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When engaged in a conversation, one receives auditory information from the other’s speech but also
from their own speech. However, this information is processed differently by an effect called Speech-
Induced Suppression. Here, we studied brain representation of acoustic properties of speech in
natural unscripted dialogues, using electroencephalography (EEG) and high-quality speech
recordings from both participants. Using encoding techniques, we were able to reproduce a broad
range of previous findings on listening to another’s speech, and achieving even better performances
when predicting EEG signal in this complex scenario. Furthermore, we found no response when
listening to oneself, using different acoustic features (spectrogram, envelope, etc.) and frequency
bands, evidencing a strong effect of SIS. The present work shows that thismechanism is present, and
even stronger, during natural dialogues. Moreover, the methodology presented here opens the
possibility of a deeper understanding of the related mechanisms in a wider range of contexts.

Motor-induced suppression is a ubiquitous mechanism in the brain where
the response to self-produced stimuli is suppressed or attenuated by means
of an efference copy. As its name suggests, this mechanism refers to a
duplicate of a motor command sent to the sensory pathway, that contains a
subtractive signal for canceling a predictable sensory input caused by their
own behavior. This mechanism is the key to filtering out internally gener-
ated signals from the external stimuli when interacting with the environ-
ment, from self-made tickles to eye movements1–4. In the field of speech
processing, this effect is known as Speech-Induced-Suppression (SIS), and it
has been found that the suppression of self-produced speech is very specific
to the stimulus expected by the brain, and not due to global inhibition of the
auditory cortex activity5–8. Thus, speakers are able to quickly adjust the
produced speech to match the expected stimulus. Also, based on this
mechanism, they can avoid getting confusedby their ownvoice, as is the case
of auditory hallucinations in some pathologies like schizophrenia9. This
effect has been shown with single-unit recordings in monkeys and
humans10,11, and in EEG/MEG studies, but typically finding an N1/M100
attenuation, and using single syllables as stimulus5–8,12.

Theneuroanatomical functioning of the acoustic aspects of continuous
speech perception has been, and remains, difficult to characterize13,14. Using
mostly controlled stimuli, where the participants were passive listeners, it
has been shown that speech perception and processing occur mainly in the
left temporal and frontal lateral hemisphere, whereas the representation of
acoustic stimuli is bilateral15,16. Moreover, several studies have shown that
speech comprehension regions are closely related to speech
production14,17–20. They suggest that, in adverse or noisy situations, left
fronto-temporal regions have a greater interaction with the primary audi-
tory cortex. Furthermore, a synchronization between the brain activity and
the acoustic features of the speech signal was observed, called cortical
entrainment,whichwas shown toplay an important role in the intelligibility
of the information present in speech14,17,21–23.

Although these analyses have led to a better understanding of speech
processing, the set of neural and cognitive systems involved in traditional
perceptual tasks, performed in the laboratory with controlled stimuli, just
partially overlaps with the systems involved in natural speech perception
and comprehension16. This makes the representation of natural speech
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difficult to study through traditional methods. Different authors are cur-
rently working on the analysis of natural stimuli21–24, but still in partially
constrained scenarios. The realization of more naturalistic, unconstrained
tasks brings new challenges. Firstly, when using electroencephalography
(EEG) signals, there is an increased contamination with muscular and
ocular artifacts. Secondly, there is also an increase in the complexity of the
stimuli and the number of features that can have an impact on brain
activity23,24. Lastly, the ongoing nature of the interaction with the environ-
ment or another person in everyday tasks, such as in a dialog, involves an
overlap of different perceptual, motor and cognitive signals. Consequently,
analyzing the brain representation of continuous auditory stimuli would
require defining the onset of the embedded events, such as the speech act, to
perform a traditional Event-Related Potential (ERP) approach.

To tackle these problems several authors have used encoding
models21–23,25,26, which allow experimenters to explore the relationship
between brain activity and the different features of one continuous stimulus.
The first step of these models consists of a feature extraction stage from the
stimuli presented to the participant. When using auditory stimuli, the
extracted features are usually the envelope of the audio signal, the spec-
trogram, and the speaker’s voice pitch, among others. Also, by filtering the
brain activity in different EEG frequencybands, it is possible to quantify and
compare the impact and representation of the stimuli features on each
typical EEG band27–29. In the second step, typically a linear regressionmodel
is trained by fitting its parameters to find the relation between the extracted
features and the brain’s activity. The parameters orweights of themodel, are
an estimate of the multivariate Temporal Response Functions (mTRF)25,26,
and express the relationship between the stimuli and the brain activity,
representing the response of the EEG signal to the stimulus21,25–29. Then, the
trained model can be used to predict EEG signals from unseen speech
stimuli21,23,27–29. Importantly, the interpretationof themTRF is similar to that
of an ERP, the major differences being the assumption of a linear rela-
tionship between stimulus features and EEG signals, and the fact that the
mTRF isolates the response to specific features entangled within a stimulus.
However, to interpret themTRF in such away, it is necessary to evaluate the
model’s predictive power21,25,26,28–31.

In the present work, we perform a novel experiment in which
participants are involved in natural, unscripted dialog, and analyzed the

brain’s response to either speaker’s voice separately. We use encoding
models to provide a methodology to untangle the brain activity related to
different features of either speaker’s speech, even if they occur simulta-
neously. We hypothesize that encoding models will have a better per-
formance when used in natural scenarios and that the response to self-
produced speech would be specifically suppressed during dialog, whereas
the response to the other participant’s voice would not, even if both are
speaking at the same time.

Results
Brain representation of acoustic features
To study speech processing during a natural dialog, we conducted an
experiment in which we simultaneously recorded high-density EEG from
two participants while performing several trials of the Objects game of the
UBA games corpus32–34. This is a cooperative task designed for dialog stu-
dies, where the participants had to communicate through speech to place an
object in a specific position on the screen. Each participant also had a
directional microphone to collect high-quality audio synchronized with the
EEG (Fig. 1a, see also Supplementary Fig. 1). From this dataset, we realized
two different studies. First, we implemented an encoding model to analyze
the representation of acoustic features from natural speech stimuli in the
listener’s brain, replicating and extending results from previous works. We
interpret higher correlationvalues asmarkers of higher representation in the
brain, as discussed in Section “Discussion”. To this end, we used the time
intervals where only one of the participants was speaking, for which the
dialog intervals were categorized into four conditions: Silence, Only speaker
1, Only speaker 2, and Both speaking. Secondly, having validated the
model’s functioning, we performed the analysis of SIS over different dialog
conditions.

