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Abstract

BACKGROUND: Chronic pain is a common, poorly understood condition. Genetic studies 

including genome-wide association studies have identified many relevant variants, which have yet 

to be translated into full understanding of chronic pain. Transcriptome-wide association studies 

using transcriptomic imputation methods such as S-PrediXcan can help bridge this genotype-

phenotype gap.

METHODS: We carried out transcriptomic imputation using S-PrediXcan to identify genetically 

regulated gene expression associated with multisite chronic pain in 13 brain tissues and whole 

blood. Then, we imputed genetically regulated gene expression for over 31,000 Mount Sinai 

BioMe participants and performed a phenome-wide association study to investigate clinical 

relationships in chronic pain–associated gene expression changes.

RESULTS: We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 

× 10−7), including 36 unique genes and an additional 134 gene-tissue associations reaching 

within-tissue significance, including 53 additional unique genes. Of the 89 unique genes in 

total, 59 were novel for multisite chronic pain and 18 are established drug targets. Chronic 
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pain genetically regulated gene expression for 10 unique genes was significantly associated 

with cardiac dysrhythmia, metabolic syndrome, disc disorders/dorsopathies, joint/ligament sprain, 

anemias, and neurologic disorder phecodes. Phenome-wide association study analyses adjusting 

for mean pain score showed that associations were not driven by mean pain score.

CONCLUSIONS: We carried out the largest transcriptomic imputation study of any chronic pain 

trait to date. Results highlight potential causal genes in chronic pain development and tissue and 

direction of effect. Several gene results were also drug targets. Phenome-wide association study 

results showed significant associations for phecodes including cardiac dysrhythmia and metabolic 

syndrome, thereby indicating potential shared mechanisms.

Chronic pain is a common, debilitating condition (1–3). Risk factors for and mechanisms 

of chronic pain development are not fully understood. Treating chronic pain successfully 

is a complex process, and many treatments, including pharmacological treatments, are 

suboptimal [reviewed by (4)].

Genetic studies of chronic pain (5–7) and conditions associated with chronic pain [e.g., 

rheumatoid arthritis (8), endometriosis (9), and migraine (10)] [see also (11) for a recent 

review of genetic studies in chronic pain] have revealed hundreds of genetic loci, but 

these results have not been translated into actionable treatment. In the pathway from 

genotype to phenotype, transcription and gene expression represent intermediate steps. 

Understanding expression changes that are associated with chronic pain could aid in 

increasing understanding of the mechanisms and best pharmaceutical treatments for chronic 

pain.

Transcriptomic imputation (TI) approaches combine expression quantitative trait loci and 

genome-wide association study (GWAS) association statistics to identify trait-associated 

genetically regulated gene expression (GREX), thereby providing directional and tissue-

specific context (12–15). This approach is especially useful because changes to the brain 

and spinal cord, including regional brain activity (functional) changes as measured by 

functional magnetic resonance imaging, structural plasticity in central nervous system cells 

and synapses, morphological changes in neurons, changes to cell population sizes, changes 

in volume, and decreased gray matter, have been widely implicated in the development of 

chronic pain (16–20), and brain tissue is relatively inaccessible and impossible to assay 

in living study participants. Furthermore, genes that are involved in axonal guidance and 

enriched for expression in the brain have also been found to be associated with chronic 

overlapping pain conditions (21). TI studies have been carried out in a range of conditions 

(22–24), including complex traits that are commonly associated with chronic pain (10,24–

27), but no direct TI analyses of chronic pain have been undertaken. Here, we applied a TI 

method, S-PrediXcan (13), to impute GREX in 13 brain regions and test for associations 

with multisite chronic pain (MCP) (5).

There is an unmet need to interrogate consequences of genetic variants in clinical data 

(28,29). Phenome-wide association studies (PheWASs) test for significant associations 

between exposures (e.g., genetic variants or other risk factors) and large sets of phenotypes, 

such as ICD-10 or other electronic health record traits (30). Previous PheWAS analyses have 

shown a relationship between seronegative rheumatoid arthritis and fibromyalgia (31) and 
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between genetic risk for problematic opioid use and pain-related phenotypes (32). Here, we 

tested for associations between chronic pain–associated GREX and a phenome of over 1000 

phecodes in an ancestrally diverse hospital biobank.

