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Abstract

Ischemic stroke is a leading cause of morbidity and mortality and disproportionally affects 

women, in part due to their higher longevity. Older women have poorer outcomes after stroke with 

high rates of cognitive deficits, depression, and reduced quality of life. Post-stroke inflammatory 

responses are also sexually dimorphic and drive differences in infarct size and recovery. Factors 

that influence sex-specific immune responses can be both intrinsic and extrinsic. Differences in 

gonadal hormone exposure, sex chromosome compliment, and environmental/social factors can 

drive changes in transcriptional and metabolic profiles. In addition, how these variables interact, 

changes across the lifespan. After the onset of ischemic injury, necrosis and apoptosis occur, 

which activate microglia and other glial cells within the central nervous system, promoting the 

release of cytokines and chemokines and neuroinflammation. Cells involved in innate and adaptive 

immune responses also have dual functions after stroke as they can enhance inflammation acutely, 

but also contribute to suppression of the inflammatory cascade and later repair. In this review, we 

provide an overview of the current literature on sex-specific inflammatory responses to ischemic 

stroke. Understanding these differences is critical to identifying therapeutic options for both men 

and women.
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Background

Stroke is a major cause of morbidity and mortality worldwide. Stroke prevalence increases 

with age and is expected to increase significantly in the next decade as the population ages 

further [1, 2]. While the mortality from stroke has decreased by over 7% over the last 

decade, due to improvements in acute care, the number of patients left disabled after a stroke 

remains high, and there are currently over a million stroke survivors living in the USA [1, 3]. 

Similarly, compared to 2010, the cost of stroke care is expected to triple to $184.0 billion by 

2030 [2].
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Females have a higher lifetime risk of having an ischemic stroke, in large part due to their 

longer life expectancy [4, 5]. Stroke risk is also higher in younger females (≤ 35 years of 

age) compared with men in the same age group [6]. In middle age, men have a higher risk 

of stroke. With increasing age, these differences diminish, and the incidence climbs in both 

sexes [5, 7, 8]. Importantly, the incidence of stroke in women did not decrease significantly 

over a 25-year period in the Greater Cincinnati/Northern Kentucky Stroke Study, whereas 

the incidence in men did [9]. Similarly in the Framingham study, the 30-day mortality 

decreased significantly for men, but not for women over a 50-year period [10]. Females are 

also more likely to be severely disabled, less likely to be discharged home and more likely 

to die after their stroke [11]. However, when adjusted for age and other confounding factors, 

men have similar to higher mortality [11].

There are multiple reasons for these sex differences. Women have a higher incidence of 

stroke when < 35 years old, and pregnancy and pregnancy-associated hypertension are 

important risk factors [12]. Other risk factors include use of oral contraceptive pills (OCPs) 

and a higher incidence of migraines and autoimmune conditions [13]. Older women are also 

almost twice as likely to have stroke when in atrial fibrillation (AF) compared to men, which 

is reflected in the CHA2DS2-VASc that allocates an additional point for female sex [14–17]. 

The CHA2DS2-VASc is routinely used in clinical practice to help physicians risk stratify 

patients who are at high risk for embolic stroke and should be started on anticoagulation 

for stroke prevention (Tables 1 and 2). The reason for the higher embolic risk in women 

withAF is unknown, but recent trials have found higher baseline levels of endogenous factor 

Xa in women, which may lead to enhanced thrombosis[18]. The lower incidence of stroke in 

females between the ages of 35 and 75 years old may partially be explained by exposure to 

sex hormones as discussed later. However, this neuroprotection is lost after menopause [19].

There are also sex differences in the inflammatory response to an acute stroke, which 

include disruption of the blood–brain barrier (BBB) and resultant secondary ischemic, 

hemorrhagic, and edema-related damage. These differences may account for post-stroke 

morbidity, and hence, identification of these disparities is important to stroke management 

and drug development [20]. These differences may be secondary to variations in hormones, 

sex chromosomal effects, and their differential effects with aging. In this review, we 

summarize the known sex differences in the inflammatory response to stroke.