An encoding model was trained for each participant, using the audio
features extracted from its partner’s audio as input to predict each individual
EEG sample using the stimulus features extracted from the previous 600ms
(Fig. 1b). This procedure was applied to each electrode and EEG frequency
band separately. The correlation between the predicted and the recorded
EEG signal was used as a measure of the model’s performance (see Section
“Encodingmodels” for a detailed explanation of themodelfit and the results
presented).

Fig. 1 | Experimental design and analysis pipeline. a The participants were sitting
facing each other, with an opaque curtain that prevented visual communication.
They were presented with a screen with objects distributed on it, and a task that
required verbal communication. Uttered speech by each participant was recorded
using a microphone, and the brain activity was recorded using 128 EEG channels.

bAudio signals fromwhich the audio features were extracted (envelope orange) and
used to first train an encoding model through Ridge regression fitted to the EEG of
each channel. Then, the features were used as input to predict the EEG of those same
channels. Pearson correlation between the predicted and the recorded EEG signal is
used as a measure of the model’s performance.
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The first step was to assess and endorse the functionality of ourmodel,
by replicating previous results but in a more natural and dynamic envir-
onment (Figs. 2 and 3, Supplementary Note 2 and Supplementary
Figs. 2 and 3)21–23,35. Wemainly focused on the spectrogram21,23,36,37, but also
used the envelope, both of which are among the most widely used speech
features21–23,26,38. We obtained a mTRF waveform similar to previous work
and reproducedprevious results on the lateralization effect in the correlation
values, and even slightly improve the performance of previousmodels using
naturalistic stimuli (Figs. 2 and 3).Weobtained an average correlation value
in the Theta band of 0.26 for the envelope and 0.37 for the spectrogram
(reaching 0.28 and 0.41 in frontal electrodes), where the previous average
correlation values were approximately 0.26 and 0.09 respectively23. The
results of the envelope and the remaining acoustic features (pitch and
shimmer) can be found in Supplementary Fig. 5.

The correlation coefficients obtained from the spectrogram model
averaged across subjects reached0.41 in theTheta bandand0.36 in theDelta
band (Fig. 2a). In the Theta band, the spectrogram presents a better pre-
dictive power in the frontal lateral regions of both hemispheres, more
lateralized to the left, where language-related areas are found (Fig. 2b;
Wilcoxon signed-rank: z = 0, n = 12 (d.f.: 11), p-value = 0.00048). This is in
accordancewith the literature that situatedmost of the speechand language-
related regions lateralized to the left39–49. In contrast, the envelope shows
similar values in left and right hemispheres, supporting previous works that
found that the envelopeof an artificial audio signal is lateralized to the right35

(Fig. 2a). It is possible to observe a lateralization effect in all frequency bands
(Supplementary Fig. 4). Importantly, before exploring themTRFs, we assess
that the obtained results were statistically significant and that the model is
robust by comparing its results with 3000 random permutations of the
preceding stimulus features. This procedure was repeated for each electrode
and participant separately, using 5-fold cross-validation to avoid data-

partition-related misleads. The number of subjects for which the obtained
correlations were significantly different from the random distribution in all
folds was (13.3 ± 1.4) subjects for Delta, (16.2 ± 1.0) for Theta, (14.3 ± 1.5)
for Alpha, (9.2 ± 1.8) for Low Beta and (5.8 ± 1.9) for the broad-band
(0.1–40Hz) (see the first row of Supplementary Fig. 5b, and Supplementary
Fig. 3.1c for spatial distribution). The statistical significance of these results
shows that the model is robust, and reliably expresses the relationship
between stimuli and brain activity, hence the mTRFs can be interpreted as
the response in the EEG to the continuous stimuli21,26,29.

The mTRFs from the audio spectrogram in the Theta band presented
multiple peaks that resemble the auditory evoked potentials50,51 (Fig. 3a).
Previous work with encoding models and natural speech had reported a
similar patternwith latencies approximately 50ms lower21,26. This difference
in timing could be explained by the Causal filters used in this work to
preserve the causality in the EEG signal samples, which could have an
impact on the mTRF fitting and time response. This had been previously
addressed in ref. 22, where they found that the causal filters preserved the
overall shape in the mTRF, but introduced a time delay of about 50ms,
which is consistent with the delays in our results. For more details on the
Causal filters used, and a comparison with the results from Non-Causal
filters, please see Supplementary Note 5, Supplementary Figs. 7 and 8 and
Tables 1 and2.We repeated this analysis by re-referencing the EEGsignal to
the average of all electrodes to gain detail on the differences between elec-
trodes and the polarization in the scalp. The results can be found in Sup-
plementary Note 6 and Supplementary Fig. 9. Moreover, within the
spectrogram, themore important features are the audio mel-bands ranging
from 583 to 2281Hz, which correspond to the ones where human speech
carries more information. This was assessed by a Threshold-Free Cluster
Enhancement test on which those frequency bands presented the most
significant results (Fig. 3b, c).

Fig. 2 | Model performance while listening to external speech. a Correlation
coefficients for every frequency band and their spatial distribution obtained from the
spectrogram model. The correlation values were obtained for each electrode and
averaged across the 5 folds within each participant, then averaged across partici-
pants. The top panel A shows the spatial distribution of the averaged correlation
values, to better determine the regions where higher correlation is achieved. The
distribution shown in the lower panel consists of those same values but presented in a
violin plot, for an easier comparison across frequency bands. b Correlation

distribution for left and right electrodes indicated in the topographic figure, for the
models using spectrogram and envelope as input features. The electrodes were
chosen as the 12 presenting higher correlation values in the frontal region for each
hemisphere and a signed-rank Wilcoxon test was performed to compare the values
obtained in each hemisphere (N = 12 independent samples). The correlation values
for the spectrogram show a significant lateralization effect towards the left hemi-
sphere, with a p-value of ~0.0005, whereas the envelope shows no significant dif-
ference (p-value ~ 0.38). Significance: n.s p-value > 0.05, *p-value < 0.001.
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Speech-induced suppression
During dialog “self-produced" speech is also present as an available auditory
stimulus but, as inmany other sensorymodalities, its information should be
available beforehand by means of the efference copy, in order to dis-
criminate from external stimuli. We confirm this hypothesis in natural
dialogs by analyzing the impact of the spectrogram on the EEG signal in
different dialog stages across frequency bands, but focus on the Theta band,
as this is the band with a significantly higher predictive power.

