medications (e.g., anticoagulants),11,12 are known
to affect outcome after traumatic brain injury (TBI).

It feels like distant memory, but SARS-CoV-2 (se-
vere acute respiratory syndrome coronavirus 2) and
its more transmissible variants, Omicron, its subvar-

iants, BA.4 and 5, etc., have infected >100 million per-
sons in the United States and killed >1 million (https://
covid.cdc.gov/covid-data-tracker/#datatracker-home)
over the past 3 years. Worldwide numbers are *700
million infected and *7 million killed (https://covid19
.who.int). In addition to the tragic loss of lives directly
attributable to coronavirus disease 2019 (COVID-19),
SARS-CoV-2 infection can cause long-lasting or even
permanent pathobiological changes.13 ‘‘Long-COVID’’
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or post-acute sequelae of SARS-CoV-2 infection
(PASC) is a multi-symptomatic condition that involves
virtually all organ systems.14–16 Long-COVID/PASC
can adversely affect quality of life and it has become a
significant public health challenge.17–19 It has been
shown that long-COVID/PASC can increase one’s
predisposition to other disorders (e.g., stroke) and ad-
versely affect recovery from various disorders.16,20

TBI has been long recognized as the ‘‘silent epidem-
ic,’’21,22 but given its global nature, it should rather be
called a pandemic. However, we still have limited un-
derstanding of the biological background, for example,
biological sex23,24 or comorbidities.25,26 Reflecting the
drastic decline in personal mobility attributable to
quarantines and lockdowns, the incidence of TBI
caused by traffic accidents also declined during the
COVID-19 pandemic, but assaults and severe injuries
increased.27 Importantly, outcomes were adversely af-
fected, mortality rates increased, especially in middle-/
low-income countries.28

The combination of focusing on developing and test-
ing vaccine(s) for SARS-CoV-2 and public healthcare
measures, like social distancing, resulted in major dis-
ruptions and/or the complete halt of clinical trials,29–32

including TBI.33 Compensating for the ‘‘lost year(s)’’ in
TBI clinical research attributable to COVID-19 pan-
demic alone has its own challenges—along with new
opportunities.34 The increased recognition of long-
COVID/PASC as a public health issue has added a
new dimension to an already complex health condition
arguing for a reassessment of our previous approaches
to TBI. The new, post-COVID-19 patient landscape,
the additional varying individual vulnerability attribut-
able to long-COVID/PASC to outcomes after TBI will
require further stratification of patients. This can be ac-
complished by using an extended panel of molecular
biomarkers, utilizing machine learning (ML)35 that
can guide and optimize individualized therapeutic
interventions.

Long-COVID/PASC
The real prevalence of long-COVID/PASC is currently
not well known because of different criteria used in
reporting.16,36 The latest Centers for Disease Control
and Prevention data indicate that *15% of American
adults have had long-COVID/PASC and 5.8% of
Americans currently have it (https://www.cdc.gov/
nchs/covid19/pulse/long-covid.htm). Studies have
shown that only *10–40% of COVID-19 patients re-
covered completely 60 days after being discharged from

hospitals,37–39 and the remaining 60–90% of discharged
COVID-19 patients have experienced various symp-
toms that can be attributed only to the infection with
SARS-CoV-2.40 Although vaccination protects against
severe disease, the level of protection against long-
COVID/PASC is currently unknown.41 Importantly,
even asymptomatic persons infected with SARS-CoV-2
can develop long-COVID/PASC of varying severity,
further complicating one’s ability to assess its true
prevalence.42,43 The majority (*90%) of severely ill
COVIID-19 patients have reported long-COVID/
PASC symptomatology,44 but up to 40% of patients
after a mild case of COVID-19 infection have also
reported long-COVID/PASC-like symptoms.13,45