Neuroinflammatory responses after stroke

Innate immune responses in stroke

Following arterial occlusion, the innate immune system detects injury with pattern 

recognition receptors (PRR). PRRs such as toll-like receptors (TLRs) respond to 

pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns 

(DAMPs), which are passively released from cells that have died after the induction 

of cell death pathways and contribute to activation of the complement system and the 

innate immune system [21–23]. Experimental studies have found that the activation and 

response to cell death pathways diverge between the sexes, even in cell culture models, 

which likely contributes to the subsequent immune response [24–27]. Activation of the 

complement system in the intravascular and intraparenchymal compartments is associated 
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with worse outcomes [28–30]. Microglia migrate towards the area of ischemic damage 

[31], and macrophages appear at the site of infarction within minutes to hours and peak 

1–4 days after stroke [32]. Microglia are brain-resident innate immune cells that are 

present throughout the CNS and respond quickly to inflammatory stimuli. Previously, 

microglial activation states were discretely classified into “M1” (inflammatory) and “M2” 

(reparative) based on a limited number of cell-surface and cytokine markers. More recently, 

single-cell transcriptomic studies have demonstrated that this simplistic classification does 

not accurately capture the diverse multifunctional states of microglia, which exist along 

a continuous transcriptomic trajectory [33]. After ischemic injury, microglia undergo 

alternative gene transcription that results in the release of pro- or anti-inflammatory 

cytokines depending on their activation states. Commonly used pro-inflammatory markers 

include CD16/32, CD86, MHCII, COX-2, NOS2, interleukin (IL)-1β, and tumor necrosis 

factor (TNF)-α, while CD206, arginase 1, FIZZ1, and YM1 are considered as anti-

inflammatory markers [34, 35]. Caution should be taken when using these markers in 

clinical studies as human microglia show have limited overlap with mice models [35]. 

Microglia in the nearby area and perivascular macrophages mediate early neurotoxicity 

as they release reactive oxygen species (ROS); cytokines such as such as IL-6, IL-1β, 

and TNF-α; nitric oxide (NO); and matrix metalloproteinases (MMPs) [36–38]. Huang 

et al. demonstrated that the proinflammatory phenotype of microglia and their associated 

inflammatory cytokines remained elevated up to 28 days after initial ischemic injury 

in rats [39]. With time, microglia phagocytose dead cells and debris, helping reduce 

inflammation and clearing the way for reparative processes [40]. Multiple different 

cytokines, immunocomplexes, apoptotic cells, fatty acids, oxysterols, and 9-cis retinoic acid 

then regulate transcription factors to induce genes with anti-inflammatory effects [41, 42]. 

This transition of microglia results in a cascade of anti-inflammatory pathways including 

IL-4, shown to decrease infarct size [38]. Microglia with a defined antiinflammatory 

phenotype release IL-10, chitinase-3-like protein 3, and transforming growth factor-β (TGF-

β), which promotes angiogenesis and BBB repair [43] and promotes neural stem/progenitor 

cells differentiation by upregulating TGF-α [44].

As neurons die, they release extracellular RNA, and microglia release cytokines including 

IL-1α, TNF, and C1q which induces astrocytes to rapidly kill additional neurons and 

oligodendrocytes [32, 45]. This is mediated by activation of the transcription factor NF-κB, 

which leads to increased IL-6 and TNF-α levels [45]. Astrocytes also release IL-15 which 

recruits peripheral immune cells into the brain and CXCL1 which recruits neutrophils to 

the brain [46, 47]. In parallel to the activation of the inflammatory cascade, the coagulation 

cascade is also activated resulting in release and transcription of adhesion molecules, which 

enhance leukocyte adhesion and transmigration into the brain, and provides a chemotactic 

stimulus for monocytes and neutrophils [48–50].

Neutrophils are recruited early into the infarcted brain and contribute to increased infarct 

volume stroke severity and hemorrhagic transformation [51, 52]. Interestingly, depletion 

of microglia with a colony-stimulating factor 1 receptor (CSF1R) inhibitor increased 

neutrophil numbers and enlarged the ischemic lesion, suggesting that microglial are an 

important first line of defense against neutrophil entry after stroke [53]. Neutrophils increase 

BBB disruption by releasing MMPs including MMP-9, which increases cerebral edema 
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secondary to inflammation [54] and induces thrombosis secondary to the formation of 

neutrophil extracellular traps (NETs) [55, 56]. Similar to microglia, external stimuli can alter 

gene transcription in neutrophils, so they produce more anti-inflammatory cytokines and 

chemokines which are associated with reduced infarct volume and improved outcomes [57]. 

Dendritic cells are also an important component of the innate immune response to stroke 

and function as antigen presenting cells. They migrate to the infarct core and express MHCII 

which contributes to activation of lymphocytes [36].

