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Abstract

Salmonella is one of the main causes of human foodborne illness. It is endemic worldwide, with different
animals and animal-based food products as reservoirs and vehicles of infection. Identifying animal reservoirs
and potential transmission pathways of Salmonella is essential for prevention and control. There are many
approaches for source attribution, each using different statistical models and data streams. Some aim to identify
the animal reservoir, while others aim to determine the point at which exposure occurred. With the advance of
whole-genome sequencing (WGS) technologies, new source attribution models will greatly benefit from the
discriminating power gained with WGS. This review discusses some key source attribution methods and their
mathematical and statistical tools. We also highlight recent studies utilizing WGS for source attribution and
discuss open questions and challenges in developing new WGS methods. We aim to provide a better under-
standing of the current state of these methodologies with application to Salmonella and other foodborne
pathogens that are common sources of illness in the poultry and human sectors.
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Introduction

In studies of human foodborne illnesses, such as those
caused by Salmonella, Campylobacter, and Escherichia

coli, attributing the source of the pathogen is essential for
better understanding transmission dynamics and developing
efficient control strategies. Source attribution methods attri-
bute human cases caused by a foodborne disease to different
sources (Mughini-Gras et al., 2019; Pires et al., 2009).

They quantify the contribution of each source to the human
disease burden through their linkage. This can help with the
prioritization of intervention strategies. Source is a broad
term, meaning the origin of the pathogen, and includes a

range of groups, such as animal reservoirs and vehicles, de-
pending on the attribution problem being tackled (Pires et al.,
2009). For zoonotic pathogens, like Salmonella, animals may
be hosts (organisms that harbour the pathogen) or carriers
(hosts without discernible illness), where the pathogen lives
and multiplies and are known as animal reservoirs. The
transmission vehicles represent ways pathogens can travel
from the reservoirs to humans.

Food, environment, and direct contact with animals are
examples of a vehicle (Mughini-Gras et al., 2019; Pires et al.,
2009; Wagenaar et al., 2013). These components can be
potential sources in source attribution studies (Carstens et al.,
2019; Ferrari et al., 2019). Pires et al. (2009) define points of
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attribution as ‘‘points in the food chain where human illness
attribution can take place, such as production, distribution,
and consumption.’’ There are many approaches to source
attribution, depending on the goal, questions of the study,
data availability, and point of attribution (Mather et al., 2015;
Mughini-Gras et al., 2019; Pires et al., 2014). The diversity of
potential transmission sources can greatly complicate at-
tempts at attribution. One of the reasons is the need to have
robust and representative samples from all true sources
(Mather et al., 2015; Mughini-Gras et al., 2019; Pires et al.,
2014; Pires et al., 2009).

Salmonella is one of the most common causes of food-
borne illness in the world (Kirk et al., 2015). Salmonella is a
genus of Gram-negative rod-shaped bacteria comprising two
species: Salmonella enterica and Salmonella bongori. Sal-
monella enterica is further categorized into six subspecies:
Salmonella enterica subsp. enterica; Salmonella enterica
subsp. salamae; Salmonella enterica subsp. arizonae; Sal-
monella enterica subsp. diarizonae; Salmonella enterica
subsp. houtenae; and Salmonella enterica subsp. indica
(Brenner et al., 2000; Eng et al., 2015). Salmonella enterica
subsp. enterica is responsible for most Salmonella infections
in humans (Eng et al., 2015; Kirk et al., 2015).

More than 2600 serotypes of Salmonella have been iden-
tified to date, and at least 50% of these serotypes belong to
Salmonella enterica subsp. enterica (Eng et al., 2015;
Thames and Theradiyil Sukumaran, 2020; World Health
Organization, 2018). The most frequent Salmonella serovar
isolated from reported human cases in Canada was Salmo-
nella Enteritidis, corresponding to 35% of cases (Govern-
ment of Canada, 2020). Salmonella outbreaks are frequently
linked to animal reservoirs such as chickens (Hoelzer et al.,
2011; Wessels et al., 2021) and pigs (Bearson, 2022; Hoelzer
et al., 2011), and table eggs (vehicle) (Chousalkar et al.,
2018; Popa and Papa, 2021).