This study involves GWAS summary statistics from one of the largest studies of chronic 

pain to date, in which chronic pain was examined as a complex disease trait (5). This 

may represent a more powerful way to uncover genetic variation specific to chronic pain 

development compared to genetic study of chronic pain–associated conditions. We have 

highlighted genes of interest through their GREX, in specific tissues, relevant to mechanisms 

of chronic pain development. We also present the first PheWAS of GREX for chronic pain.

METHODS AND MATERIALS

GWAS Output and Phenotype: MCP

MCP was found to be a complex, polygenic trait genetically correlated with psychiatric 

and other disorders in a 2019 GWAS (5). Recent changes to ICD-11 coding for chronic 

pain and International Association for the Study of Pain definitions of chronic pain (33–35) 

support the study of chronic pain as a disease. Genes involved in central nervous system 

and immune function were found to be associated with MCP using MAGMA (36), and 

gene expression of MCP-related genes was enriched in the brain. Summary statistics were 

used for transcriptome-wide association study analysis through the TI approach S-PrediXcan 

(13).

Discovery of GREX in Chronic Pain

GREX was imputed using MCP GWAS output and TI models from the GTEx (Genotype-

Tissue Expression Project) (37) in 13 brain tissues (Table S1) using S-PrediXcan. Multiple 

testing correction (Bonferroni) was applied and resulted in 2 thresholds for significance: 1) 

a per-tissue threshold correcting for all genes tested in each tissue (Table S1), and 2) an 

experiment-wide threshold correcting for all genes across all tissues (p = 7.9 × 10−7). Then, 

we sought to replicate our findings using a different TI method, summary–transcriptome-

wide association study (38) (see the Supplement).

Replication of Significant TI Gene-Tissue Associations

A recent genetic study of pain intensity was carried out in 598,339 Million Veterans 

Program participants (39) and included FUSION transcriptome-wide association analysis 

and prediction models for 6 brain tissues (anterior cingulate cortex, cerebellar hemisphere 

cortex, frontal cortex, cerebellum, and dorsolateral prefrontal cortex). Pain intensity was 

significantly genetically correlated with MCP (rg = 0.79) (39). We downloaded the 361 

significant gene-tissue results [Supplementary Table 20 in Toikumo et al. (39)] and 

carried out a Fisher’s exact test to ascertain whether results overlap represented significant 

replication.

Downstream Analysis: FUMA

Pathway analyses were carried out using FUMA GENE2FUNC (40) including all per-tissue 

significant gene results (n = 89). We tested for enrichment of all gene sets available in 
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FUMA GENE2FUNC with all genes that had at least one S-PrediXcan prediction model 

available and were included in FUMA as background (n = 15,588). Significant gene results 

were also investigated using the FUMA DrugBank (see the Supplement).

Connectivity Map Analysis

We queried Connectivity Map (CMap), a large database of perturbation signatures 

maintained by the Broad Institute (41,42), using genes up- and downregulated in MCP 

(Table S2). We filtered results to retain compounds (drugs) passing CMap quality control 

with significant connectivity scores (−log10(FDR [false discovery rate]–corrected p) > 1.3, 

FDR–corrected p < .05).

Phenome-wide Association Analysis in Mount Sinai BioMe

To probe relationships between MCP-associated GREX and clinical phenotypes, we 

performed a series of PheWASs (see the Supplement) in the Mount Sinai BioMe biobank.

BioMe is a large, diverse, hospital-based biobank that includes electronic health record and 

genotype data for 31,704 participants in the first data freeze. A total of 1236 phecodes 

for BioMe participants were included in analyses presented in this paper. Phecodes are a 

high-throughput method that reduce electronic health record dimension and complexity in 

which ICD-10 codes are manually grouped according to clinical similarity (43). Here, we 

used previously curated phecodes (44). A full list of phecodes can be searched at https://

phewascatalog.org/phecodes_icd10 or through download of the “PheCode Definitions v1.2 

ICD-10-CM map” available at https://phewascatalog.org/phecodes_icd10cm.