The results presented in Fig. 4 show the correlation coefficients for
each frequency band and the spectrogrammTRFs from the Theta band for
all conditions. Figure 4a shows themTRFs to the spectrogram feature when
listening to external speech (condition (E)), and the correlation coefficients
of all frequency bands (both already presented in Figs. 2 and 3). This
response was significantly different from background noise (Silence) as
supported by a pairwise comparison and Cohen’s d-prime computation
(Fig. 5a; (E) vs Silence: uncorrected p-value < 10−5 for all channels, mean
Cohen’s d’ = 3.22). Moreover, the Bayes Factors comparison H0 (no dif-
ference between conditions) and H1 (difference between conditions) pre-
sents decisive evidence in favor of H1 in all channels (Fig. 5a;
log10(BF10) > 2).

The response to the external speech (E) was also significantly different
from the one to self-produced speech condition (S) as supported by pairwise
comparison, Cohen’s d-prime computation, and BF10 (Fig. 5a; (E) vs (S):
uncorrected p-values < 10−4 for all channels, mean Cohen’s d’ = 3.22;
log10(BF10) > 2). Moreover, the mTRF in the (S) condition presents no
evidence for response in the Theta band as it is clear from Fig. 4b. Its
response is similar to the background noise, i.e. when both participants are
silent (Silence) (Fig. 4b, e). This was supported by a pairwise comparison
and Cohen’s d-prime computation between the correlation coefficients
from (S) with Silence conditions for the Theta band (Fig. 5a; uncorrected p-
value > 0.12 for all channels, mean uncorrected p-values = 0.52, mean

Cohen’s d’ = 0.31). Interestingly, the evidence is consistent with the H0
hypothesis of no difference (log10(BF10) < 0), although it is not enough to
support it (Fig. 5a).

These results were replicated when both participantswere speaking. In
this case, we only kept segments longer than 600 ms in which both parti-
cipantswere speaking and estimated themTRFwith the signal of the other’s
microphone (E∣B) or with one’s own (S∣B) (Fig. 4c, d). Figure 5b shows that
the (E∣B) condition presented a significantly larger response than the (S∣B)
and Silence conditions (uncorrected p-values < 0.05/128 = 3.9 × 10−4 for 84
channels;mean uncorrected p-values < 4.4 × 10−4), whichwas supported by
Cohen’s d-prime (meanCohen’s d’ > 1.16) and theBF10 (BF10 > 1.12 for all
channels in both comparisons, mean BF10 > 2 in both comparisons).
Moreover, (S∣B) did not present significant differences with Silence
(uncorrected p-value > 5.3 × 10−4 for all channels, mean uncorrected p-
values = 0.22) and a very low d-prime (mean Cohen’s d’ = 0.56). The Bayes
Factor analysis didnot present conclusive results in favor ofH0orH1 (mean
BF10 = 0.15).

It is worth mentioning that, even though the same patterns of results
arose from the mTRFs in the isolated speech and both speaking conditions,
there were some differences related to methodological considerations.
Firstly, when comparing the (E) and (E∣B) conditions the amplitude of the
mTRF in the latter condition is significantly reduced (Fig. 5c; (E) vs (E∣B):
uncorrected p-values < 10−4 for all channels, mean Cohen’s d’ = 1.22). This
is primarily attributed to the model being trained with fewer samples, as
indicated in Supplementary Note 7 and Supplementary Fig. 10. Secondly,
when comparing the (S∣B) condition with Silence there was some evidence
of response in fronto-lateral regions, which is also present in the comparison
between (S∣B) and (S). This could be explained by the fact that, even though
the microphones were directional and there was a curtain between the
participants, some attenuated signal of the other’s speechcould bepresent in
the signal of one’s own microphone. Thus, in the condition in which both

Fig. 3 | Theta band mTRFs to the audio spectrogram while listening to external
speech.Panel a shows themTRF for each electrode, averaged across participants and
mel-bands. The position of each electrode is indicated by the scalp plot on the right.
Panel b shows the mTRF to each of the spectrogram features (each mel-frequency
band) averaging the responses over electrodes. Panel c shows the p-values in negative
logarithmic scale from a TFCE test applied to the mel-frequency band mTRF of all
subjects separately (N = 18 independent samples, d.f.: 17). The mTRFs represent the

response in the EEG signal to each time lag of the audio features. The time axis
represents the time elapsed between the audio feature being pronounced and the
instant in the EEG signal being predicted. For representation purposes, pre-stim
time lags are included in the figure, but the predictions weremade only frompositive
times, to avoid providing the model with information from future time-points.
Please see SupplementaryNote 4 and Supplementary Fig. 6 for a detailed explanation
of the time axis on these figures.
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were speaking at the same time, the EEG is capturing that signal in its own
microphone.

In all, the self produced audio signal brings no orminimal information
to predict the EEG signal.Hence, these results suggest that there is a Speech-
Induced-Suppression effect blocking the information fromone’s own voice.

The results presented here are also supported by the phase-locking
value (PLV) between the EEG signal and the envelope of the audio signal
at different lags. To this end, the phase synchronization between the
EEG signal of each electrode in the Theta band, and the envelope signal
band-pass filtered between 4–8 Hz was computed. The analysis pre-
sented in Fig. 6a, c shows that both situations of (E) and (E∣B) present a
higher synchronization at a latency of ~125ms, where the mTRFs also
reached their maximum absolute value (Fig. 4a, c). Furthermore, the
largest values of the (E) condition are distributed over the same frontal
lateral regions where the encoding model found the strongest repre-
sentation of the spectrogram feature (Fig. 2a). Conversely, the remaining
dialog conditions (S, S∣B, Silence) presented much lower PLVs at all
time-lags, and no clear synchronization or regions of impact at any time
(Fig. 6b, d, e).

This analysis not only determines the most synchronous channels to
the envelope at a certain time lag, but it can also specifically measure the
latency at which the overall synchronization is maximum. This could bring
new information concerning thedelays in theprocessing of auditory stimuli.
Furthermore, it replicates the SIS results in amodel-free approach based on
the phase of the signals rather than the amplitude (as the encoding models)
reassuring the consistency of the result.