Adaptive immune responses in stroke

T cells are a critical component of adaptive immunity. With BBB compromise, several 

subsets of T cells enter the brain parenchyma. CD8+ T cells exert a direct cytotoxic effect 

by releasing granzymes and perforins in target cells which results in apoptosis of these 

cells [58]. CD4+ T cells release IL-21 which binds to IL-21 receptors on neurons and 

induces autophagy [59]. Th17 and γδT cells produce IFN-γ and IL-17 which leads to 

neutrophil recruitment, BBB disruption, neurotoxicity, and microvascular dysfunction. In 

addition, previous studies have shown that γδT cell depletion improves stroke outcomes 

[60, 61]. Regulatory T (Treg) cells release IL-10 which inhibits proinflammatory cytokines 

IL-1β and TNF-α [62], and these cells also inhibit MMP activity, which improves BBB 

integrity [63]. Tregs also inhibit astrogliosis through amphiregulin, an epidermal growth 

factor receptor ligand, promote oligodendrogenesis by secreting osteopontin and inducing 

reparative microglia, and repair the injury by secreting IL-10 which promote neural stem 

cell proliferation [64–66]. After the acute phase of inflammation, T cells and microglia 

release growth factors that aid in recovery after stroke [67, 68]. IL-10-secreting CD19+ B 

cells limit infarct volume by inhibiting activation and recruitment of inflammatory T cells, 

macrophages, and microglia [69] (Fig. 1).

Systemic responses to stroke

In addition to these local responses, other peripheral organs are also affected by ischemic 

stroke. Sahota et al. showed that spleen size decreases over the first few days after an 

ischemic stroke, which is likely due to the exodus of leukocytes [70]. Similarly, the number 

of monocytes in the spleen decreases and increases in the brain following stroke [71], and 

monocyte numbers are associated with poorer outcomes [72]. Conversely, splenectomy 2 

weeks prior to middle cerebral artery occlusion (MCAO) surgery in rats reduced infarct 

volumes by 80% and decreased the numbers of macrophages and neutrophils in the brain 

[73]. However, determining causality can be difficult, as differences in infarct size may 

mediate the subsequent immune response. In mice, males had larger strokes than females, 

but after splenectomy, infarct volumes in males were comparable to that seen in females 

[74]. This may be due to intrinsic differences in splenic T cell composition. More regulatory 

lymphocytes were found in the spleens of females, whereas male mice had more activated 

splenic T cells which may contribute to the differential response to splenectomy [75–77]. 

Although splenectomy decreases infarct volume in animal models of stroke, this is not 

a practical approach for patients. The contribution of peripheral tissues to post-stroke 

neuroinflammation (e.g., vagal signals) needs to be investigated as a more translationally 

relevant target.
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Non-splenic immune organs contributing to stroke outcome: gut and bone marrow

The bidirectional communication between the brain, the gut, and the microbiome (often 

termed the microbiota-gut-brain axis) has been increasingly recognized in neurological 

diseases including stroke [78]. Stroke-induced dysbiosis (imbalance of the gut microbiota 

composition) led to infiltration of both anti- and proinflammatory cells (e.g., T cells) 

into the brain. In addition, post-stroke impairment of intestinal barrier function may lead 

to the translocation of luminal antigens (e.g., bacteria) evoking inflammatory responses 

mediated by the immune cells in lamina propria that subsequently exacerbate both systemic 

and neuroinflammation. In terms of sex differences in the gut response to stroke, it was 

previously reported that male rats (5–7 months of age) had increased gut permeability and 

higher systemic proinflammatory cytokines (e.g., IL-17A, MCP-1, and IL-5) and worse 

neurological outcomes after stroke as compared with females [79]. Likewise, these changes 

in gut permeability were seen in aged mice and led to an increased risk of hemorrhagic 

transformation in males [80]. Sex differences in gut dysbiosis have been reported in stroke 

and other neurodegenerative diseases (reviewed in Korf et al. [81]).

In addition to the involvement of the gut, the hematopoietic stem cell niche in the bone 

marrow also plays a crucial role in post-stroke inflammation. Courties et al. demonstrated 

that ischemic stroke causes an efflux of inflammatory monocytes and neutrophils from the 

bone marrow into the circulation, regulated by sympathetic nerve signaling [82]. Future 

investigations examining potential sex differences in the role of the bone marrow and other 

peripheral tissues in post-stroke immune responses are needed.

Thromboinflammation

Thromboinflammation refers to the interaction between thrombotic and inflammatory 

cascades activated by stroke [83, 84]. Blood components, such as platelets along with innate 

and adaptive immune cells, play a central role in the pathogenesis of thromboinflammation. 