First, we imputed MCP-GREX (chronic pain–related genetically regulated gene expression) 

for 31,704 BioMe freeze 1 participants, split across 6 genotype-derived ancestry groups 

(Table S3).

Specifically, we imputed GREX in all 13 brain regions and in whole blood for all 89 

unique genes previously identified as significant MCP-GREX. We tested for associations 

between these GREX values and BioMe phecodes with at least 10 available cases in at 

least one ancestry [total phecodes = 1236 (44)]. Results were meta-analyzed using inverse 

variance-weighted meta-analysis in METAL (45). Multiple testing correction (within-gene 

FDR) was then applied.

To validate our MCP associations, we tested whether MCP-associated genes were associated 

with pain. A numeric rating scale (NRS) ranging from 0 to 10, where 10 is the worst 

pain possible and 0 is no pain, was recorded for BioMe participants and aggregated into 

a mean pain score across instances in which the pain NRS was recorded. Associations 

were tested between significant MCP-GREX results and mean pain scores, and results 

were meta-analyzed across ancestry groups using inverse variance-weighted meta-analysis 

in METAL. FDR correction was performed as previously described.
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RESULTS

Novel Brain-Specific Genes and Pathways Associated With Chronic Pain Identified With TI

We applied S-PrediXcan to the largest available summary statistics for MCP (n = 387,649). 

We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 × 10−7), 

including 36 unique genes (Table 1). An experiment-wide threshold is likely overly 

conservative because many expression quantitative trait loci are shared between tissues; 

therefore, we also applied a within-tissue Bonferroni threshold (Table S1; Figure 1A, B). We 

identified an additional 134 gene-tissue associations that reached within-tissue significance, 

including 53 additional unique genes.

Of these 89 genes, 59 were not previously associated with MCP (5) (Table S4; Figure 

S2). We also found significant levels of replication of our gene-tissue findings in 

summary–transcriptome-wide association study (Supplement; Tables S5, S6). We also 

found significant replication of S-PrediXcan findings within significant TI findings for 

pain intensity. Six significant gene-tissue associations for MCP (Tables S7, S8) were 

also significant in analyses of pain intensity, representing significant replication (p = 4 × 

10−9). To test whether significant associations were enriched in specific brain regions, we 

compared the proportion of experiment-wide significant associations per region with the 

proportion of genes tested in that region (binomial enrichment tests). We found significantly 

more experiment-wide significant associations in the nucleus accumbens basal ganglia 

than would be expected by chance (14.7% vs. 7.6%, pBinomial = .0075) and significantly 

fewer in the cerebellar hemisphere (4.2% vs. 9.0%, pBinomial = .038). Repeating this test 

for nominally associated genes, 3 brain regions showed fewer associations than would be 

expected by chance: the hippocampus (5.3% vs. 5.8%, pBinomial = .033), spinal cord cervical 

C1 (4.4% vs. 5.1%, pBinomial = .0014), and substantia nigra (3.4% vs. 4.0%, pBinomial = 

.0035).

Downstream Analyses Indicate Potential Chronic Pain Drug Targets

To identify functional patterns of MCP-GREX associations, we conducted a gene set 

enrichment analysis using FUMA (see the Supplement). Genes associated with MCP-

GREX were significantly enriched in the positional gene set chr3p21 (p = 5.27 × 10−19) 

(Figure 2A), which was also implicated in anorexia nervosa (46). MCP-GREX genes were 

significantly enriched for genes associated with 8 GWASs (Figure 2B). This included a 

previous GWAS of MCP (p = 5.54 × 10−6) (5), sleep duration (short sleep) (p = 2.27 × 

10−11), extremely high intelligence (p = 6.66 × 10−8), regular attendance at gyms and sports 

clubs (p = 6.66 × 10−8), and religious group attendance (p = 7.66 × 10−6), as well as 

inflammatory conditions (ulcerative colitis, p = 1.95 × 10−5, inflammatory bowel disease, p 
= 5.9 × 10−3) and age at first birth (p = 1.57 × 10−3). FUMA DrugBank lookups (Table S9) 

identified 19 genes as drug targets. CMap analyses identified 23 compounds with significant 

connectivity scores (Table 2).