Discussion
In this work, we studied the neural representation of acoustic features from
natural and unrestricted dialogs between pairs of participants. Using
encoding models, we estimate the response in the EEG signal to different
audio features from the perceived stimuli used for the analysis, obtaining
similar responses to the evoked potentials known to discrete stimuli with
established onset times from previous works. In accordance with our
hypothesis, we found that encoding models achieve a good performance
when the participants are engaged in natural dialog, where the prosody is
known to carry an important part of the information, and also, where the
participant needs to engage in the dialog to fulfill a task52,53. Furthermore, we

Fig. 4 | Speech-Induced Suppression: Correlation values of all frequency bands
andTheta bandmTRFs to the spectrogram for every dialog condition. a Listening
to external speech (E); b Listening to self-produced speech (S); c Listening to the
external speech while both are speaking (E∣B); d Listening to the self-produced
speech while both are speaking (S∣B); e Silence. Mean number of samples per

participant: NA/NB = 49,034 (range between [17,825–78,259]), NC/ND = 2692
([1207–4617]), NE = 31,586 ([15,207–73,464]). Again, pre-stim time lags are
included in the figure for representation purposes, but the predictions were made
only from positive times, to avoid providing themodel with information from future
time-points.
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observed a total suppression of the brain response to self-produced speech,
even in situations where both participants were simultaneously speaking.

Previous studies using EEG in humans also measure the performance
as the correlation between the predicted and the original EEG signal21,23.
Considering that the mTRF are interpreted as an evoked response to the
stimulus feature used as input in the model26,28–31, we propose that the
regions with better predictive power in the model, would correspond to
those with a higher representation of the stimulus feature, always con-
sidering first the statistical significance of the correlation values of the
predictions. These studies used several audio features as input for themodel,
in particular the envelope and the spectrogram. For the envelope they
obtained a mean correlation value of around 0.03 using Audiobooks21, 0.26
using pre-recorded audio from a sentence database (TIMIT)23,54, and 0.07
using Movie Trailers (MT)23. For the spectrogram, all the obtained values
were under 0.1 (Audiobooks: 0.06, TIMIT: 0.09,MT: 0.02).Moreover, when
combining these features as input for a model, the mean correlation values
slightly improved the performance in TIMIT, reaching 0.35 and 0.1 forMT.
In the case of natural dialogs, we obtained better performance than the three
cases for both features (spectrogram: 0.41, and envelope: 0.23). These results
were also similar to studies with ECoG that use spectrotemporal features
(ronset = 0.26 and rsustained = 0.34)36 or the envelope (r2≃ 0.19, r = 0.43)38

from TIMIT, MT and modified audios. It is important to consider that we

only compared our results with the uncorrected correlation values reported
in ref. 23 and refs. 21,23 also presented noise-ceiling correction correlation
values55,56 but such correction relies on trials and it is not possible to be
computed in continuous unscripted data.

Two possible explanations for the better correlation coefficients are
that the predictions in this work are computed for each frequency band
separately, whereas themain results reported from the previous studies used
a broader band (1–15Hz). Focusing on the Theta band could increase the
correlation values as the representation of these auditory features seems to
take place in a narrow frequency band, as was the case in ref. 21 (2.5 increase
when using only Theta). Also, the adaptation of the methodology for
automatically computing the optimal alpha parameter of the ridge regres-
sion, which could contribute to the better results obtained in the test set, as it
is intended to reduce the overfitting to the train set (see Supplementary
Note 9 and Supplementary Fig. 12 for more details).

It is worth mentioning that in our case, as in the case of Audiobooks21,
we obtained a betterperformancewith the spectrogrammodel thanwith the
envelope. We hypothesize that this is because the spectrogram presents
more detailed information about the stimulus. Those other studies also
explore features like phonemes or the onset of an utterance that yield better
results. It would be interesting to explore those other features in our dataset
in the future.

Fig. 5 | Comparisons between the average correlation values of each electrode in
the Theta band from different listening conditions: Results from Wilcoxon
signed-rank test, Cohen’s d-prime, and Bayes Factors in favor of the hypothesis
H1 (BF10), and in favor of the hypothesis H0 (BF01) (N= 18, d.f.: 17).
a Comparison between isolated External speech, Self-produced speech and Silence.
b Comparison between External speech and Self-produced speech when both par-
ticipants are speaking, and Silence. c Comparison between isolated and both

participants speaking conditions. The conditions are abbreviated as follows: Lis-
tening to external speech (E), Listening to self-produced speech (S), Listening to the
external speech while both are speaking (E∣B), Listening to the self-produced speech
while both are speaking (S∣B). Uncorrected p-values should be compared with a
threshold of 0.05/128 = 3.9 × 10−4 (Bonferroni corrected-threshold), also see Sup-
plementary Note 8 Supplementary Fig. 11 for False-Discovery Rate (FDR) corrected
p-values.
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In general, the encoding framework allows us to also explore the
temporal, spatial and frequency distributions of the brain representations of
the different features. Overall, the obtained results were similar to those in
previous studies that focused on specific aspects of brain responses, but in
this case, reproduced all in one dataset, strengthening the consistency and
robustnessof thesefindings.Consistentwithprevious studies usingdifferent
analytical methods22,50,51,57, and taking into account the delay introduced by
causal filters, the largest peaks in the TRFs and the highest synchronization
values were found at approximately first 200 ms. In particular, Etard et al.22

used decodingmodels to find the time lag that better predicted the envelope
from the EEG signal andPerez57 usedGaussianCopulaMutual Information
(GCMI) synchronization analysis. These time-windows are compatible
with the classical auditory N1 obtained with ERP analysis in similar
studies50,51.