Although some studies indicated that long-COVID/
PASC is relatively independent of the severity of
COVID-19,46 there is a correlation between disease se-
verity and prevalence of long-COVID-PASC. A Swedish
study showed that only 1% of mild COVID-19 patients
developed long-COVID/PASC, but 32% of severe cases
(intensive care unit–treated persons) showed symptoms
1 year post-infection.47 Biological sex also plays an im-
portant role; severe COVID-19 with unfavorable out-
come mainly affects males, whereas long-COVID/
PASC disproportionally affects biological females.47–50

Long-COVID/PASC can affect multiple organ sys-
tems, and the most frequently reported symptoms are
fatigue, shortness of breath, nausea, palpitations, joint
and chest pain, and gastrointestinal and gynecological
problems.15,40 Most patients, however, suffer from neu-
rological and -psychiatric symptoms such as ‘‘brain fog,’’
anxiety/depression, memory loss, inattention, disorien-
tation, disturbances of sleep, and headaches.14,51–57

These symptoms are similar to a previously described
condition, functional neurological disorders (FNDs),58

and similar symptoms were observed after SARS and
MERS infections.59 Patients with chronic fatigue syn-
drome and fibromyalgia60 as well as post-traumatic
stress disorder61 and ‘‘chronic’’ TBI/persistent post-
concussive syndromes also have a similar symptomatol-
ogy.62 It should also be noted that many of these
symptoms can be psychogenic, caused by the emotional,
mental, and psychological stress attributable to COVID-
19-related shutdowns, quarantines, social isolations,
etc. Such a lack of specificity and complexity make diag-
nosing ‘‘organic’’ long-COVID/PASC both important
and challenging. A recent study has found evidence
that even vaccination without infection can cause
FNDs,63 but it is unclear whether the cause is organic
or ‘‘psychogenic.’’
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Candidate Pathomechanism(s)
of Long-COVID/PASC
The exact pathomechanism of long-COVID/PASC is
currently not known. Candidate mechanisms (summa-
rized in Table 1) fell into two categories: direct and
indirect.64–66

Direct mechanisms
Direct mechanism includes, viral invasion, prolifera-
tion, and effect of viral particles (e.g., viral proteins)
on the various cell types of the brain.67–69 There is
in vitro evidence that SARS-CoV-2 can infect cultured
human cerebral microvascular endothelial cells.70 Viral
particles were found in endothelial cells in SARS-CoV-
2-infected non-human primates, and SARS-CoV-2
nucleic acids were detected in supporting cells, choroid
plexus, and sustentacular cells, but not in neurons.71 It
is possible that some, likely immunocompromised per-
sons may have a hidden viral reservoir, which can cause
reinfection. Recurrence of SARS-CoV-2 positivity after
antiviral treatment by Paxlovid or other SARS-CoV-2
antivirals demonstrates that there can be an undetect-
ably low level of a viral reservoir that can cause
COVID-19 to rebound.72 Based on our current under-
standing and available evidence, the hidden cerebral
viral reservoir likely exists in only a small subset of
long-COVID/PASC patients73 and may not be respon-
sible for the majority of long-COVID/PASC cases.74

Indirect mechanisms
The indirect mechanism includes endothelial/vascular
damage,70,75–78 coagulopathy,79,80 and abnormal

immune functions like altered immunometabolism,
chronic inflammation, immune exhaustion, and
autoimmunity.54,81–90

Endothelial pathologies
Endothelial damage/dysfunction/(micro)vascular in-
jury has emerged as a leading candidate pathology of
long-COVID/PASC.78,91,92 The main target of SARS-
CoV-2 is the ACE2 receptor bearing endothelial cells
in the central nervous system (CNS),70,71 and the vas-
cular dysfunction, endothelial damage, and (micro)vas-
cular injury resulting in dysfunction of blood vessels
has been one of the hallmarks of systemic SARS-
CoV-2 infection and one of the leading candidate
pathomechanisms of long-COVID/PASC.75–77,93–96