In addition, food products such as cheese pasta, infant
formula, mayonnaise, cucumbers, and other vegetables have
been linked to cases of salmonellosis (Carstens et al., 2019;
Laughlin et al., 2019; Popa and Papa, 2021), likely due to
environmental or cross-contamination during processing.
Salmonella can cause illness in hosts ranging from poultry to
humans, with clinical manifestations of disease spanning
enteric fever, gastroenteritis, bacteremia, and an asymptom-
atic chronic carrier state (Eng et al., 2015; World Health
Organization, 2018). In livestock, including poultry,
asymptomatic and persistent infection in the animal’s di-
gestive tract result in a carrier state, further facilitating
transmission to humans (Hoelzer et al., 2011; Silva et al.,
2014). Moreover, rodents, known carriers of Salmonella, can
contaminate barn and farm environments (Anderson et al.,
2006; Hoelzer et al., 2011).

Salmonella can also colonize plants in the field (Holden
et al., 2009; Jechalke et al., 2019), survive in fresh produce
(Beuchat, 2002; Critzer and Doyle, 2010), and survive in soil
and water ( Jechalke et al., 2019), underscoring the breadth of
potential transmission sources (Silva et al., 2014). Under-
standing the complex interactions between humans, animals
and their environments that may lead to disease spread is
necessary to identify and address transmission pathways of
pathogens such as Salmonella. A one health approach using
multidisciplinary collaborative efforts is essential to develop
effective methods, public policy, and interventions aimed at

source attribution and disease control in host populations
(Destoumieux-Garzón et al., 2018; Silva et al., 2014).

Source attribution provides several methods for evaluating
interventions and pathways of transmission and infection, with
varying data sources and data quality requirements. These
methodologies include microbiological, epidemiological, ex-
pert elicitation, and intervention studies, with the choice of
method often driven by the type and quality of available data
(Pires et al., 2014; Pires et al., 2009). Aiding in the detection of
local and global outbreaks of foodborne diseases is PulseNet, a
laboratory network comprising standardized subtyping data of
foodborne pathogens around the globe.

Most of its data consist of pulsed-field gel electrophoresis
(PFGE) subtyping analysis, although globally and in Canada
since 2017, PFGE has been replaced by whole-genome se-
quencing (WGS) (Government of Canada, 2020). It is note-
worthy that, in the poultry industry, a primary source of
Salmonella, several interventions have been tried to reduce
Salmonella prevalence, including vaccination, cleaning and
sanitation of barns, separation of flocks, and testing, with the
aim to lessen human cases (Dórea et al., 2010; Totton et al.,
2012; Trampel et al., 2014). Similar interventions have also
been used in pigs and cattle (da Costa et al., 2021; Holsch-
bach and Peek, 2018). However, assessing the efficacy of
these interventions is challenging (Taylor et al., 2018), in
part, due to the requirement for high-quality data from both
human cases and from potential sources along the farm-to-
fork continuum.

In this study, we review source attribution methodologies
within the microbiological approach, which is the most fre-
quently used approach for Salmonella (Barco et al., 2013;
Mughini-Gras et al., 2018), and their challenges and limita-
tions. We also discuss new challenges raised by recent ad-
vances in WGS used in source attribution methods, including
the benefits and limitations of incorporating WGS into source
attribution models. We focus this review particularly on
methods for source attribution relevant to Salmonella, in-
cluding methods used on Campylobacter, given that Cam-
pylobacter is also a foodborne pathogen that can populate
different animal reservoirs. These methods could potentially
be used with Salmonella.

Microbiological Source Attribution

Attribution of human cases of salmonellosis to sources of
transmission and/or infection is essential for the identification
of transmission hotspots, the development of control strate-
gies, and the implementation and assessment of interven-
tions. Source attribution methodologies can be performed at
three levels in the farm-to-fork continuum: (1) Point of pro-
duction, that is, animal reservoirs in farms, (2) point of dis-
tribution, that is, processing industries and retail; and (3)
point of exposure, that is, food preparation and consumption
(EFSA, 2008; Ravel et al., 2017).

Most of the previous work on Salmonella has focused on
the point of production (Barco et al., 2015; David et al., 2013;
De Knegt et al., 2015; Hald et al., 2007; Hald et al., 2004;
Mullner et al., 2009; Ravel et al., 2017), enabling the as-
sessment of different interventions in the control of patho-
gens at the reservoir level before reaching other possible
transmission routes. Fewer studies have worked with the
point of distribution (Guo et al., 2011), the point of exposure
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(Christidis et al., 2020; Ravel et al., 2017), or utilizing a
combination of data from different points (Boysen et al.,
2014; Hurst et al., 2023; Mughini-Gras and van Pelt, 2014;
Mughini-Gras et al., 2018; Mughini-Gras et al., 2014; Ravel
et al., 2017).

Microbiological methodologies of source attribution can
be further divided into microbial subtyping methods and
comparative exposure assessment. Described in greater detail
below, these approaches encompass several methods of
source attribution and have both distinct and shared strengths
and limitations (Pires et al., 2014).