In terms of frequency analysis, our results presenting higher predictive
power in the Theta band agree with previous work21,22, on which they used
encoding and decoding frameworks respectively. In both cases, they looked
into the performance of themodels for different frequency bands and found

Fig. 6 | Phase-locking value (PLV) between the EEG signal of each electrode and
the envelope signal, averaged across participants for all dialog conditions.
a Listening to external speech (E); b Listening to self-produced speech (S);
c Listening to the external speech while both are speaking (E∣B); d Listening to the
self-produced speech while both are speaking (S∣B); e Silence. Each panel shows the
phase synchronization between each EEG channel and the envelope feature (top
left), and the average values and standard deviation across channels (bottom left), for

all time-lags between −200 ms and 400 ms. The time lag 0 corresponds to the EEG
and envelope frommatching instants, negative latencies indicate that the EEG signal
precedes the auditory signal (making it impossible to have a causal effect), while
positive lags indicate that the brain activity follows the auditory signal. On the right
side of every panel, the topographic distribution of phase-locking values for the time
lag of maximum average synchronization.
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Theta (in the first case) and Delta and Theta (in the second, being Delta
slightly better) to be the frequency bands with higher correlation values.
Here, we showed that the effect is statistically significant and that it is also
present in natural speech and in Spanish. The saliency of the Theta band is
also consistent with other studies that refer the synchronization of the brain
activity and the acoustic features of the speech signal as the cortical
entrainment effect17,58. This effects was explored in English and Mandarin
Chinese59, but all languages have speech rates in the same range (Mandarin:
5.18 ± 0.15, English: 6.19 ± 0.16, and Spanish: 7.82 ± 0.16)60.

Regarding the localization, Lalor and colleagues obtained the larger
responses in fronto-centro-temporal electrodes25,26. Similarly, Di Liberto
et al. focused their analysis on lateralized fronto-central electrodes
(approximately FC3-6, C3-6) after exploring the whole scalp21. Those
regions overlap with the region with higher representation found in this
work (approximately F3-8, FT7-8, C3-5). The envelope was mainly repre-
sented in the frontal region of both hemispheres, with a slight, yet non-
significant, lateralization to the right, in line with previous work35. Con-
versely, the spectrogram was represented mainly in the lateral frontal
electrodes of the left hemisphere, which could indicate that the spectrogram
feature encodes not only acoustic information, but also language-related
information. This is consistent with previous findings on passive listening
situations showing an interaction of Broca’s area with the primary auditory
cortex14,17–20.

Speech-induced suppression was previously studied by analyzing the
modulation of evoked potentials, mainly the N1/M100, in different
scenarios5–9. These studies analyzed the difference in brain response to alien
and self-produced speech in the traditional “Talk-Listen” paradigm, using
mainly recorded speech from pronounced vowels and introducing noise,
pure tones, frequency shifts, or delays to the perceived stimuli5–8,12. Their
results mostly showed partial attenuation in the response to the intact self-
produced speech, but not when the produced speech was altered before
feedback. Only in a few cases, does this attenuation reach full suppression of
themeasured response both inEEGandECoG7,8,61. Theirfindings presented
evidence indicating that the SIS mechanism is very specific, and it only
applies when the stimuli exactly match an expected outcome of the pro-
duced speech. The encoding approach allows us to deal with continuous
unscripted speech, even in the context of many simultaneous sources, in
particular, to differentiate a response to self-produced or external stimuli
when both are produced at the same time. In this context, two speakers are
engaged in a conversation and the impact of self-generated speech and
external stimuli can be naturally assessed. In this context, we noted a more
pronounced inhibition of self-generated speech compared to themajority of
earlier investigations.Apotential rationale for this phenomenonmight stem
from the inherent alignment of encoding models with the continuous
stream of speech, while the ERP method predominantly captures transient
responses aligned to the onset of a stimulus (often ill-defined). Hence, the
strong attenuation of the response to self-produced speech sustained over
time suggests that the suppression effect might increase after the attenuated
response to the self-produced stimuli onset (reported in previous
studies5,6,8). This effect could take place by profiting from the mechanisms
known to parse speech information in the brain, in which different regions
of the auditory cortex present onset or sustained responses to speech
stimuli36.

In parallel, recent work studying phase synchronicity had found a
significant and instantaneous synchronization between the EEG signal and
the self-produced audio envelope, and a 100ms lagged synchronization
between the EEG signal and the audio envelope of a speaker57. However, the
authors suggest that the immediate synchronization could be due to mus-
cular artifacts in the EEG that correlate with the produced speech. The
strong suppression of the response and synchronization to the self-
produced speech features observed here could indicate that previous results
were indeed caused by correlation to muscular artifacts. The results pre-
sented here using the PLV method applied to external stimuli support the
latency results obtained from the encoding analysis through the mTRFs.
Moreover, the spatial distribution of the synchronization presents its higher

values in the same electrodes where the encoding model found the max-
imumcorrelation, evenwhenbothmethods present different nature in their
formulation, one analyzing the amplitude of the signals (encoding) and the
other the phase synchronization (PLV).

Even though the precision in time is important for the SIS effect, some
studies also explore the network that supports the monitoring of the own
speechwith fMRI62 or combining EEG andMRI8. They showed that activity
along the superior temporal sulcus and superior temporal gyrus bilaterally
was greater when the auditory stimulus did not match the predicted out-
come. These regions generally related to speech perception, can be also
linked to a control system that predicts the sensory outcome of speech and
processes an error signal in speech-sensitive regions when there is a mis-
match. These results are in accordance with N1/M100 sources8, which is
similar to the spatial distribution of the brain representation of speech that is
suppressed found in this work.

The SIS effect is proposed to be generated by the efference copy of
the expected output of the speaker’s own voice, sent to the primary
auditory cortex (Helsch’s area) to cancel such signal from the perceived
stimulus61. Although this mechanism is not yet fully comprehended,
the approach proposed here could serve to confront it with an alter-
native hypothesis such as a selective attention mechanism similar to the
one proposed in discriminating speakers within a crowd (cocktail-party
problem)63,64. Moreover, it could open the way to explore how specific it
is in terms of the different features of speech and to study it in more
natural scenarios and with more natural stimuli, other than isolated
vowels.