Endothelial cells are key regulators of cell-to-cell adhe-
sion, blood–brain barrier (BBB) formation, and trans-
endothelial transport, including cell migration,
coagulation, and inflammation, involving both humoral
and cellular pathways.76 Endothelial stress caused by
SARS-CoV-2 infection can cause long-lasting changes
in the cerebral microvasculature in the forms of micro-
thrombosis and altered BBB functions.97–100 In sum-
mary, endothelial and (micro)vascular abnormalities
appear to be the leading pathomechanisms classifying
long-COVID/PASC as a new vessel disease.78

Coagulopathies
Endothelial/vascular stress and damage can lead to coa-
gulopathies and persistent hyper- and abnormal coag-
ulation, one of the hallmarks of acute COVID-19,101

Table 1. List of Pathomechanisms Suspected in the Development of Long-COVID/PASC and Their Potential Effect
on the Outcome After Various Severities of TBI

Pathomechanism(s) (selected)

Level of evidence in the
pathomechanism of

long-COVID/PASC

Potential influence/
effect on outcome after

miTBI MoTBI sTBI

Direct
Direct viral invasion and/or viral reservoirs in the CNS Low/uncertain67,68,244,245 ? ? ?
Definition: presence of the virus and/or viral particles in cells of the CNS

Indirect
Endothelial damage/dysfunction/(micro)vascular injury Moderate to high64,70,75–77,93 +++ +++ +++
Definition: abnormal vascular functions, more reactive endothelial

phenotype, injury, blockage of small vessels including capillaries

Abnormal coagulation High (after severe COVID-19)79,246,247 +++ +++ +++
Definition: disruptions in the body’s ability to control blood clotting

Inflammation High (after severe COVID-19)81,89,107,248–250 +/– ++ +++
Definition: maladaptive immune response

Abnormal immunometabolism Moderate84–87,251 +/– ++ +++
Definition: changes in intracellular metabolic pathways of immune

cells that alter their functionality

PASC, post-acute sequelae of SARS-CoV-2 infection; TBI, traumatic brain injury; CNS, central nervous system; COVID-19, coronavirus disease 19.
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but studies have also demonstrated the persistence of
coagulopathies in long-COVIC/PASC.102,103 The pres-
ence of microclots with abnormal protein content, in-
cluding amyloid, combined with an abnormal
fibrinolytic system unable to resolve these clots, can re-
sult in a hypercoagulable state, manifested in the circu-
lation of microclots.103,104 Studies have hypothesized
that this hypercoagulable state is caused by a chronic
inflammatory process104,105 linking vascular abnormal-
ities and the hypercoagulable state to various forms of
immune pathologies.46,105,106

Inflammation
The severe form of COVID-19 infection is character-
ized by a hyperinflammation ‘‘cytokine storm,’’ which
can lead to a chronically altered, maladaptive immune
response.81,107 The cytokine storm, the hallmark of se-
vere COVID-19, causes—additional—organ damage,
the release of damage-associated molecular patterns
(DAMPs).108 HMGB1, hsp70, mitochondrial DNA,
and other DAMPs further activate the inflammatory
process, leading to a vicious cycle that, if not com-
pletely broken, can exist for months after the acute
phase and lead to long-COVID/PASC.109,110 Indeed,
an altered immune system, characterized by chroni-
cally elevated levels of proinflammatory molecules,
has been identified as one of the leading molecular pa-
thologies of long-COVID/PASC.111,112 Circulating
proinflammatory molecules can cause—additional—
vascular stress and endothelial activation, leading to fi-
brinogen accumulation around the vessels, attracting
microglia and/or macrophages and inducing a vicious
cycle of neuroinflammation and tissue damage in the
CNS.113,114 Another form of immune pathologies sus-
pected in the pathology of long-COVID/PASC is al-
tered immunometabolism.86 SARS-CoV-2 infection
can modify any of the six major metabolic processes
that compromise their functionality, leading/contribut-
ing to a chronic inflammatory stage.84,85,87