Microbial subtyping methods

Microbial subtyping is a technique that allows for differ-
entiation among bacterial isolates (Barco et al., 2013; Wied-
mann, 2002). This method compares the set of subtypes of the
pathogen in each source with the set of subtypes from human
cases. The method relies on accurately matching and dis-
tributing the cases of human illness from a particular subtype
over the possible sources where that subtype is found.

These so-called ‘‘frequency-matching’’ methods are the
most commonly used for foodborne pathogen source attri-
bution (EFSA, 2008; Mughini-Gras et al., 2018). One goal of
subtyping is to identify strains that can discriminate among
the potential sources or, said differently, identify strains that
are source specific. The Kentucky serotype of Salmonella, for
instance, is almost exclusively found in poultry manure, so
any case found with the Kentucky strain is very likely to have
originated from this reservoir (Dunn et al., 2022; Murray
et al., 2023). A work by Hurst et al. (2023) provides potential
metrics to evaluate the subtype definition used in the attri-
bution model. These metrics can aid in achieving optimal
balance among source specificity of subtypes, missing data,
and level of discrimination power of subtypes.

When using a frequency-matching algorithm, it is impor-
tant to include all possible sources of transmission of a
pathogen so that cases may be matched to their true source
(Barco et al., 2013; Mughini-Gras et al., 2019; Pires et al.,
2014). Similarly, cases whose subtypes are not found in any
of the sources should be discarded in frequency-matching
methods. Thus, using a subtyping method that minimizes
these unmatched cases is an important consideration (Pires
et al., 2014; Pires et al., 2009). Subtypes are defined by either
phenotyping methods (e.g., serotyping, phage-type, and an-
timicrobial resistance) or by genotyping methods (e.g., PFGE
and comparative genomic fingerprinting [CGF]) (Barco et al.,
2013; Ferrari et al., 2017; Yan et al., 2004). For Salmonella
isolates, PFGE is the most extensively used method, stan-
dardized to support the comparison of isolates between hu-
man cases and sources and between and within countries.

Frequency-matching methods. The Dutch model and the
Hald model, and their modifications, have been extensively
used for source attribution of foodborne pathogens (David
et al., 2013; De Knegt et al., 2015; Guo et al., 2011; Hald
et al., 2007; McLure et al., 2022; Mughini-Gras et al., 2018;
Mughini-Gras et al., 2014; Vieira et al., 2016). The Dutch
model is a frequentist model that compares the number of
human cases of a pathogen subtype i with the number of
isolates of the same subtype in each source s (Hald et al.,
2004). The Hald model is based on the Dutch model and
relies on estimating the expected number of human cases of

subtype i from each source s, lis. To allow for appropriate
uncertainty in the parameter estimation process, Bayesian
inference is applied to the process (Hald et al., 2004; Mullner
et al., 2009), with lis equal to

kis¼ pisqias,

where pis is the proportion of subtype i in source s, qi is the
subtype-dependent factor that summarizes survivability,
virulence, and transmissibility of the pathogen, and as is the
food source-dependent factor representing the source ability
to act as a vehicle for the foodborne pathogen and the dif-
ferences in monitoring systems of each source. The observed
number of human cases of subtype i, oi, follows a Poisson
distribution:

oi¼Poisson +
s

kis

� �

pis is given by the data, where qi and as are parameters of
the model.

This results in an overspecified model, given that Ti is the
total number of subtypes and Ts is the total number of sour-
ces, then there are Ti + Ts parameters, but only Ti independent
data points (David et al., 2013; Miller et al., 2017; Mullner
et al., 2009). Extra assumptions on qi and as are introduced to
reduce the number of parameters, such as qi is equal for some
subtypes and as is equal for some food types or sources,
yielding a priori grouping of subtypes (Hald et al., 2004).

However, no quantification of uncertainty among all pos-
sible groupings is available (Miller et al., 2017). The modi-
fied Hald model tackles this issue by modeling qi as random
observations from the distribution of characteristics of the
pathogen given by log qið Þ~N 0, sð Þ, where s controls the
variation of these characteristics. The following prior distri-
bution is used for s~Gamma 0:01, 0:01ð Þ (Mullner et al.,
2009). Moreover, data can be split into different periods to
achieve identifiability, given that qi and as are assumed to be
constant over time. However, the parameters of this model
are still weakly identifiable, resulting in slow convergence of
Markov chain Monte Carlo (MCMC) algorithms used to fit
the method (David et al., 2013; Miller et al., 2017). MCMC
algorithms are used to sample values from a probability
distribution (posterior) using prior information and an un-
derlying model (likelihood).

