TABLE II:
Performance of different ML classifiers for predicting No Pain (0) vs. Pain (1–10). Results are reported as ”Metric ± 95% Confidence Interval”.
| Daytime | |||
|---|---|---|---|
| Method | F1-score | Recall | ROC AUC |
| Logistic reg | 0.72 ± 0.07 | 0.72 ± 0.05 | 0.72 ± 0.05 |
| Catboost | 0.69 ± 0.10 | 0.70 ± 0.10 | 0.69 ± 0.10 |
| XGBoost | 0.65 ± 0.09 | 0.65 ± 0.09 | 0.65 ± 0.09 |
| Nighttime | |||
| Method | F1-score | Recall | ROC AUC |
| Logistic reg | 0.70 ± 0.19 | 0.71 ± 0.18 | 0.70 ± 0.18 |
| Catboost | 0.82 ± 0.27 | 0.82 ± 0.27 | 0.82 ± 0.27 |
| XGBoost | 0.82 ± 0.24 | 0.82 ± 0.21 | 0.81 ± 0.20 |