Autoimmunity
Autoimmunity in long-COVID/PASC. Immunedysregu-
lation, especially autoimmunity, has been increasingly
recognized as one or the main pathologies responsible
for long-COVID/PASC.83,115,116 Several studies have
indicated that SAR- CoV-2 infection can result in an
unbalance of the affected person’s immune homeosta-
sis, resulting in the development of autoantibodies
potentially leading to the development autoimmune
diseases.116–118 Autoantibodies against brain-tissue–

specific epitopes have been found in long-COVID/
PASC patients, and their presence correlates with neu-
ropsychiatric abnormalities.119 During the acute phase
of SARS-CoV-2 infection, serum levels of neural injury
markers of GFAP and NF-L were elevated and, impor-
tantly, remained elevated in patients who could be clas-
sified as suffering from long-COVID/PASC.120–122

Elevated levels of neural injury markers were associated
with elevated levels of inflammatory cytokines and IgM
autoantibodies against, for example, myelin-associated
glycoprotein and many other brain-specific pro-
teins.119,123 Abnormal protein homeostasis, combined
with protease activation and hyperinflammation, can
significantly contribute to the autoimmune mecha-
nism,124,125 the generation of autoantibodies against
brain-specific proteins.16,115,126

In summary, current evidence points toward three
major inter-related pathomechanisms (vascular/
endothelial stress/damage, abnormal coagulation, and
inflammation) that are the most likely underlying pa-
thologies of long-COVID/PASC. Some of these patho-
mechanisms may occur individually, but they can also
overlap, and can also change over time.

TBI: A Spectrum of Disorders of Different
Disease Endophenotypes
TBI is not a single disease, but a spectrum of disorders
with the same causation: physical insult to the head and
brain.127–132 The only similarity between an uncon-
scious patient with skull fracture, subdural hematoma,
and brain contusion and a patient walking into an
emergency room with a bump on his or her head feel-
ing dizzy is that there was a physical impact—of differ-
ent intensities and kinds—to the head.133 Thus, there
are two dimensions of TBI that need to be considered;
one is severity, traditionally addressed by the Glasgow
Coma Scale introduced in 1974 by Teasdale and Jen-
nett.134 However, our biological understanding of the
pathophysiological mechanisms underlying the func-
tional abnormalities have become substantially more
refined since 1974.135–138 Mild TBI, clinically also called
concussion, only causes temporary perturbance of cel-
lular structures and may dislocate membrane-bound
ion channels, receptors, and/or intracellular organelles,
causing typically transient molecular disturbances
reflected in metabolic abnormalities that clinically man-
ifest as a temporary altered state of consciousness.139,140

After moderate TBI, biomechanical forces cause sub-
stantial direct tissue and cell damage and cell death, ma-
jorly disrupting neuronal signaling and networks
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manifesting clinically as prolonged loss of conscious-
ness.141 Severe TBI, frequently comorbid with poly-
trauma, causes major loss of brain parenchyma, severe
disruption of neuronal networks, loss of consciousness,
and severe neurological dysfunctionality.142–145

The second critical dimension is the temporal aspect
of TBI-induced pathobiological changes.146 Though
the exact temporal profile of these changes is currently
not well understood, available data indicate a dynamic
and complex pattern of TBI-induced pathobiological
changes that can span weeks or months.147–153

Major Pathobiologies Triggered by TBI:
The Disease Endophenotypes
The physical impact to the head—depending on the in-
tensity and type of injury—triggers a variety of pathobio-
logical changes that can occur in partly overlapping
fashion, interact in a highly complex fashion, and change
over time.154,155 Penetrating TBI causes massive tissue
damage, cellular death, and bleeding that release intra-
cellular molecules called damage-associated molecules
(DAMPs). DAMPs, like HMGB1, mitochondrial DNA,
and S1008/9, rapidly activate the innate immune system
by Toll-like receptors (TLRs) with the aim to remove tis-
sue debris and restore homeostasis.156,157 However, the
inflammatory process can continue beyond the acute
phase and transform into a chronic process.158

Axonal injury is a hallmark of diffuse TBI, but the
extent of damage varies from major white matter loss
clinically manifested in severe functional deficits to
temporary, molecular-level disruption of axonal struc-
tures, causing mild and transient neurobehavioral
abnormalities.159–162