Clinical Associations With Chronic Pain GREX Revealed Through PheWAS

To probe clinical consequences of our MCP-associated genes, we performed a PheWAS 

in the Mount Sinai BioMe biobank. First, we imputed MCP-GREX for 89 significant 
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MCP-GREX gene-tissue associations for 18,806 biobank participants who had available 

mean pain score data and tested for association between GREX and mean pain score. We 

identified 37 associations including 10 unique genes between MCP-GREX and mean pain 

score (Table 3). Next, we tested for phenome-wide associations, imputing MCP-GREX for 

89 significant MCP-GREX gene-tissue associations for 31,704 BioMe participants across 

6 ancestry groups. Then, we meta-analyzed across ancestry using METAL and applied 

multiple testing correction (FDR). We identified 16 significant GREX-phecode associations 

across 9 brain regions, including 10 unique gene-phecode associations (Table 3; Figure 

3). Associated phecodes included cardiac dysrhythmia, metabolic syndrome, disc disorders/

dorsopathies, joint/ligament sprain, anemias, and neurological disorders.

Because pain and chronic pain are core symptoms of many of these diagnoses, and some 

genes with significant MCP-GREX were significantly associated with pain NRS, it is 

difficult to discern whether our MCP genes are associated with pain experience or directly 

with the trait itself. Therefore, we repeated our PheWAS on a subset of BioMe participants 

and included mean pain scores derived from pain NRS information as covariates. We also 

carried out a PheWAS with adjustment identical to our main analyses (no adjustment for 

mean pain score) on the same subset of participants. We found the results to be significantly 

different from the main PheWAS results, but after comparison with the unadjusted-subset 

PheWAS, this appears to have been driven by a reduction in sample size rather than by mean 

pain score (Tables S10, S11). Sample size is significantly reduced when adjusting for pain 

score because many BioMe participants do not have pain NRS information available.

DISCUSSION

These results reveal novel genes, theoretically enriched for causal effect, that are relevant 

to chronic pain development, thus providing new insight into mechanisms of chronic pain. 

By applying TI using S-PrediXcan, we were able to perform a well-powered study of gene 

expression in brain tissue and whole blood, which is currently not feasible with existing 

cohorts in which chronic pain phenotyping, genotype, and expression data are available 

together due to limited sample sizes. In the following section, we contextualize our findings 

with a focus on MCP-GREX genes found to be significantly associated with clinical traits 

(phecodes) in our BioMe PheWAS analysis.

Gene Findings Give Insight Into Shared Pathways Between Chronic Pain and Other 
Medical Conditions

GREX of ILRUN, involved in innate immune response and highly expressed in B 

cells (47), was significantly associated with MCP in the basal ganglia of the nucleus 

accumbens, hypothalamus, amygdala, and cortex in the original S-PrediXcan analysis and 

with primary thrombocytopenia across all 4 tissues in our PheWAS (Table 4 ). Primary 

thrombocytopenia is an autoimmune platelet disorder that causes low peripheral plate counts 

and symptoms including joint and abdominal pain, bleeding, and bruising. ILRUN has 

also been linked to the renin-angiotensin-aldosterone system (involved in blood volume, 

sodium reabsorption, and vascular tone among other processes) in a study of SARS-

CoV-2 infection (48). Peripheral small Ad and C fibers that transmit pain signals contain 
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cells expressing renin-angiotensin-aldosterone system components, and renin-angiotensin-

aldosterone system modulators have been shown to affect pain relief (49). Our results 

suggest a role for ILRUN in the brain in chronic pain development, in addition to in pain 

perception in the periphery.

MCP-GREX of MON1B in both the amygdala and cervical spinal cord C1 was found to 

be significantly associated with anemias (Table 4); this phecode includes sickle cell anemia, 

thalassemia, and hemolytic anemias, all of which have often been associated with significant 

pain (50). Iron deficiency and iron-deficiency anemia are also generally associated with 

chronic inflammatory disease and chronic pain (51). Dysregulation of iron metabolism can 

play a key role in immune cell homeostasis and inflammation (52,53). MON1B also encodes 

a protein for which defects are associated with autoimmune pathology (54), a process 

that plays a significant role in chronic pain (55). This protein is also a key regulator of 

endocytic sorting by Numb, and so is linked to cell migration, asymmetrical cell division, 

and differentiation (56).