To make the original model more robust, the modified
Hald model incorporates uncertainty on the prevalence pa-
rameter by defining pis¼ psris, where ps is the prevalence
over all types in source s and ris is the relative occurrence of
subtype i among the subtyped isolates from source s. A beta
distribution is used as prior for pis (ps*Beta(1, 1)), and a
Dirichlet distribution of size Ti is used as a prior for ris

(ris*Dir(1, 1,.,1)) (Mullner et al., 2009).
Recent work by Miller et al. (2017) developed a new

method that fits a joint model for both human cases and
source samples. This method addresses the weak identifia-
bility issue by using a nonparametric Bayesian clustering
method to group the subtypes, thus incorporating uncertainty
on all possible groups of subtypes. This approach reduces the
number of parameters and does not make any strong as-
sumption on s.

With the advent of WGS, greater power of discrimination
among isolates can be achieved, resulting in higher accuracy
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for source attribution inference. Moreover, WGS techniques
have become more practical and less expensive. Studies have
even shown that the benefits of WGS outweigh the cost (Al-
leweldt et al., 2021; Brown et al., 2021; Glass-Kaastra et al.,
2022). As a result, WGS methods are gradually replacing
phenotyping and other genotyping methods worldwide.

However, in resource-poor settings, it is still challenging to
implement WGS at its full power and with robust sampling
(Mather et al., 2015). WGS isolates can be compared across
various degrees of similarity, providing different resolutions
for genotyping. For example, single nucleotide polymor-
phism (SNP) analysis compares SNPs across each aligned
genome, while core-genome multilocus sequence typing
(cgMLST) and whole-genome multilocus sequence typing
(wgMLST) use gene-to-gene comparisons. Defining the op-
timal resolution for genotyping is not clear and may depend
on the sources examined (Collineau et al., 2019; Mughini-
Gras et al., 2018). Once the sequenced isolates are subtyped,
frequency-matching methods can be used. However, WGS
data also bring the possibility of new approaches to link
sources with cases, as exemplified in the next sections.

Population genetic methods. Population genetic meth-
ods are a powerful tool with applications to source attribution
inference utilizing WGS data. These methods model the or-
ganism’s evolutionary history and have been extended for
source attribution applications for Salmonella and Campy-
lobacter (Barco et al., 2015; Mughini-Gras et al., 2014;
Wilson et al., 2008). One example is the asymmetric island
model, which models the DNA sequence evolution and
zoonotic transmission of the pathogen (Wilson et al., 2008).
Each source is considered a population of pathogens, that is,
an island.

Pathogens can migrate among populations and evolve
through mutation and recombination. The model estimates
migration rate, mutation, and recombination parameters and
uses those to assign the probability of each human case iso-
late having originated from one of the source populations
(Wilson et al., 2008). Given that population genetics model
the evolution of the pathogen, unique strains (in humans) may
be assigned to a source rather than be excluded from the
dataset as is necessary for frequency-matching methods.

Another population genetic method for source attribution is
STRUCTURE (Jehanne et al., 2020; Mughini-Gras et al.,
2021; Mulder et al., 2020; Saif et al., 2022). STRUCTURE uses
model-based clustering, which assigns a cluster (population) to
each sample, while simultaneously estimating the allele fre-
quency in each population (Pritchard et al., 2000). STRUC-
TURE assumes that the allele frequency within a population is
constant and that the association between different genes is
completely random (independent) (Pritchard et al., 2000). In
other words, the model associates variability among alleles with
population grouping by structuring the samples into clusters.

When extending the application of this model to source
attribution, each population (cluster) would be a source, and
the human case isolates would be classified among these
clusters. The STRUCTURE algorithm can also consider ad-
mixture and, as such, the possibility of the introduction of
new lineages into a population (or in human cases). The
initial algorithm has transformed over the years to address
ancestry, dominant marker, and prior information on the
groups. In addition, there have been extensions developed to

address issues ranging from computational speed to proper-
ties of the model, such as considering the spatial distribution
of the populations (November, 2016).

However, with the large datasets generated by WGS, the
computation time required for these algorithms can be
substantial, usually increasing linearly with the number of
loci (Pérez-Reche et al., 2020). STRUCTURE, for example,
works on short genotypes consisting of, at most, only hun-
dreds of loci, which does not encapsulate all available in-
formation of the WGS data.