An important but currently poorly understood TBI
(endo)phenotype is characterized by injury to the cere-
bral vasculature.163–166 The effect of diffuse TBI on the
vasculature can range from endothelial stress, damaged
BBB function, microbleeding, and hemorrhage.167–169

These pathobiological changes have been detected by
neuroimaging163,170 and also by elevated plasma levels
of protein biomarkers of endothelial and vascular stress
and damage (VEGF, vWF, and cFN)163,166,171–175

and/or endothelial tight junction proteins (Claudin-5
and Occludin).150,176,177 These TBI-induced vascular
changes are important inducers of downstream mech-
anisms such as activation of blood clotting and the in-
nate immune system.178–183 Inflammation is a key
adaptive response to any kind of noxious stimuli in
all multi-cellular organisms,184,185 and the neuroin-
flammatory response to TBI—including mild, especially

repeated mTBI—is emerging as a key pathobiology re-
sponsible for adverse outcomes.183,186,187 The neuroin-
flammatory response to TBI includes both humoral
and cellular players.183 Depending on the type (e.g.,
closed, diffuse, or penetrating) and severity of the in-
jury, the cellular components can include only intracra-
nial cellular population, microglia, and astroglia or,
after penetrating injury, peripheral immune cells (e.g.,
macrophages also contribute to the inflammatory
response).188

Astrocytes play an especially important and complex
role in the neuroinflammatory process; they are in-
volved in regulating both innate and adaptive immune
responses after TBI.189–191 In the activation of astro-
cytes, astrogliosis subsequent to penetrating TBI demar-
cates the injury site and a highly complex bidirectional
signaling process between astrocytes and microglia is a
key regulator of the acute and chronic neuroinflamma-
tory response.189–191 Moderate and severe TBI disrupt—
to varying degrees—the BBB causing the exposure of
brain-specific molecules to the adaptive immune sys-
tem, generating potentially detrimental long-lasting cel-
lular and humoral responses that can cause or
contribute to chronic adverse conditions.183,192,193

Intersection of Long-COVID/PASC
and TBI-Induced Pathobiologies
Several of the suspected pathobiologies underlying
long-COVID/PASC have the potential to affect recov-
ery after various forms of TBI (Table 1). A major chal-
lenge for the clinical management of TBI patients has
long been the heterogeneity of patients differing, for
example, in age, biological sex, comorbidities, comedi-
cations, and cofactors—such as alcohol and/or drugs—
and pre-existing conditions, such as long-COVID/
PASC. The outcome after SARS-CoV-2 infection, espe-
cially after the severe form, has shown a sharp age de-
pendence; elderly persons have shown significantly
poorer outcome,194,195 but older age as a risk factor for
developing long-COVID/PASC has been questioned.196

Conversely, young age has been shown as ‘‘protective’’
against the severe form of COVID-19,194 but not against
developing long-COVID/PASC.197,198 Pediatric and ad-
olescent populations represent a significant percentage
of TBI cases,199 and it is known that TBI adversely
affects later phases of neuronal development.4,200–203

The question is of what unknown is the effect of
SARS-CoV-2 infection and/or long-COVID/PASC on
the outcome of TBI, specifically the mild/concussive
form that is the most frequent among adolescents/young
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adults. Elderly persons, representing the other predom-
inant age group in TBI, has especially poor recovery
after TBI, as reported by the large TRACK-TBI study,8

and long-COVID/PASC can further diminish the recov-
ery process.

Biological sex seems to play a significant role in out-
come after SARS-CoV-2 infections. Severe COVID-19
with an unfavorable outcome was observed mainly in
males, whereas long-COVID/PASC disproportionally af-
fected biological females.47–50 The large TRACK-TBI
study has found that women are more vulnerable to de-
velop persistent neurobehavioral symptoms than men
after mTBI and suffer from chronic post-concussion
syndromes.8 Accordingly, women suffering from long-
COVID/PASC will likely have poorer long-term func-
tional outcomes after TBI.