Platelets adhere to injured endothelium via glycoprotein (GP) VI, integrin α2β1, and GPIbα 
subunit binding to collagen and von Willebrand factor (VWF) after which they become 

activated [84, 85]. After activation, platelets release adenosine diphosphate and thromboxane 

A2 and platelet aggregation ensues. Platelets activate Factor XII which then initiates 

coagulation and triggers the kallikrein-kinin system, producing bradykinin. Activation of the 

bradykinin receptor results in BBB disruption and cerebral edema [86]. T cells interact with 

platelets through CD40/CD40L which enhances transendothelial migration [83]. Similarly, 

neutrophils also interact with platelets with MAC-1/GP1ba connections activating neutrophil 

elastase which induces the production of MMP9, which further disrupts the BBB and 

triggers the release of DAMPs and ROS.

Epoxyeicosatrienoic (EETs) acid are vasodilators and protect the endothelium [87]. Soluble 

epoxide hydrolase (sEH) is responsible for the metabolism of EETs, reducing their 

function. sEH levels are higher in males [88], but these sex differences are lost in sEH 

knockout mice and after ovariectomy [85]. Data demonstrating differences in thrombus size 

and composition is conflicting. Male rats had larger thrombus size, and administration 

of testosterone increased both mortality and thrombus size [89]. In porcine models, 

ovariectomy resulted in enhanced platelet aggregation and MMP levels [90]. This suggests 
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that estrogen plays a protective role in platelet aggregation and loss of estrogen with 

menopause may explain the increased incidence of thrombotic events in women, but this has 

not been recapitulated in humans [91]. While thromboinflammation has been well studied, 

sex differences in thromboinflammation have been less so. Additional work is needed to 

elucidate these sex differences.

Sex differences in immunity

Multiple studies have demonstrated sex differences in inflammatory response, which have 

been reviewed previously [92]. These sex differences vary with age and hormonal exposure. 

Differences in innate immunity are seen early in the inflammatory cascade, for example, 

recognition of PRRs. Females have higher levels of TLR7, which results in increased 

production of IFN-α [93]. Male macrophages express higher levels of TLR4 which results 

in increased CXC-chemokine ligand 10 production, a proinflammatory chemokine [94]. 

Adaptive immunity also varies based on age. As women transition from childhood to 

adulthood and then into old age, their CD4+ T cell count, B cell count, and CD4/CD8 

ratio increase in comparison to men [95–97]. Females also show stronger antibody responses 

and have higher immunoglobulin levels [92]. In addition to hormonal differences, there are 

also genetic differences between the sexes that influence the transcriptional profile and lead 

to differential protein expression after ischemic injury, which will be discussed below.

It is important to note that while estrogen has been shown to have protective effects in 

animal models, hormone therapy (HT) after menopause for primary or secondary prevention 

of stroke has not been shown to be beneficial. In the WEST trial, post-menopausal women 

with a recent ischemic stroke or transient ischemic attack (TIA) were randomized to 

estrogen therapy (1 mg of estradiol-17β per day) or placebo. The incidence of nonfatal 

stroke and nonfatal ischemic stroke was similar in the two treatment groups although there 

was a non-significant increase in both risk of death and for more severe stroke in women 

treated with estrogen (RR; 2.9; 95 percent CI; 0.9 to 9.0) [98]. Other randomized trials 

confirmed an increase in the risk of ischemic stroke in healthy postmenopausal patients 

taking HT [99–101]. The reasons for the conflicting results in animal models versus 

clinical trials have been discussed elsewhere but likely involve the timing of HT and dosing 

regimens [102]. In the WEST trial, women had established vascular disease, and the average 

age of enrolled patients was 71. In the WHI, the average age on enrolled subjects was 

63, over a decade post-menopause. Animal studies have implicated that extended period of 

hypoestrogenicity leads to a loss of estrogen-mediated neuroprotection and suppresses its 

anti-inflammatory actions [103, 104]. Ongoing clinical trials that enrolled women at the time 

of menopause are currently ongoing [105, 106].

Sex differences in the blood–brain barrier (BBB)

The BBB consists of endothelial cells, astrocytes, and pericytes and with neurons and 

microglia, forming the neurovascular unit [107]. These cells efficiently provide nutrients 

to the brain parenchyma while preventing harmful antigens from entering the brain. 

Endothelial cell tight junctions strictly regulate paracellular and transcellular transport of 

antigens, with pericytes providing direct contact to the endothelium and lending additional 
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integrity to the BBB [108, 109]. Limited data is available on sex differences in the integrity 

of BBB, but there is some evidence that females have decreased permeability and hence 

have a more intact BBB as reviewed by Weber et al. [110]. This may due to protective 

effects of estrogen as ovariectomy increased the permeability of BBB in mice [111]. 