Many methods have been developed to select markers
(features) on the genome that provide higher discrimination
among strains and reduce the size of the datasets (Banks
et al., 2003; Manel et al., 2002; Pérez-Reche et al., 2020;
Storer et al., 2012). These features can be used as input for
the source attribution algorithms, resulting in less computa-
tional time. Recent work proposed a minimal multilocus
distance method to attribute cases to sources, which is fast
enough to deal with thousands of loci, while other work
suggests a method to select optimal markers from the ge-
notype using information theory (Pérez-Reche et al., 2020).

Novel methods of source attribution. Finding hidden
complex patterns through Machine Learning (ML) algo-
rithms usually requires a larger amount of data ( James et al.,
2022). Therefore, ML algorithms are suitable for analyzing
WGS data (Lupolova et al., 2019). ML algorithms applied to
source attribution can be either unsupervised or supervised
learning techniques (Lupolova et al., 2019). For unsuper-
vised learning, there is no label in the data, and the algorithm
will group the data into clusters based on their similarities,
also known as clustering methods ( James et al., 2022). Each
cluster can then be associated with a source.

On the other hand, supervised learning uses labeled data to
learn hidden characteristics and patterns to categorize the
data based on these labels (sources) ( James et al., 2022). The
model learns using a training dataset and utilizes a testing
dataset (data not seen before) for performance evaluation.

Models are often trained on the isolates with known
sources of the pathogen. Then, the final model can be used to
predict labels (or sources) for unlabeled data. For optimal
model hyperparameter tuning and establishing a more robust
and unbiased model development process, it is recommended
to perform validation procedures, such as cross-validation
( James et al., 2022). This involves partitioning the training
dataset into distinct subsets, where some are used to train the
model and others for model validation (Lupolova et al.,
2019). Features or predictors are variables in the input data
mapped to the labels through an empirical relationship
learned by the model.

There has been an increase in source-attribution studies
using ML and classification algorithms (Lupolova et al.,
2019; Lupolova et al., 2017; Munck et al., 2020). Recent
analyses with Salmonella isolates were developed using su-
pervised learning algorithms such as random forests (RF),
logit boost, and support vector machines (SVM) for source-
attribution problems, and supervised multiclass classification
algorithms such as multinomial logistic regression (MLR)
(Duarte et al. 2021; Guillier et al., 2020; Lupolova et al.,
2017; Munck et al., 2020; Zhang et al., 2019).

Zhang et al. used genomic data of Salmonella Typhimur-
ium from different countries to develop a RF algorithm to
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attribute sources across animal reservoirs to outbreak cases.
Their data consisted of genomes from different countries,
spanning a significant period (2007–2013, 2015–2017) and
focusing on outbreak data. The final dataset comprised 1473
isolates after removing 744 redundant isolates to avoid bias
due to sampling similar strains. From these, 1041 genomes
were from animals and used to train the classifier. Their final
input data comprised 3137 features—1882 core genome
SNPs, 150 quality indels, and 1105 source discriminatory
accessory genes. The model predicts four animal reservoirs:
poultry, wild birds, bovine, and swine, with an accuracy rate
of 82.9%.

Because an ML classifier is restricted to the classes re-
presented in the training data, Zhang et al. added a tool to
further classify its prediction as precise or imprecise. Thus,
isolates from sources not present in the training data are
classified as one of the sources included in the model, but its
prediction may be identified as imprecise. In addition, they
build an extra RF classifier with humans as a source to
compare their results with Lupolova et al.’s (2017) work
(Wheeler, 2019; Zhang et al., 2019).

They found that only 36.96% of human cases were as-
signed to humans, as opposed to 90% of Lupolova et al.’s
studies. This was due to Lupolova et al. having closely related
human isolates (around 85% shared their most recent com-
mon ancestor) in their training dataset, resulting in the high
accuracy of human host prediction. Given Zhang et al. re-
moved redundant isolates, their data have only 36.9% of hu-
man isolates sharing the same most recent common ancestor.

Lupolova et al. used SVM to predict the isolation host for
each genome and analyze host specificity. They want to de-
termine whether genetic content can discriminate among in-
terspecies transmission. Their genome data span an extended
range of years (1945–2016) and countries and contain different
serovars: Salmonella Typhimurium (human, bovine, swine,
and poultry), Salmonella Typhi (human), and Salmonella
Dublin (human and bovine). They build an SVM model for
each host with final input data of protein variants as features
and hosts as labels. Thus, an isolate could be assigned for
multiple sources—making it a generalist strain.

However, the majority (94%) was assigned to only one
host. The model misclassified some isolates; this could be
because the data do not incorporate all the genetic features of
a source or the strain is transient between hosts. The final
model predictions were highly accurate (ranging from 67% to
90%) (Lupolova et al., 2017). These two studies highlight the
importance of model building, feature selection, and appro-
priate data processing when dealing with ML models and
WGS data. It is possible to achieve different conclusions by
following other procedures.