DCAKD encodes a protein linked to neurodevelopment (57) that is expressed widely in 

the brain (58), and MCP-GREX of this gene in the caudate basal ganglia was negatively 

associated with cardiac dysrhythmia (Table 4). Previous studies indicate a relationship 

between magnetic resonance imaging markers of cerebral small vessel disease and DCAKD 
(59) and Friedrich’s ataxia (60), a disease of progressive neurodegeneration, heart, and 

spinal problems (61,62). Heart rate variability is thought to represent hyperarousal and has 

been linked to emotion regulation and chronic pain (63,64). In addition, certain nerve blocks 

can treat both cardiac and chronic pain conditions (65).

ECM1 encodes a protein involved in type 2 helper T cell migration (66) and skin 

development (67). In PheWAS analyses, ECM1 MCP-GREX was associated with 

dysmetabolic syndrome X (aka metabolic syndrome) in 3 different brain tissues (68,69) 

(Table 4). This syndrome has been associated with increased risk of cardiovascular 

disease and type 2 diabetes (68,70). T cells have been associated with insulin resistance 

development in obesity (71); having metabolic syndrome can affect T cell development 

[reviewed by (72)]; and the amount of memory T cells has been associated with a 

proinflammatory state (73). These cell types could be therapeutic targets in chronic pain 

treatment (74–77) and could represent a sex-dimorphic mediator of pain hypersensitivity 

[reviewed by (78,79)].

PACSIN3 encodes a protein involved in the actin cytoskeleton and formation of vesicles 

(80). This protein also binds TRPV4; channelopathy mutations in the TRPV4 gene lead to 

skeletal dysplasias, Charcot-Marie-Tooth disease subtype 2C, premature osteoarthritis, and 

neurological disorders (81). TRPV4 channels are also important in skin function (82) and 

are involved in the itch-scratch cycle (83,84). TRP channels have also been implicated in 

chronic low back pain (85) and investigated as a therapeutic target in fibromyalgia (86,87). 

PACSIN3 MCP-GREX in the basal ganglia of the nucleus accumbens was significantly 

associated with bullous dermatoses in PheWAS analyses (Table 4). Bullous dermatoses 

are autoimmune skin conditions of painful blistering (88–91). Although itch and pain are 

considered to be distinct (84), they share many similarities (92). Results here suggest that 
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TRPV4 ion channels and their interaction with PACSIN3 could be a point of overlap 

between chronic pain and itch.

RAD51 is involved in DNA repair (93,94). RAD51 mutations have been linked to 

congenital mirror movement disorder (95) and cancers (96). MCP-GREX at this gene in the 

substantia nigra was significantly associated with disturbances of sulfur-bearing amino acid 

metabolism (Table 4). This phecode includes homocystinuria (the body is unable to process 

methionine) and methylenetetrahydrofolate reductase (MTHFR) deficiency (homocysteine 

levels are elevated) (97). Both processes are part of DNA metabolism (98), and elevated 

homocysteine levels are associated with a range of illnesses and neurotoxicity (99). RAD51 

foci (indicators of cellular replication stress) (100) were increased in experiments examining 

folate deficiency (101). Previous studies in rodents showed that elevated homocysteine 

caused mechanical allodynia (102), and PheWAS results indicate a role for this mechanism 

of sensitization in human chronic pain.

SCAI encodes a transcriptional cofactor that regulates invasive cell migration (103), 

including in gliomas (104). MCP-GREX of this gene in the cortex was associated with toxic/

inflammatory neuropathy in PheWAS analyses, and this gene was differentially expressed in 

rat models of diabetic neuropathy in the spinal cord (105). Our findings suggest a similar 

role for human SCAI in neuropathy.

SLC38A3 encodes a glutamine transporter (106) involved in cell energy metabolism. 