Similarly, rats had a higher astrocytic aquaporin-4 expression after ovariectomy which led 

to vasogenic edema. Estrogen replacement decreased the BBB disruption and restored the 

expression of aquaporin-4 in adult female rats, further demonstrating the protective role of 

estrogen [112]. Testosterone is also linked with BBB integrity, and male mice who were 

castrated showed loss of tight junction protein and increased BBB permeability, which could 

be reversed with testosterone supplementation [113].

Ischemia further disrupts the BBB barrier. Liu et al. demonstrated that aging female mice 

have higher BBB permeability compared to young female mice, while aging male mice 

had decreased permeability compared to young male mice [114]. The difference seen in 

females with aging is likely secondary to estrogen as mice with ovariectomy had the highest 

BBB permeability, while male mice continue to metabolize testosterone to estrogen (via 

aromatase). One small clinical study in stroke patients found no sex differences in MMP-9 

levels, a protein that has been shown to disrupt the BBB by degrading tight junctions 

and the basement membrane, or its inhibitor, tissue inhibitor of matrix metalloproteinase-1 

(TIMP-1) [115]. MMP-9-induced disruption of the BBB is associated with hemorrhagic 

transformation, but sex differences in hemorrhagic transformation incidence remain unclear 

[116]. While BBB disruption is associated with post-ischemic injury, the role of sex 

differences in BBB integrity and its implications on infarct size and outcomes is not yet 

clear.

Cell-specific sex differences in post-stroke immune responses

Microglia

Sex differences in microglia in the healthy brain: Microglia are brain-specific 

macrophages derived from the fetal yolk sac which account for 5–12% of all brain cells 

[117]. They are involved in the development and maturation of synapses [118, 119], 

participate in brain masculinization [120], clear debris, and are involved in regeneration 

[121]. There is well-documented heterogeneity in the location and functional states of 

microglia between the sexes [122–126]. Along with differences in density, studies have also 

shown varying morphologies between males and females. Guneykaya et al. demonstrated 

that microglia have similar soma sizes in male and female mice at 3 weeks, but at 13 weeks, 

male microglia were larger [125]. Schwartz et al. showed that at postnatal day 4, male 

rats had rounder microglia with thick long processes, but this reversed by day 30 [126]. 

In the prelimbic cortex, female rats had a higher primed/ramified ratio of microglia when 

compared to males. However, with stress, this ratio increased in males and decreased in 

females [124]. Another study showed that males had more complex microglia in the dorsal 

hippocampus, while females had a more complex microglia morphology in the prefrontal 

cortex [127]. These differences are important to note as they suggest microglia in male 

rodents are already in a more activated state and are more responsive to neuroinflammatory 

stimuli, which may play an important role in the response to stroke.
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Transcriptomic analysis has shown that there are considerable differences in microglia 

in males and females, and these differences vary based on brain region and age. In 

13-week-old mice, there were 1109 differentially expressed genes in the hippocampus 

and 55 in the cortex. The genes that were more highly transcribed in males included 

“transcription factor activity” and “histone demethylation and deacetylation” in the cortex 

and “regulation of defense response to bacteria,” “insulin receptor pathway,” “glia cell 

differentiation,” and “ATP binding” in the hypothalamus. Females had overrepresentation 

of “ubiquitin protein activity” and “magnesium ion transport” in their gene set [125]. 

Similarly, Villa et al. identified 546 differentially expressed genes in mice with increased 

expression of transcription factors associated with 79% of the 95 inflammatory genes that 

were more expressed in males. These included genes involved in the inflammatory response, 

leucocyte migration, regulation of response to wounding, chemotaxis, and regulation of 

cytokine production. In contrast, microglia from females had increased expression of 

genes regulated by transcription factors that inhibit inflammation [128]. Other studies 

demonstrated differential expression of genes at all age groups but showed that as female 

mice aged, the expression of their inflammatory genes increased [129] including genes 

involved with the APOE network [130], an important risk factor for neurodegenerative 

disease. These transcriptomic analyses suggest that genes are differentially expressed in 

male and female rodents and that males have enhanced expression of transcription factors 

that induce proinflammatory genes and females have a higher number of transcription 

factors that induce anti-inflammatory genes. One important caveat is that these studies 

were performed in young animals, so how the microglial transcriptome changes with aging 

remains relatively unexplored.

Sex differences in microglial response to stroke: Microglia are highly plastic cells that 

assume diverse roles in response to different signals [131] and play a central role in the 

neuroinflammatory response to stroke. As mentioned in previous sections, transcription, 

phenotype, and location of microglia vary based on sex. Transcriptomics analysis shows 

that of the differentially expressed genes, proinflammatory genes are more common in 

males. Similarly, proinflammatory phenotypes of microglia are more dominant in males 

[131], whereas anti-inflammatory phenotypes of microglia increase significantly in females 

post-stroke [75] (Fig. 2).