Recent work by Munck et al. developed a boosting algo-
rithm (logit boost) to classify sporadic human cases of Sal-
monella Typhimurium in Denmark among the following
sources: Broilers, layers, cattle (domestic), cattle (import),
ducks (import), pigs (domestic), and pigs (import). They used
human, food, and animal isolates collected from an integrated
surveillance system in Denmark over 2 years to ensure the
data represent all true sources. Their input data consisted of
cgMLST, which was further reduced to only 17 loci using
feature selection techniques.

All sources’ isolates were correctly predicted, except for
38% of domestic pigs and 27% of imported pigs, which were

wrong classified as poultry. Their final model accuracy was
92%. Of all human sporadic cases, 81% were attributed. The
human cases not attributed were either infected from a source
not in the training dataset or a strain not captured in the
training data. They compared their model against the
Bayesian Hald model (Hald et al., 2004) in the same dataset.
The input data for the Hald model were the isolates’ multi-
locus variable-number tandem-repeat analysis (MLVA)
profile and resistance profile. The results were similar, but
only 49% of human cases were attributed (Munck et al.,
2020). Both models draw similar conclusions regarding the
sources, corroborating ML as a new, robust, and efficient tool
for source attribution.

Guillier et al. developed an MLR, an extension of logistic
regression to allow multiclass classification to predict the
source of environmental strains of Salmonella Typhimurium
and its monophasic variant. Ninety-eight bacterial isolates
were collected from 2010 to 2015; 69 were from animals
(pigs, poultry, and ruminants) and 19 were from the envi-
ronment (no source). They first calculated the accessory
genes (noncore genome) enriched in each source to use as
input data in the MLR. Then, they use Aikake information
criteria to decide which accessory genes to include as fea-
tures in the final model (eight genes). The chosen model had
an accuracy of 74% (Guillier et al., 2020). Table 1 summa-
rizes the main properties of each model.

A study compared three ML source attribution models,
SVM, RF, and neural networks (NN), on the same dataset of
Salmonella Typhimurium. All models arrived at similar re-
sults with similar accuracy (75–90%). RF is the most user-
friendly, can predict multiple classes at once, and provides a
list of the most relevant features. NN is highly scalable and
can predict various classes; however, it requires technical
knowledge. In summary, any of these models effectively
attributes the source for Salmonella Typhimurium (Lupolova
et al., 2019).

It is possible to expand source attribution even further.
Recent work developed a source attribution model based on
hierarchical clustering to rapidly identify and trace salmo-
nellosis’ geographical sources, rather than points in the food
chain, from WGS data (Bayliss et al., 2023).

It is noteworthy to mention the work by Arning et al.
(2021), which provides a comparison of performances of
different ML algorithms for attributing sources of campylo-
bacteriosis cases. In summary, they identified the best-
performing ML algorithms for different resolutions of
sequence data: multilocus sequence typing (MLST),
cgMLST, and WGS. They tested 14 supervised learning al-
gorithms, ranging from simple learners such as K-nearest
neighbors, decision tree-based algorithms to deep learning
algorithms such as NN, and the asymmetric island model,
iSource. They found ML outperforms iSource.

In addition, some studies have applied weighted network
analyses, a clustering method, to perform source attribution.
In this methodology, each node in the network is an isolate,
and links between isolates represent their genetic distance.
Isolates from the same sources would then be clustered together.
It has been found that this method remains robust independent
of the resolution of WGS data used, whether SNP, cgMLST,
or wgMLST (Merlotti et al., 2020; Wainaina et al., 2022).

There are still challenges to applying source attribution to
WGS data. Following, we cover some of them:
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(1) A well-known issue is unique strains in unlabelled
data. For Bayesian models, subtypes not included in
the sources can be removed. ML models can only
classify strains that are in the training data so pre-
dictions can further be labeled as precise or impre-
cise to ensure accurate classification (Munck et al.,
2020; Zhang et al., 2019). Unique isolates may be
assigned to an existent source for population genet-
ics, given that pathogen evolution is considered in
the model.

(2) Another common issue is when some sources are
poorly sampled, which could generate incorrect pre-
dictions. A potential solution is to upsample or
downsample the dataset (Lupolova et al., 2019;
Munck et al., 2020). Moreover, for WGS data, it is
essential to remove redundant genomes by analyzing
some genetic features, such as the number of SNPs
separating each isolate (Zhang et al., 2019), to avoid
overinflating model accuracy (such as similar strains
from outbreak data in a population-level study).

