Table 3.
Evaluation of models during training and validation phases after applying RMSprop.
| Models | Training records | Validation records | ||||
|---|---|---|---|---|---|---|
| Accuracy | Loss | RMSE value | Accuracy | Loss | RMSE value | |
| VGG19 | 99.89 | 0.11 | 0.33 | 99.91 | 0.09 | 0.31 |
| Inception V3 | 99.83 | 0.12 | 0.34 | 99.88 | 0.10 | 0.31 |
| EfficientNet B3 | 99.70 | 0.13 | 0.36 | 99.91 | 0.12 | 0.34 |
| ResNet152 V2 | 99.64 | 0.14 | 0.37 | 99.41 | 0.12 | 0.34 |
| ResNet50 V2 | 99.63 | 0.13 | 0.36 | 98.13 | 0.16 | 0.40 |
| MobileNet V2 | 99.26 | 0.23 | 0.47 | 98.95 | 0.19 | 0.43 |
| Xception | 99.17 | 0.31 | 0.55 | 96.26 | 0.29 | 0.53 |
| DenseNet 169 | 99.61 | 0.13 | 0.36 | 99.50 | 0.11 | 0.33 |
| EfficientNet B0 | 99.49 | 0.14 | 0.37 | 99.91 | 0.09 | 0.30 |
| InceptionResNetV2 | 99.99 | 0.12 | 0.34 | 99.44 | 0.11 | 0.33 |