Glutamine is the preferred energy source for rapidly proliferating cell populations in the 

nervous system, immune system, and cancer cells (107–111). SLC38A3 is also expressed 

in muscles, and significant MCP-GREX in the caudate basal ganglia was found to be 

associated with joint and muscle sprain (Table 4), suggesting that the glutamine transporter 

encoded by SLC38A3 has a central as well as a peripheral role. SLC38A3 MCP-GREX in 

the same brain area was also significantly associated with neurological disorders (Table 4), 

consistent with research showing relationships between glutamine metabolism in the brain 

and neurological conditions (112–115). GABAergic (gamma-aminobutyric acidergic) gene 

regulatory elements have also been implicated in neurological and psychiatric diseases (116–

120), glutamate receptors in neurological dysfunction (121), and treating neurodegeneration 

through targeting glutamate transporters (122). Activity-dependent synaptic plasticity also 

involves glutamate and glutamine metabolism (123). Glutamine has also been investigated 

as a chronic pain biomarker because concentrations vary in individuals with chronic pain 

compared with control participants (124,125), and glutamine supplementation may be 

helpful in vaso-occlusive crisis in sickle cell disease (126). Glutamine levels have also been 

associated with individual pain sensitivity differences (127) and migraine (128). Finally, 

glutamine supplementation was associated with reduced opioid use in sickle cell disease in 

a small study, highlighting potential as a harm- and pain-reducing compound in chronic pain 

treatment (129). Finally, ERICH2 MCP-GREX in the amygdala was significantly associated 

with dorsopathies (Table 4).

Comparison With Genetic Correlation Results

Psychiatric disorder–related phecodes and phecodes assigned to chronic pain conditions, 

e.g., rheumatoid arthritis or endometriosis, were not significantly associated with MCP-

Johnston et al. Page 8

Biol Psychiatry. Author manuscript; available in PMC 2024 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GREX. In contrast, significant genetic correlations between MCP and, e.g., major depressive 

disorder and MCP and rheumatoid arthritis were found in a previous study (5). Genetic 

correlations are calculated using all single nucleotide polymorphism associations genome 

wide rather than at a gene level, which may explain these differences. In addition, in 

theory, S-PrediXcan results represent gene expression changes that occur before chronic 

pain development (whereas GWAS summary statistics used in linkage disequilibrium score 

regression represent genetic associations more generally). This suggests that the gene 

expression changes that contribute to chronic pain development do not directly contribute 

to psychiatric conditions (e.g., major depressive disorder), which is consistent with previous 

studies that have suggested that chronic pain can have a causal effect on major depression 

development but not vice versa (5). Another possibility is that tissues that were not 

examined in this study are associated with MCP-GREX and would show associations with 

psychiatric disorder or other expected phecodes in a PheWAS. However, it is difficult to 

explain why these nonbrain tissues, and not brain tissue, would show this result. We chose 

to examine brain and whole blood because chronic pain involves significant changes in 

the brain and spinal cord (16–19), and whole blood represents a tissue of interest due to 

immune components and ease of testing for, e.g., potential chronic pain biomarkers. Finally, 

phecodes generally represent a broad category of diagnoses; for example, the phecode for 

mood disorder (296) encompasses depression associated with major depressive disorder, 

bipolar disorder, and schizophrenia, and this heterogeneity could affect PheWAS results.

Changes to PheWAS Findings When Adjusting for Mean Pain Score

After adjusting our PheWAS association testing for mean pain score, results were 

significantly different compared with the main PheWAS analyses. However, these changes 

appear to be driven by reduction in sample size because unadjusted and adjusted analyses 

in the same subset of individuals showed similar results. Although NRS is a widely used 

pain reporting measure in clinical and research settings (130), it can change in unpredictable 

ways over time in chronic pain (131,132), may not accurately reflect treatment outcome 

when used alone (133), and may not be the most useful measure for identifying clinically 

important pain (134) or changes in pain (135). Pain NRS may not represent an ideal 

assessment tool in nonacute pain at the population or group level despite some studies 

demonstrating stability when an NRS was used to assess improvement in individuals over 

time (136) because perception of pain, which influences NRS ratings, is likely to be 

significantly different between individuals with and without chronic pain (137). People 

with chronic pain may rate moderate to high levels of pain as tolerable (138); conversely, 

depression or depressive symptoms that are commonly comorbid with chronic pain could 

lead to the reporting of higher NRS scores (139–141).