There are currently very limited data on how long
the long-COVID/PASC really lasts and whether it has
distinct disease phases.45 The current view is that
long-COVID/PASC is a chronic condition with rela-
tively steady pathobiologies,15,103 but there are reports
indicating time-dependent changes in the underlying
pathobiologies.44 TBI induces severity- and injury-
type–dependent pathobiological responses that change
dynamically over time, although the exact temporal
pattern of these changes is currently poorly under-
stood.153,182,193,204 Accordingly, not all the pathologies
are present at every post-injury period,148,150–152 and
their co-occurrence with pathologies of long-COVID/
PASC—especially an abnormal inflammatory profile—
has the potential to negatively affect the recovery pro-
cess. SARS-CoV-2 infection itself can cause brain
injury—defined as elevated serum levels of brain-injury
markers NF-L, Tau, and GFAP—during the acute
phase of COVID-19.122

Elevated levels of these brain injury biomarkers were
associated with elevated serum levels of inflammatory
cytokines (TNFa, IL-1b, and IL-6) and autoantibodies—
both IgM and IgG—against brain-specific proteins (e.g.,
myelin-associated glycoprotein). Importantly, 4 months
after the infection, the convalescent phase that can qual-
ify for long-COVID/PASC, serum levels of brain injury
markers, especially Tau, were still significantly elevated
over normal controls along with inflammatory cyto-
kines and autoantibodies. These findings implicate an
ongoing inflammatory and autoimmune process,
given that manifestations of immune dysregulation,
one of the main pathomechanisms of SARS-CoV-2 in-
fection, are also suspected in causing long-COVID/
PASC.83,118,205

The altered biological background in long-COVID/
PASC characterized by vascular abnormalities and, im-
portantly, by a chronic inflammatory landscape can
majorly affect the disease process after TBI (Fig. 1).
An ongoing neuroinflammation has been proposed as
the key pathomechanism of chronic TBI and TBI-
induced pathological processes (e.g., chronic traumatic
encephalopathy and Alzheimer’s disease).191,206 Addi-
tional parenchymal damage caused by TBI will take
place on an already dysregulated immune system caus-
ing additional and/or maintaining the long-term paren-
chymal damage, releasing DAMPs, further activating
the adaptive immune response through TLR signaling
and resulting in a vicious cycle that delays and or ad-
versely affects the recovery process after TBI.120,122

The Role of Biomarkers
Identification of TBI endophenotypes is a critical step
toward developing evidence-based individualized clin-
ical management of TBI patients.166,207–209 Because of
their rich information content, blood-based (and
other biofluid) protein biomarkers have currently the
most potential to perform molecular phenotyping of
TBI patients.210–214 In order to identify increased vul-
nerability of TBI patients attributable to pathologies
underlying/suspected in long-COVID/PASC, an ex-
panded biomarker panel should be used. Such a
panel should include markers of any of the pathome-
chanisms suspected in the development of long-
COVID/PASC (Table 2). These markers should be in
addition and used in the context of the current, most
commonly used, well-established markers of neural in-
jury (GFAP, UCH-L1, Tau, and NF-L).211 There is an
increasing recognition to use ‘‘mechanistic’’ biomarkers
in TBI in conjunction with ‘‘classical’’ injury mark-
ers.215 However, markers of coagulopathies (e.g.,
vWF, D-dimer), endothelial stress (e.g., VEGF-A,
Ang-1/2, and ET-1), vascular damage (CLDN5, Occlu-
din, VCAM-1, and cFN),166,174,216—220 and in-
flammation (e.g., CRF, IL-1b, IL-6, TNFa, IL-8, and
CXCL12)84,221—223 that have already been used in clin-
ical settings should be coanalyzed with the panel of in-
jury markers. The caveat is that elevated serum levels of
the neural injury marker NF-L have been found in pa-
tients who could qualify as suffering from long-
COVID/PASC (4 months after infection). This finding
indicates an ongoing neuronal damage likely caused by
an ongoing inflammation.120–122