(3) Predictions need to be adjusted for ‘‘unknown sour-
ces’’ not included in the data, for example, by al-
lowing the classification into an extra source using
isolates from other sources (environment) to inform
the ‘‘unknown source’’ or adding a tool to identify
imprecise predictions (Zhang et al., 2019).

All the above highlight the need for having a robust sam-
pling process of the true sources.

Comparative exposure assessment

Comparative exposure assessment is a microbiological
methodology that focuses on the point of exposure and
transmission routes rather than animal reservoirs. There have
been studies that apply comparative exposure assessment to
attribute sources of exposure for some foodborne pathogens
such as Salmonella (Christidis et al., 2020; Fajardo-Guerrero
et al., 2020) and Campylobacter (Evers et al., 2008; Pintar
et al., 2017). The comparative exposure assessment estimates
the average number of pathogens that individuals in a pop-
ulation are exposed to in each source and route per day.

The exposure, E, is defined as the average number of or-
ganisms that individuals are exposed to in a day (units of
cells/person/day) for a pathway of a specific source. It can be
formulated as following:

E¼ f · i · p · c,

where f is the frequency of ingestion events (events/day), i is
the total mass (or volume) consumed per individual per event
(mass/event/person), p is the probability that the ingested item
is contaminated with the pathogen, and c is the concentration

Table 1. Summary of Properties of Each Machine Learning Source Attribution Model Using

Whole-Genome Sequencing: Base Model, Data Collection, Input Features, Sources (Labels), Percentage

of Attributed Human Cases, Comparison with Other Models (if Existent), and Salmonella Serotype

Author Munck et al. Zhang et al. Lupolova et al. Guillier et al.

Models Logit Boost Random Forest Support Vector
Machines

Multinomial logistic
regression

Data collection Human, food, and animal
isolates collected from
integrated surveillance
system in Denmark

Outbreak data on
human, food,
environment, wild
and livestock animal
from different
countries

Human and animal
isolates over many
countries and ranging
from 1945 to 2016.

98 Bacterial isolates
collected over
2010–2015
(19 without label)

Input Features cgMLST (17 loci after
feature reduction)

Core genome SNPs,
high quality indels,
and source
discriminatory
accessory genes

Protein variants (up to
1000–1500)

Eight accessory genes
(noncore genome)

Sources Broilers, layers, cattle,
cattle (import), ducks
(import), pigs, pigs
(import)

Bovine, swine, wild
bird, and poultry

Isolation host: avian,
bovine, human,
swine

Pigs, poultry, and
ruminants

Attribution
of cases

81% 42% Not applicable 25 Out of 29
environmental strains

Accuracy 92% 83% 67–90% 74%
Model

comparison
Hald model using MLVA

profile and resistance
profile: fit of 0.9 and
49% attribution of
human cases

Not applicable Not applicable Not applicable

Serovar Salmonella Typhimurium Salmonella
Typhimurium

Multiple serovars
(Typhi, Dublin,
Typhimurium)

Salmonella enterica
Typhimurium and
Salmonella enterica
1,4,[5],12:i:-

cgMLST, core-genome multilocus sequence typing; MLVA, multilocus variable-number tandem-repeat analysis; SNP, single nucleotide
polymorphism.
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of pathogen cells per mass (volume) in the ingested item, given
it is contaminated (cells/mass) (Christidis et al., 2020).

Exposure is estimated separately for all relevant transmis-
sion routes within the categories of food, animal contact, and
environment (EFSA, 2008). For each transmission route, ad-
aptations to the calculation of each component of the exposure
equation may need to be implemented. For example, for food
contamination, an extra term indicating raw, undercooked,
and cooked consumption may be included. Comparative ex-
posure assessment estimates the relative contribution of each
transmission route to the population’s total exposure, which is
directly related to the likely sources of cases of human illness
(Pintar et al., 2017; Ravel et al., 2017). In this way, one can
assess which sources, transmission pathways, and points
along the pathway have a larger risk for the population and
implement interventions to decrease this risk.

However, the possibility of cross-contamination and dif-
ferent transmission routes make directly linking the point of
exposure to animal reservoirs more difficult. There are many
techniques to achieve this linkage or provide a better under-
standing of possible routes. For instance, a meta-analysis
combined results from attribution studies across reservoirs and
transmission routes and estimated attribution proportions for
the transmission pathways (Mughini-Gras et al., 2022). A more
precise estimate is possible by either combining frequency-
matching methods with comparative exposure assessment or
case–control studies, allowing for the control of exposure when
estimating the frequency of cases in each source.