One important inducer of the anti-inflammatory phenotype of microglia is IL-4, which 

is more highly expressed in female mice. Deletion of IL-4 using knockout mice led to 

a loss of sex differences in infarct volume and outcome [131]. In contrast, male-derived 

microglia have higher expression of S100a8, a TLR4-binding protein that is involved in 

proinflammatory cytokine regulation [125, 132–134]. With aging, females have an increase 

in the expression of inflammatory microglial complement proteins, which is consistent with 

the higher levels of inflammation in this population [55].

Transcriptomic analysis did not demonstrate a difference between male and female 

expression of estrogen receptors. This suggests that the circulating levels of hormones, 

rather than the number of estrogen receptors, are responsible for any hormone-related 

differences [34, 135]. In adult female mice, 17β-estradiol levels are high and induce 

an anti-inflammatory phenotype in microglia which results in downregulation of IL-1β, 
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IL-6, and TNF-α and upregulation of the anti-inflammatory cytokine, IL-10 (Fig. 2) 

[135]. Progesterone also induces microglial transition into an antiinflammatory phenotype, 

decreasing the inflammatory response [136].

Interestingly, with aging and gonadal senescence, the sex chromosome compliment (XX 

vs. XY) plays an increasingly important role in the response to ischemic injury. Although 

the second X chromosome in females is “deactivated” for genetic balancing between the 

sexes, females express a high degree of mosaicism, depending on which X chromosome is 

silenced and what tissue is examined. It is becoming increasingly clear that many X-linked 

genes escape X-chromosome inactivation, and this is more common with aging and in 

the brain [137]. The four-core genotype (FCG) model can be used to dissociate gonadal 

and chromosomal sex. In this model, the testis determining gene Sry was spontaneously 

deleted from its normal position on the Y chromosome. A transgenic Sry gene is placed on 

an autosome (chromosome 3). Breeding XX gonadal female mice with XY –Sry gonadal 

male mice produces XX females and XY females (with no sry on the Y chromosome), 

both of which have ovaries, and XXSry-males (with sry on chromosome 3) and XYSry 
+ males (with sry on chromosome 3) that have the testis [138]. In young mice, Manwani 

et al. found that young FCG mice with ovaries had smaller infarcts than mice with testes. 

However, this difference was lost after gonadectomy, after which all four genotypes had 

equivalent infarct size. This suggests that estrogen is the main protective factor in this age 

group [139]. However, in reproductively senescent aged mice with similar levels of gonadal 

hormones (18–20 months of age), mice with two X chromosomes had worse outcomes 

regardless of gonadal sex. All mice with an XX chromosome compliment had enhanced 

“proinflammatory” microglia, and a downstream increase in proinflammatory cytokines 

[135, 140]. This was due to X chromosome genes that escape X chromosome activation 

in a low hormone milieu [140] and was mediated by interferon regulatory factors (IRF). 

Expression of KDM6A, a gene on the X chromosome that escapes inactivation, led to 

H3K27me3 demethylation and higher levels of IRF5, which promotes the proinflammatory 

microglia phenotype. The KDM6A-IRF5 pathway was increased in females, confirming 

epigenetic involvement in cytokine production [141]. Microglia in aged females also show 

an increased expression of MHCII and increased proinflammatory cytokine production 

[140]. Multiple factors influence microglial activation, and the resultant production of 

cytokines and chemokines (Table 3). Additional studies are needed to further investigate 

the sex-specific modulation of microglia.

Astrocytes

Sex differences in astrocytes

Astrocytes form tight junctions that contribute the integrity of the BBB, use calcium ion 

signaling to regulate blood flow, and express aquaporin 4 to regulate water balance [142]. 

They also serve as a source of estradiol, progesterone, and testosterone in the CNS [143]. 

Female astrocytes also produce a positive feedback loop, increasing estrogen levels [144]. 

Astroglial transcriptomic analysis in mice showed 20 to a 100 differentially expressed 

genes in males compared to females. This varied with age with the peak difference seen at 
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postnatal day 14, with few differences in adulthood. These differences were mostly found in 

genes related to cell cycle and neurite, dendritic, and synaptic development [145].

Sex differences in the astrocytic response to stroke

Multiple identified sex differences are seen in the astrocytic response to ischemia (Table 3). 