It is important to take into consideration some methodological deci-
sions and their possible implications to compare the results with previous
findings. One potentially confounding factor is related to the muscular
artifacts related to speech articulation and the application of Independent
Components Analysis (ICA). During the dialogs, we asked participants to
minimize unnecessarymovements to avoid upsetting the electrodes, but we
did not restrictmovements during the task.Also, theywore anEEGcap, had
to remain seated, andwere separated by anopaqueblanket hangingbetween
them (to discourage facial and hand gestures). During preprocessing, we
aimed to remove as much unrelated noise as possible without affecting
neural signals. We use ICA mainly to remove eye movements and blinks,
discontinuities that correspond to bad electrodes or single electrodes with
high noise for an interval of time, and some extreme muscular artifacts
probably related to jaw and neck. First, we used two semi-automatic criteria
for eye movements and blinks: EyeCatch65 and ADJUST66, and
discontinuities66; keeping ICs that showed a peak in alpha frequencies. It is
important to note that the same components were used for the whole EEG
recording, independently of whether the participant was speaking or lis-
tening. Thus, we expect that no correlations with the spectrogram or
envelope for these components were introduced by bias in component
selection. Second, we also removed other muscular artifacts. We identified
these components as having sharp spatial distributions located in the
edgemost temporal electrodes (over the ears), with high-frequency spectra
(typically flat or U-shaped spectra), and without a peak in alpha. These
components are usually just referred to as ‘muscle components’ in the
bibliography67–69 and tutorials on artifact removal with ICA (for instance70).
They more likely capture neck or jaw movements, but not lips or tongue.
The lips and tongue movement certainly could have a spectrum more
concentrated in lower frequencies, than in an occipital-frontal dipole71.
Furthermore, over the different articulators, the jaw is probably the onewith
the lowest correlations with the speech spectrogram72. Thus, the ICA pre-
processwas not expected to removemuchof the spectrogram responses and
thus introduced a potential bias towards lower responses in the speaking
condition. On the contrary, as we did not remove components specifically
related to tongue or lips artifacts, in theworst case, it could be expected some
immediate increase in the response in that condition, as discussed by Pérez
et al.57. As mentioned before, it is important to note that all the artifact
removal was performed in the continuous data, before the separation into
conditions.
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Anothernoteof caution refers to the overinterpretationof the latencies.
As shown in the Supplementary Note 5 (Supplementary Fig. 7) and con-
sistent with57 the latencies depend on the filter choice. Here, we showed that
this choice did not affect the performance of the model and the spatial
distribution, and to some extent also the waveform of the responses. We
based our choice on the criteria that the future must not influence the EEG
prediction, i.e. that the amplitude of the TRF in the baselinemust be close to
zero, and thus we use zero-phase non-causal filters. Still, other choices are
possible if the latencies were of special interest (see ref. 21).

Thiswork is part of anovel trend in thefieldof neuroscience, advocated
in understanding brain function in natural scenarios24. Here we work with
an unconstrained experimental task not explored to date, under the
hypothesis that constraint tasks allow to describe the building blocks but not
how they interact between them, hence their interaction in a dynamical,
unconstrained environment remains unexplored. To the best of our
knowledge, this is the first time that an effect of speech-induced suppression
is shown in a natural and dynamic situation as dialog, even when listening
while speaking, by taking advantage of both the unique experimental setup
and the analytical methods presented here. The results in this work show a
clear and robust way to measure such effects, supported by the replication
and extension of most of the previous findings studying the representation
of acoustic features of continuous speech in the brain; all thiswith a trial-free
analysis methodology. In terms of the representation of acoustic features,
the evidence of activity in the language regions extended the previous results
that suggested its interaction with the primary auditory cortex in passive
listening to more natural scenarios14. The performance of the models
motivates the realization of such more “natural” experiments of listening
while producing speech with devices withmore precise localization, such as
magnetoencephalogram (MEG) or electrocorticogram (ECoG), to untangle
the brain mechanisms of the SIS.

Methods
Participants
The data used in this work consists of 10 sessions, in which 20 subjects, 10
women and 10men aged between 19 and 43 years (M= 26.4, SD = 6.3) and
Spanish native speakers participated. Only one session was later discarded
due to the poor quality of the EEG signal in one of the subjects73. All
participantsgavewritten informedconsent andwerenaive about the aimsof
the experiment. All the experiments described in this paper were reviewed
and approved by the ethics committee of the Centre of Medical Education
and Clinical Research “Norberto Quirno” (CEMIC) (Protocol 435), quali-
fied by the Department of Health and Human Services (HHS, USA). All
ethical regulations relevant to human research participants were followed.

Experimental design
In each session, twoparticipantswere sitting facing eachother in a recording
booth, separated by an opaque curtain that prevented visual communica-
tion. Each participant had a computer, where a graphical interface allowed
them to develop a joint task that required verbal and unrestricted
communication32,33. During each session, between 17 to 30 trials (average of
24.3 trials) of 1–5minwere carried out with an average of 82.6 s (SD = 61s),
for a total of 5.3 h of recording. A diagram of the experimental design is
shown in Fig. 1a.

EEG recording and preprocessing
EEG activity was recorded using two BioSemi Active-Two systems at 128
positions each with a sampling rate of 1024Hz. The electrooculogram
(EOG) and linkedmastoid reference were also recorded. Preprocessing was
performed in MatLab using the EEGLAB toolbox74. The original filter on
raw data was performed using a Finite Impulse Response (FIR) filter
(pop_eegfiltnew)75 in three steps: First a high-pass filter (low cut-off = 0.1;
order = 16,896), then a low-pass filter (high cut-off = 100; order = 100), and
a Notch filter (cutoff = [49, 51]; order = 3380). The required filter order/
transition bandwidth is estimated as the transition bandwidth is 25% of the
lower edge. These filters were all zero-phase non-causal filters, applied

following the instructions of the EEGLAB toolbox, where standard proce-
dure for applying band-passfilters is the successivefiltering of high-pass and
low-pass causal filters76.

The intervals between trials were eliminated from the recordings and
independent component analysis (ICA)was applied to the remainingdata77,
with the aim of removing ocular and muscle artifacts. From the 128 com-
ponents generated by the Infomax algorithm, artifactual components were
identified, first, using EyeCatch65 and ADJUST66 plugins for EEGLAB. As
suggested by the developers, the selection was supervised by an expert (one
of the authors). Components presenting a peak in spectra in the alpha band
were unmarked. Then, the same expert (one of the authors) marked mus-
cular components based on the following criteria: 1. spatial distributions
with sharp peaks located in the edgemost temporal electrodes (over the
ears), 2.with high frequency spectra (typicallyflat orU-shaped spectra), and
3. without a peak in the alpha frequency band. Overall, an average of 22 out
of 128 components were removed per participant. EyeCatch and ADJUST
usually agreed in the eyemovement components butADJUSTalsoprovided
thediscontinuities (isolatedbad electrodesor bad intervals inone electrode),
a total of 17.5 components were discarded using these methods. Finally, 4.5
components were identified on average using the criteria for muscle
artifacts.