Drug Targets in Chronic Pain

Chronic pain is complex and difficult to treat successfully. The results shown here could 

inform treatment development; genes where MCP-GREX is associated with upregulation 

may present better targets in genomic medicine (downregulation of a gene can be easier to 

induce than upregulation), and genes where significant MCP-GREX is shown in a singular 

tissue may present a better target for potential animal modeling of chronic pain compared 

with genes where MCP-GREX is widespread. DrugBank lookups provide suggestions for 
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drug repurposing, and several drugs highlighted are already used experimentally in chronic 

pain treatment, e.g., monoclonal antibodies in migraine (142–144) and drugs that increase 

inhibitory glycinergic neurotransmission in the spinal cord (145,146). Several compounds 

identified in CMap analysis also show potential in chronic pain treatment; PX-12 showed 

anti-allodynia effects in a rodent model of chronic pain (147); physostigmine showed an 

antihyperalgesic effect in clinical trials (148); and SR-2640 activates TREK-1 channels that 

are associated with nociceptive hypersensitivity in rodent models (149). Arcyriaflavin-a is 

a potential therapeutic compound in endometriosis (150), as sorbinil (151) and fenoterol 

(152) are in diabetic neuropathy. Ursolic acid has demonstrated antinociceptive properties in 

animal models (153), and analgesic properties of palmitoylethanolamide (154) and luteolin 

(155) have been shown in multiple studies. Other findings are established pain treatments, 

e.g., aspirin and nimesulide. Other compounds, e.g., epidermal growth factor receptor 

(EGFR) inhibitor PD-153035, affect cancer-related pathways, which are also implicated 

in chronic pain (156), thus presenting novel treatment targets.

Conclusions

We carried out the largest TI study of a chronic pain trait to date, making important 

progress in translating GWAS findings into insights into chronic pain development and 

beginning to bridge the gap between genotype (GWAS output) and phenotype (MCP). 

Specific brain tissues and the direction of effect of MCP-GREX are also given; pathways 

of interest and potential mechanistic overlap with other medical conditions are indicated; 

and several genes showing significant MCP-GREX are also potential drug targets. We also 

identified several compounds with opposite expression perturbation signatures to MCP (i.e., 

potentially therapeutic compounds in chronic pain). Results of our PheWAS in which we 

adjusted for mean pain score indicate that associations tend not to be driven solely by pain 

perception. PheWAS results indicate potential shared causal pathways between chronic pain 

and conditions such as metabolic syndrome, anemias, and cardiac dysrhythmia.
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Figure 1. 
S-PrediXcan analysis identifies 89 unique genes associated with chronic pain. (A) S-

PrediXcan analyses identified 89 unique significant gene associations across 14 tissues. Red 

line indicates most conservative per-tissue significance threshold. (B) Number of significant 

multisite chronic pain–genetically regulated gene expression genes per brain region. Created 

using cerebroViz (157). AMY, amygdala; CAU, caudate; CB, cerebellum; CNG, anterior 

cingulate cortex; FL, frontal lobe; HIP, hippocampus; HTH, hypothalamus; PUT, putamen; 

SN, substantia nigra.
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Figure 2. 
Gene set enrichment analysis identifies positional and genome-wide association study 

enrichments. (A) FUMA gene set enrichment identified one positional gene set (chr3p21) 

enriched for multisite chronic pain–genetically regulated gene expression genes. (B) 
Enrichment analyses showed 9 genome-wide association study catalog traits significantly 

enriched for multisite chronic pain–genetically regulated gene expression genes.
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Figure 3. 
Phenome-wide associations with chronic pain–associated genes. Effect size = z score value 

for the association between MCP-GREX and phecode. Red horizontal line indicates p 
value significance threshold (−log10(0.05) = 1.3); phecodes are color-coded according to 

wider phecode category [using mapping tables made available at https://phewascatalog.org/

phecodes_icd10 and associated with Wu et al. (44)]. GREX, genetically regulated gene 

expression; MCP, multisite chronic pain; S.B.A.A, sulfur-bearing amino acid.
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Table 2.