This generates a complete picture of the transmission
pathways from the point of production to exposure, which can
better inform risk management in the prioritization of control
strategies for each transmission route (EFSA, 2008; Hurst
et al., 2023; Mughini-Gras and van Pelt, 2014; Mughini-Gras
et al., 2019; Mughini-Gras et al., 2018; Mughini-Gras et al.,
2014; Ravel et al., 2017). A study by Mughini-Gras et al.
combined multiple microbial subtyping frequency-matching
methods with a comparative exposure assessment to estimate
the contribution of each point of exposure to salmonellosis.
They incorporated an exposure term in the calculation of lis.
For the Hald model, they had,

kis¼mscspisqias,

where ms represents the consumption of source s, cs is the
probability of the source being eaten raw/undercooked, pis is
the proportion of subtype i in source s, qi is the subtype-
dependent factor, and as is the food source-dependent factor,
as previously defined. For the Dutch model, controlling the
consumption of the source without considering the proba-
bility of eating raw/undercooked food led to pig as the highest
contributing source and table eggs as second, which is in-
consistent with common knowledge in Salmonella epidemi-
ology. Thus, it is necessary to consider the consumption
weight and the likelihood of the food being undercooked to
properly estimate the contribution of each source when using
the Dutch model. The Hald model grants expected results
regardless of the inclusion of food consumption data.

Impact on Salmonellosis

In the case of Salmonella, efforts to reduce incidence have
shown positive results. In 2019, it was estimated that illnesses

caused by Salmonella in Canada decreased by more than
25,000 cases relative to the previous 5 years (Glass-Kaastra
et al., 2022). Successful source attribution through genomic-
based surveillance contributed to the implementation of new
effective, targeted interventions, driving the reduction of
cases (Glass-Kaastra et al., 2022; Morton et al., 2019). WGS
source attribution implementation generated a more accurate
and specific linkage to products, providing the evidence
needed for new control requirements (Morton et al., 2019).
The implementation of WGS in the United States has pre-
vented around 25,000 cases of foodborne illness, saving
around 500 million U.S. dollars (Brown et al., 2021; Glass-
Kaastra et al., 2022). Work on case studies on WGS im-
plementation across Europe and America found that the
benefits of WGS outweigh the cost (Alleweldt et al., 2021).

In brief, the implementation of WGS provides better accu-
racy, more specificity on outbreak linkages, generate better
evidence to inform control policy, and improve understanding
of disease transmission. Recent work by Hurst et al. (2023)
shows a decline in the percentage of cases attributed to chicken
breasts by one-third from 2015 to 2019 and in the incidence rate
of salmonellosis by one-third in the same period in Canada.
However, despite the observed reduction in cases, the incidence
of Salmonella infections remains high, with an estimated
70,833 cases of illness in Canada in 2019 (Glass-Kaastra et al.,
2022), highlighting that further efforts are needed.

Conclusion

Source attribution methods have been extensively applied to
identify transmission routes and animal reservoirs of foodborne
pathogens such as Salmonella. Frequency-matching ap-
proaches have been widely utilized for microbial subtyped data
to estimate the probability of a human case originating from an
animal reservoir. The growth of WGS and its popularization for
source attribution studies has increased the development and
application of novel methods. WGS provides high-resolution
power to discriminate isolates, which can increase the accuracy
of frequency-matching approaches. Evolutionary and popula-
tion genetics algorithms may also be used to link sources to
human case isolates. The large size of WGS data further allows
for introducing ML classification methods in source attribution,
where each source is a class. This work summarizes well-
known source attribution methods and novel methods.

However, there are still challenges to overcome, such as
the computational efficiency of these methods, given the
large data size. To address this issue, one may select a few
features (genetic markers) with high discrimination power
among sources and reduce the input data size. Another well-
known problem is that available data often lack complete
information about the various sources, which highlights the
importance of having a solid and integrated surveillance
system encompassing all one health spheres—animal, hu-
man, and environmental (Mather et al., 2015; Mughini-Gras
et al., 2019; Pires et al., 2014). The field of source attribution
is still evolving, with new methods arising, which improve on
the older ones. Furthermore, the richness of WGS data has
not yet been fully utilized, although progress is being made.

Including WGS data in source attribution can provide
better evidence to inform policy development and prioritize
intervention strategies to control salmonellosis. In addition,
they help better understand the complex interactions of
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pathogens with animals, humans, and the environment, such
as determining genetic features responsible for host speci-
ficity and adaptability and geographical distribution of Sal-
monella. Therefore, continued improvement, development,
and generalization of source attribution methods are essential
to advance our understanding and control of Salmonella
transmission.
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