Skip to main content
. 2023 Feb 23;2:e40167. doi: 10.2196/40167

Table 3.

Performance of the proposed deep learning framework under different convolution neural networks and histogram of oriented gradient (HOG).

Feature extractor Sensitivity, mean (SD) Specificity, mean (SD) Precision, mean (SD) F1-score, mean (SD) AUCa, mean (SD)
HOG 90.77 (2.62) 27.35 (8.98) 85.03 (1.86) 87.77 (1.41) 0.65 (0.06)
Inception-v4 92.54 (3.53) 43.70 (8.64) 87.91 (1.95) 90.12 (1.90) 0.80 (0.05)
3D ResNet 94.57b (2.61) 54.57 (6.46) 90.20 (1.81) 92.30 (1.44) 0.87 (0.04)
3D ResNext 94.17 (2.67) 51.74 (7.33) 89.62 (2.21) 91.81 (1.82) 0.85 (0.05)
Inflated 3D 92.94 (3.47) 49.78 (8.00) 89.08 (1.85) 90.94 (2.24) 0.82 (0.06)

aAUC: area under the curve.

bItalicized numbers represent the best result under each metric.