CMap Compounds With Significant Connectivity Scores With MCP-GREX

Compound Name Mechanism of Action CS (Normalized)

PX-12 Thioredoxin inhibitor −1.62

Physostigmine Cholinesterase inhibitor, acetylcholinesterase inhibitor −1.62

Ibrutinib BTK inhibitor −1.62

SR-2640 Leucotriene receptor antagonist −1.62

Aspirin Cyclooxygenase inhibitor −1.63

Fenoterol Adrenergic receptor agonist −1.64

Nimesulide Cyclooxygenase inhibitor −1.64

Arcyriaflavin-a CDK inhibitor −1.65

BRD-A04553218 Histamine receptor antagonist −1.67

Ponatinib Bcr-abl inhibitor, FLT3 inhibitor, PDGFR inhibitor −1.67

SB-525334 TGF-β receptor inhibitor −1.67

Sorbinil Aldose reductase inhibitor −1.68

L-689560 Glutamate receptor antagonist −1.68

Entecavir DNA inhibitor, reverse transcriptase inhibitor −1.68

Ursolic acid

11-beta-HSD1 inhibitor, acetylcholinesterase inhibitor, caspase inhibitor, HIV protease inhibitor, 
lipid peroxidase inhibitor, quorum sensing signaling modulator, stearyl sulfatase inhibitor, 
tyrosine phosphatase inhibitor, ATPase inhibitor, NF-κB inhibitor, STAT inhibitor −1.68

Palmitoylethanolamide Cannabinoid receptor agonist −1.68

Luteolin Glucosidase inhibitor −1.69

Resiquimod TLR agonist −1.69

Tiabendazole Angiogenesis inhibitor −1.72

BRD-K18059238 Cyclooxygenase inhibitor, prostanoid receptor agonist −1.74

KO-143 Breast cancer resistance protein inhibitor −1.75

PD-153035 EGFR inhibitor −1.76

Dutasteride 5-alpha reductase inhibitor −1.85

CMap, Connectivity Map; CS, connectivity score; GREX, genetically regulated gene expression; MCP, multisite chronic pain.
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KEY RESOURCES TABLE

Resource Type
Specific 

Reagent or 
Resource

Source or Reference Identifiers Additional Information

Add additional rows as 
needed for each resource 
type

Include species 
and sex when 
applicable.

Include name of manufacturer, 
company, repository, individual, 
or research lab. Include PMID 
or DOI for references; use “this 
paper” if new.

Include catalog 
numbers, stock 
numbers, database 
IDs or accession 
numbers, and/or 
RRIDs. RRIDs are 
highly encouraged; 
search for RRIDs 
at https://
scicrunch.org/
resources.

Include any additional 
information or notes if 
necessary.

Antibody

Bacterial or Viral Strain

Biological Sample

Cell Line

Chemical Compound or 
Drug

Commercial Assay Or Kit

Deposited Data; Public 
Database GTEx https://doi.org/10.1038/ng.2653 https://gtexportal.org/home/

Deposited Data; Public 
Database CMap

https://doi.org/10.1016/
j.cell.2017.10.049

https://www.broadinstitute.org/
connectivity-map-cmap

Deposited Data; Public 
Database Phewas Catalog https://doi.org/10.2196/14325 https://phewascatalog.org/

Deposited Data; Public 
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Multisite 
Chronic Pain 
GWAS 
summary 
statistics

https://doi.org/10.1371/
journal.pgen.1008164
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researchdata.gla.ac.uk/822/
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Organism/Strain

Peptide, Recombinant 
Protein

Recombinant DNA

Sequence-Based Reagent

Software; Algorithm S-PrediXcan
https://doi.org/10.1038/s41467–
018-03621–1

Software; Algorithm FUSION https://doi.org/10.1038/ng.3506
http://gusevlab.org/projects/
fusion/

Software; Algorithm PheWAS
https://doi.org/10.1093/
bioinformatics/btu197

https://github.com/PheWAS/
PheWAS

Software; Algorithm FUMA
https://doi.org/10.1038/s41467–
017-01261–5 https://fuma.ctglab.nl/
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