Female astrocytes release increased amounts of ionized calcium which is neuroprotective 

after stroke secondary to a reduction in brain edema from decreased water uptake [146, 

147]. Aquaporin-4 supports paravascular flow of CSF. Increased aquaporin-4 polarization 

is indicated by higher aquaporin-4 presence in perivascular endfeet than in the parenchyma 

[148]. Aquaporin-4 polarity is associated with increased interstitial solute clearance, and 

lack of polarity is associated with heightened neuroinflammation [147]. Morrison et al. 

demonstrated that while astrocytes are equally polarized in males and females at baseline, 

after stroke, male astrocytes are more likely to have a change in polarity, which could also 

account for increased inflammation [147]. In the same study, S100β, an astrocyte Ca2+ 

binding protein that acts as a DAMP and promotes the neuroinflammatory response was 

found to increase more in males than in females [147].

Similar to what is seen in microglia, estrogen decreases the expression of the transcription 

factor NF-κB, leading to a reduction in the activation of proinflammatory genes and, thus, 

a decrease in proinflammatory cytokine levels [149]. Estrogen also blocks oxygen–glucose 

deprivation-induced astrocyte mitochondrial dysfunction and cell death which results in less 

ROS release [150]. Estrogen also induces glutamate transporter-1 and glutamate-aspartate 

transporter expression, which decreases excitotoxicity by removing glutamate and hence 

decreases the inflammatory response [151]. Further studies are needed to investigate sex 

differences in astrocyte after stroke.

Monocytes and macrophages

Sex differences in monocytes and macrophages

Monocytes and macrophages are central components of the innate immune response. 

Transcriptomic analysis showed that in human monocytes, there are 428 differentially 

expressed genes by sex, but the female-male fold change value was low [152]. Another 

study on the blood of humans with chronic inflammation showed that the expression of 

genes involved in the production of Fcγ receptors was increased in females, which are 

involved in monocyte activation (153). Similarly, females had a stronger IFN-γ response 

[153]. In murine bone marrow, Fcγ receptors genes were also differentially expressed in 

macrophages. Female mice also had a higher expression of genes that are stimulated by IFN 

[152]. On the other hand, analysis of human blood has shown that men have a higher 

expression of genes involved in phagocytosis and extracellular anti-microbial response 

[154].

Sex difference in monocytic and macrophagic response to stroke

After ischemic injury, monocytes (e.g., Ly6ChighCD43low cells) are recruited to the brain 

within a few hours and differentiate into macrophages, releasing IL-1β and TNF-α [155, 

156]. Similar to other cells, mononuclear macrophages also show sex differences. After 
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stroke, higher numbers of activated macrophages are seen in the brain of male mice, along 

with increased percentage of activated microglia and cells expressing the homing marker, 

VLA-4, that have transmigrated into the infarct [76]. These cells might contribute to larger 

infarcts size in males but may also be secondary to the increased ischemic damage seen 

in young male vs. female animals. Female mice exhibited anti-inflammatory phenotypes 

in microglia/macrophage with higher expression of CD206 compared with males after 

stroke [75]. Female mice also had more robust anti-inflammatory responses from IL-10-

producing CD8 + CD122 + T cells [76]. Notably, this female-specific neuroprotection was 

not observed in IL-4 KO mice (131).

The spleen exhibits sex differences in stroke outcomes. Dotson et al. showed that 

splenectomy reduces infarct volumes in stroke males, and infarct volumes between 

splenectomized males and females were comparable. Interestingly, spleen-intact males had 

higher levels of circulating CD11b + monocytes compared to male mice with splenectomy, 

which was not seen in females (74). Implication of sex differences in monocyte function in 

inflammation after stroke needs additional study.

Neutrophils

Sex differences in neutrophils

Neutrophilic transcriptome analysis identified 106 genes which were upregulated and 128 

genes which were down-regulated in women compared to men [157]. Women also had 

more activated and mature neutrophils (e.g., enhanced type I interferon), which have 

a lower activation threshold in inflammation [157, 158]. These IFN-primed neutrophils 

increase ROS production, migration, NET formation, and adhesion molecule expression 

[157]. In addition, male neutrophils had elevated mitochondrial metabolism compared with 

female neutrophils. Interestingly, estradiol-treated male neutrophils had lower mitochondrial 

metabolism, which was similar with female neutrophils, indicating that the sex-specific 

maturation of neutrophils might be modulated by sex hormones [157].

