Table 2.
Comparison of the averages of the classification metrics for the developed hybrid model and the XGBoost approach across different hospitals.
| Hospital | Model | Accuracy | Recall | Precision | F1 Score | ROC AUC |
|---|---|---|---|---|---|---|
| Derivation Hospital | XGBoost | 0.937 | 0.815 | 0.984 | 0.892 | 0.930 |
| Hybrid | 0.899 | 0.784 | 0.884 | 0.831 | 0.921 | |
| Validation Hospital 1 | XGBoost | 0.843 | 0.756 | 0.738 | 0.747 | 0.842 |
| Hybrid | 0.874 | 0.821 | 0.780 | 0.800 | 0.863 | |
| Validation Hospital 2 | XGBoost | 0.918 | 0.964 | 0.913 | 0.938 | 0.933 |
| Hybrid | 0.894 | 0.930 | 0.907 | 0.919 | 0.933 | |
| Validation Hospital 3 | XGBoost | 0.898 | 0.744 | 0.799 | 0.771 | 0.852 |
| Hybrid | 0.902 | 0.753 | 0.809 | 0.780 | 0.881 | |
| Validation Hospital 4 | XGBoost | 0.886 | 0.802 | 0.877 | 0.860 | 0.864 |
| Hybrid | 0.904 | 0.826 | 0.880 | 0.896 | 0.892 |