After the preprocessing, carried out in the acquisition stage, the EEG
signal was filtered in the following frequency bands of special interest for
EEG analysis, in order to discern the effects in each one: Delta (1–4Hz),
Theta (4–8Hz), Alpha (8–13Hz), Low Beta (13–19Hz), and a broad ERP
band (0.1–40Hz). A minimum-phase causal FIR filter was applied, using
the implementation in theMNE Python library78, which calls Scipy’s signal
firwin function, to implement an FIR filter using the windowmethod79. The
parameters were set to use a ‘hamming’ window, to pad the edges with the
signal edge values, and to introduce a ‘minimum’ phase lag in the causal
filter. The transition zones were automatically determined to minimize the
artifacts introduced by the filtering. For more details of the filtering process
and the differences between Causal and Non Causal filters, please see
Supplementary Note 5 and Supplementary Tables 1 and 2. Finally, the
Z-scores of the signal were calculated and the sampling frequency was
reduced to 128Hz by sub-sampling.

Speech fromeachparticipantwas recordedon separate channelswith a
TASCAM DR-100 digital recorder (44.1 kHz, 16 bits) and using two Rode
HS-1 speechmicrophonesmounted on the participant’s head. The recorded
audio signal was downsampled to 16 kHz and synchronized with the EEG
signal. This procedure was performed using a low-resolution copy of the
audio recording that was incorporated to the EEG recordings as an analog
input. With this signal, the time shift that maximizes the cross-correlation
between the two audio copies was obtained and the signals were synchro-
nized (see Supplementary Note 1).

Feature extraction
The main feature used in this analysis is the mel-spectrogram computed
from the audio signal. This was computed using librosa80 in Python, which
uses the fast Fourier transform (fft) to decompose a discrete signal into the
frequency space. The signal was decomposed into 16 mel-bands of up to
8 kHz. This frequency decomposition is thought to reflect the filtering
performedby thehumanauditory system81, andhasbeenused extensively in
previous works in the field36,37,82. The computation of the fft and the spec-
trogramwasperformedonwindowsof 125non-overlapping audio samples,
in order to obtain a signal with the same sampling frequency as the EEG
signal. In this way, the audio samples of the spectrogram at each instant do
not contain information corresponding to the signal at future points, which
could lead to amisinterpretation of themodel adjustment times. The speech
envelope was calculated using scipy’s 1.7.179 implementation of the Hilbert
transform on the audio signal, then taking the absolute value of the real and
imaginary components21,23,38. To reduce the temporal resolution, the average
was taken in non-overlapping windows of 125 audio samples, resulting in a
signal with a sampling frequency of 128Hz. Finally, the signal was nor-
malized between [0,1] before using it as input in the model. For a detailed
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description of the shimmer and pitch extraction please see Supplemen-
tary Note 3.

Interval selection
For the proposed analysis, we classify the dialog status in each sample
according to who was speaking or listening. First, we define an Inter-Pausal
Unit (IPU) as a maximal speech segment from a single speaker that is
surrounded by pauses longer than 100ms. IPUs in our corpus were
manually aligned to the audio signal by trained annotators34. Thus, we
obtained the beginning and ending times of all uttered sentences by each
speaker, and we can define intervals where only one participant is speaking,
both are speaking, or there is silence.

Encoding models
Amodel was fitted for each participant to each EEG channel independently
(Fig. 1). Each sample corresponded to an interval where the participant had
been uninterruptedly listening to their partner speak for at least 0.6 s
(condition E in our manuscript). Using overlapped sliding windows with 1
time-point step, all the valid intervalswithin each sessionwere extracted (for
each condition separately). On average, the number of samples (Nsamples)
used for the analysis was around 2692 (range between [1207–4617]) per
participant for the condition of both participants simultaneously speaking
and 49,034 (range between [17,825–78,259]) per participant for exclusive
listening situations. For each EEG sample, the previous 600ms of the audio
feature of interest (temporal delays) were taken as model inputs based on
previous results21,36,37. The first 3ms were discarded to exclude approxi-
mately the time it takes for the sound wave to reach the speaker located 1m
away. Since the sample rate of both the audio and the EEG signals were
128Hz, the 600ms segments resulted in 77 time-points (or delays; Ntimes).
These vectors were used as model input matrix with a final dimension of
[Nsamples ×Ntimes]. In the case of the spectrogram, as there are 16 frequency
bands, the dimensions of the vectors became [Ntimes×Nfeatures] corre-
sponding to a 77 × 16 = 1232 vector.

Encoding models use linear regressions to find the relationship
between the audio features and the neural activity. Many times, due to the
collinearity of the input features, and also to prevent overfitting, a Ridge
regression is used21–23,36,37. Ridge regression counts with a regularization
parameter which reduces the effect of collinearity and helps prevent over-
fitting by penalizing higher weight values. For a detailed description of the
Ridge parameter selection see Supplementary Note 9.

The encoding models were fitted for each electrode and participant
separately, over a 5-fold cross validation procedure that intended to avoid
getting spurious results due to poor data partitioning. The mTRFs were
averaged over the 5 folds first, yielding one result per electrode per parti-
cipant. Finally, these were averaged across participants to obtain the results
for the Grand Average of subjects, presented in the results section.

We assess the performance of the model as the Pearson correlation
between the predicted EEG, reconstructed for all samples in the test set, and
the actual EEG signal. Similar to mTRFs, these correlation values were
calculated for each channel and participant separately, then averaged across
the 5 folds within each participant and finally averaged across participants,
obtaining one value for each electrode. The results were presented as spatial
distributions of the mean values across participants, or mean values across
participants and channels. To summarize the results in the main text, we
reported: 1. the average value across all electrodes, and 2. the highest cor-
relation value across electrodes. This maximum value is usually reported
because it is not expected that the speech signal impacts all the electrodes in
the same way, and thus averaging correlation values across 128 electrodes
could largely shadow the results.

A recent study23 also presented the correlation values from the pre-
dictions with a normalization-correction55,56, along with the uncorrected
correlation values. The noise-ceiling correction normalizes the performance
of the model with the maximum theoretical performance (Cmax) given by
thedata itself.However, it relies on trial repetition for the computationof the
Cmax, making it not possible to implement in continuous unscripted data.

This correction is useful to distinguish a bad performance due to a poor
model or to noisy data, yet it exacerbates correlation values. It would be
interesting to develop a similar measure for continuous unscripted data.