The major challenge will be how to analyze, harmo-
nize, and correlate the large volume of—various—
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biomarker data in order to help clinical decision mak-
ing. Potential solutions should include massive use of
Big Data approaches like ML.35,207,224 Critically, any
successful ML approach critically relies on a high qual-
ity and high quantity of primary-protein, physiology,
imaging, etc., biomarker data and well-structured/
machine-readable clinical reports.35,225–227

The critical unmet need is the availability of normal,
reference ranges of biofluid blood—plasma and serum—
and cerebrospinal fluid–based protein biomarkers.
Astonishingly, no such publicly available database exists.
Combined with issues of pre-analytical and analytical
variables (e.g., different assay platforms),228 the current
use of biomarker data has limited value.

FIG. 1. Onset and extent of major pathobiological changes during the various phases of severe COVID-19
and the hypothesized role of long-COVID/PASC affecting the outcome of TBI. The pathobiological changes
identified or suspected during the acute, subacute, and chronic (long-COVID/PASC) phases of COVID-19 are
listed. The dashed turquoise line indicates the relative intensity and relative timeline of pathobiologies of
COVID-19. The solid turquoise line indicates the relative intensities of pathobiological changes associated
with long-COVID/PASC. The solid yellow curve indicates the relative intensity and temporal changes of
pathobiologies of TBI on a long-COVID/PASC background. Relevant references are in the text and listed in
the references. DAMPs, damage-associated molecular patterns; PASC, post-acute sequelae SARS-CoV-2
infection; TBI, traumatic brain injury.

Table 2. Biomarkers of Selected Pathomechanisms Suspected in PASC for Blood-Borne Phenotyping of TBI Patients

Biomarker of Full name, abbreviation, references, and notes

Autoimmunity Cyclic citrullinated peptide (CCP),252 protein microarray-based assays253,254

Abnormal immune response; altered immunometabolism,
immune dysregulation, hyperinflammation

Chemerin (ChM)84,221,222

C-reactive peptide (CRP), tumor necrosis factor alpha (TNF-a), interleukin-1
beta (IL-1b), interleukin-6 (IL-6)223

Endothelial (vascular) damage, abnormal coagulation von Willebrand factor (vWF), IL-18, vascular endothelial growth factor (VEGF),
cellular fibronectin (cFN), D-dimer (Dd), fibrinogen (Fb)166,174,216–220

PASC, post-acute sequelae of SARS-CoV-2 infection; TBI, traumatic brain injury.
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The Role of TBI Models
Pioneering works have developed high-fidelity animal
models of various forms of TBI,229–234 enabling one to
identify the anatomical, cellular, and molecular sub-
strates of the primary and secondary injury process-
es.185,235–237 These experiments have—mostly if not
exclusively—been performed using healthy young
male rats and only recently females have also been in-
cluded.238,239 Though studies have started to address
how the young, developing brain responds to and recov-
ers from TBI,240 much less is known about the aging
brain’s response241 despite the huge and increasing
number of aging persons affected by TBI.242 These el-
derly patients frequently suffer from comorbidities
(e.g., long-COVID/PASC) and under (multiple) medi-
cations that combined can substantially alter patients’
biological background in addition to age.26,243 In order
to generate clinically relevant, translatable information,
there is a need to develop and use animal models of
human conditions/diseases (e.g., chronic inflammation)
that are prevalent in the aged population.

Summary
Long-COVID/PASC has been identified as a significant
public health issue. It reduces the quality of life, in-
creases the vulnerability of affected persons to other
diseases, and negatively affects disease processes. The
underlying—suspected—pathologies, vascular abnor-
malities, coagulopathies, and inflammation can ad-
versely affect the recovery process after TBI.
Expanded diagnostics aimed to better inform about
the biological background and comorbidities, such as
long-COVID/PASC, of TBI patients will help to de-
velop individualized clinical management.
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SARS-CoV-2 ¼ severe acute respiratory syndrome coronavirus 2
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TLRs ¼ Toll-like receptors
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