Statistical analysis
Model’s significance. To endorse the results obtained from the model,
in terms of latencies, frequency bands and impact regions, the statistical
significance of the model predictions needs to be assessed. Then, the
mTRFs reliably represent the response to the specific feature of con-
tinuous stimuli. To do this, a permutation test was performed, where
3000 surrogate models were trained with 3000 different random per-
mutations of the input matrix for each participant83. The permutations
were realized over the samples axis, keeping the temporal structure of
each sample and its correlation structure across the 600 ms (see Sup-
plementary Note 10 and Supplementary Fig. 13 for more details). The
surrogate models were then used to make predictions on the original
evaluation set. The alpha hyper-parameter used was the one obtained for
the original model for each case (feature, frequency band, and partici-
pant). Then, 3000 correlation values were obtained from the random
predictions, from which a null distribution was generated in order to
compare it with the correlation value obtained by the model using the
original data. The p-value of the original model prediction is:

p� value ¼
NρRand > ρTrue

þ 1

Nperm þ 1
ð1Þ

Where NρRand > ρTrue
corresponds to the number of times that the cor-

relation of a random permutation of stimuli was greater than that obtained
with the original data, andNperm indicates the total number of permutations
performed (3000).

This process was repeated for each electrode in each fold of an
unshuffled 5-fold cross-validation procedure, in order to avoid spurious
results due to poor data partitioning. The significance threshold was set at
0.05 andcorrectedbyBonferroni (0.05/128), conservatively considering that
the testwill beperformedon the 128 channels separately.Only channels that
passed the test (p-value <0.0004) in all folds were considered significant.
Finally, the results of each participant, indicating which electrodes were
significant, were summed over participants, yielding a scalp plot with the
number of significant subjects for each electrode. See Supplementary Fig. 5c.

Lateralization statistical test. The comparison between correlation
values from frontal lateral electrodes was performed with a signed-rank
Wilcoxon test using statannot, the original version of statannotations
library for python84. 12 electrodes of each hemisphere were used, giving
12 samples (n = 12, d.f.:11).

Threshold-Free Cluster Enhancement test. In order to identify the
significant time-points and frequency bands for the prediction of the EEG
signal across participant, themTRF fitted for the spectrogram feature was
subject to a 1-sample permutations test (Threshold-Free Cluster
Enhancement, TFCE) across participants (N = 18, d.f.: 17) as imple-
mented in the MNE python library, using 4096 permutations and a
threshold parameter starting in 0, with a step of 0.285. The resulting
p-values were masked when values exceeded the 0.05 threshold, and
presented in logarithmic scale for visualization purposes.

Models comparison. To compare the results of models trained in dif-
ferent dialog conditions, a signed-rank Wilcoxon test was performed on
the correlation values of all participants for each channel separately. This
was done with the Wilcoxon function from scipy.stast module version
1.7.179. The encodingmodels were fitted for each participant individually,
obtaining 18 correlation values for each electrode (after averaging over
the 5 folds). This was repeated for the 5 dialog conditions, obtaining a
5 × 18 matrix with the correlation values for each electrode. Paired
comparisons between every combination of conditions were performed

https://doi.org/10.1038/s42003-024-05945-9 Article

Communications Biology |           (2024) 7:291 10



using a signed-rank Wilcoxon test (N = 18) for each electrode, yielding a
scalp distribution of p-values. Given that each hypothesis was tested in
the 128 channels separately, the significance threshold was corrected by
Bonferroni for multiple comparisons (but see also the results with the
FDR correction below). To estimate the evidence in favor of both the null
and the alternative hypothesis (H0 and H1) we estimated the evidence in
favor of one hypothesis over the other using the Bayes Factors86,87. As
before, the null hypothesis (H0) implies that the model performances in
both condition are equal, and the alternative hypothesis (H1) implies that
there is an effect (a difference between conditions). We presented results
on both the BF10, which the evidence in favor of H1 over H0, and the
BF01, which is the inverse of BF10. Roughly speaking, as we used loga-
rithmic scale values larger than 0 correspond to positive evidence in favor
to one of the hypothesis (H1 in the case of BF10), values larger than 0.5
correspond to substantial evidence, and values larger than 2 correspond
to decisive cases. Finally, Cohen’s d-prime was also computed on the
same data, to assess the effect size between them in standard
deviation units.

Phase-locking value
The phase synchronization between the envelope of the audio signal filtered
between 4–8Hz and the EEG signal from the Theta band was computed by
the following equation88:

�
�
�
�
PLVðτÞ

�
�
�
�
¼ 1

n

Xn

t¼1

expðiðθenvðtÞ � θeeg ðt � τÞÞ
�
�
�
�
�

�
�
�
�
�

ð2Þ

Where θenv corresponds to the phase angle of the envelope signal, θeeg to the
phase angle of the EEG signal for one channel, extracted by means of the
Hilbert transform, and n is the total length of both signals. This method
averages unit vectors in the complex plane, where the phase of those vectors
corresponds to the phase difference between signals at each time (t) (i.e. all
the samples that belonged to the corresponding dialog condition were used
as if theyconformedoneunique trial, fromwhich thephase synchronization
was calculated by averaging the complex unit vectors of phase differences
between the EEG and envelope signals). Then, taking the absolute value
yields a PLV between 0 and 1, where higher values correspond to more
synchronous signals. The synchronization values between the audio
envelope and every channel of the EEG were computed separately for each
participant, and then averaged across participants. This analysis was repe-
ated time-shifting the envelope signal with respect to the EEG signal,
allowing to find the time-lag when the synchronization between signals is
maximum. τ represents the time lags between the signals, ranging from
−200 to 400ms in a similar manner as ref. 57. Negative latencies indicate
that the EEG signal precedes the auditory signal (making it impossible to
have a causal effect), while positive lags indicate that the brain activity
follows the auditory signal. Zero lag is when the auditory and EEG signals
are synchronous.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Speechdatawas part of theUBAGamesCorpus,whichwas already released
in an institutional public repository (https://ri.conicet.gov.ar/handle/11336/
191235)73. All data (EEG, audio and transcriptions) was deposited into
figshare and can be accessed at the following URL: https://doi.org/10.6084/
m9.figshare.22647313.

Code availability
The code to replicate the results obtained in thismanuscript can be found in
https://github.com/jegonza66/SIS-during-natural-dialog/.
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