Sex difference in the neutrophilic response to stroke

Neutrophils are the predominate leukocyte in the blood and one of the first blood-borne 

immune cell to arrive in the brain following stroke, with possible contributions from 

the skull bone marrow and the blood via the leptomeningeal vessels [159–161]. They 

release proinflammatory factors, ROS, proteases, and MMPs, which leads to increased 

BBB damage, hemorrhagic transformation, and post-stroke edema. This results in increased 

infarct volumes, higher stroke severity, and poorer outcomes [36, 55]. It is important 

to note that neutrophils also have beneficial effects on inflammation as they promote 

angiogenesis, produce MMPs which can break down proinflammatory DAMPs leading to 

reduced inflammation, and help with recruitment of beneficial cells [162]. Estrogen plays 

a significant inhibitory role in neutrophil recruitment to the stroke as it inhibits CINC-2, 

a chemokine associated with neutrophilic chemotaxis [163]. In older mice, males had a 

significantly higher number of neutrophils in the brain and higher levels of MCP-1 and 

G-CSF in plasma when compared to females. This, along with elevated CD8+ T and 
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regulatory T cells, resulted in a 25% higher mortality and 55% higher risk of hemorrhagic 

transformation in male mice (Table 4) [164].

Neutrophil extracellular traps (NETs)

Activated neutrophils release fragile fibers composed of chromatin with granular proteins 

called NETs [165]. NET formation peaks 3–5 days after ischemic injury [166]. NETs can 

form through nuclear delobulation and envelope disassembly which leads to chromatin 

decondensation and cellular depolarization induced by cell death. Subsequently the plasma 

membrane ruptures and NETs are released. NETs can also form via degranulation and 

expulsion of chromatin followed by extracellular NET assembly [167]. These NETs form 

primarily in the vessel lumen and act as a scaffold for platelet binding and further 

thrombosis following stroke [160, 168]. Three clinical studies which cumulatively enrolled 

more than 150 patients undergoing mechanical thrombectomy that had clots available for 

histological evaluation had increased markers of NET formation (citrullinated histone and 

extracellular DNA) [56, 169, 170]. Higher levels of NET markers were associated with 

worse discharge disposition and poorer outcomes at 1 year after the index stroke [171]. Two 

studies found no association between sex and the presence of NETs. A higher number of 

NETs was associated with poorer recanalization times, increased recanalization attempts, 

and contributed to worse outcomes by stabilizing the thrombus leading to less complete 

recanalization [169].

Following stroke, NETs release cytotoxic proteases including elastase myeloperoxidase and 

histones which disrupt the blood–brain barrier and reduce neovascularization [166]. NETs 

have also been implicated in a reduction of T cell activation threshold increasing the release 

of the proinflammatory cytokines IL-17 and IFN-γ [172, 173]. These findings suggest that 

NETs are key targets for improving recanalization with thrombolytics and thrombectomy 

and to reduce post-stroke inflammation and improve neovascularization.

Few studies have assessed sex differences in NETs, and most of these are confined 

to pregnant women as aberrant neutrophil activation is known to be involved in 

complications of pregnancy [174, 175]. Estrogen, granulocyte colony-stimulating factors 

(G-CSF), and human chorionic gonadotropin promote NETosis by increasing expression of 

peptidyl arginine deaminase 4 expression, neutrophil elastase, and myeloperoxidase [174]. 

Neutrophils from cells of healthy women underwent more NETosis after ex vivo calcium 

stimulation compared those from men [176]. While this suggests that women might have 

higher NETosis, further studies are needed to see if this impacts neuroinflammation after 

stroke. While DNAse-I and NET inhibitory peptides are effective in clearing NETs in vitro 

and ex vivo, further investigations into the role of NETs and stroke are needed with a focus 

on sex differences in NET pathophysiology [177].

Lymphocytes

Sex differences in T cells

Naïve CD4+ T cells differentiate into T helper cells, including Th1, Th2, Th17, and Tregs. 

In adults, sex differences in T cell subsets exist; women having a higher CD4+ T cell count 
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and CD4/CD8 ratio in blood [92, 95–97, 178]. These CD4+ T cells also have higher levels 

of estrogen receptors than CD8+ T cells. Estrogen promotes differentiation of these CD4+ 

T cells to Treg cells which promotes anti-inflammatory cytokines and to Th2 cells which 

decreases the production of proinflammatory IL-17 by Th17 cells [179].

The X chromosome also contains the Forkhead box P3 gene which is important in Treg 

differentiation and the gene for CD40 ligand, which is needed for T cell activation [180]. As 

discussed previously, some X chromosome genes can escape inactivation in females and can 

result in a more robust immune response [180]. With age, CD4+ and CD8+ T cell function 

decreases, but this decline is accelerated in men and leads to a poor inflammatory response 

[181, 182].

Sex differences in T cell responses to stroke

CD4+ and CD8+ T cells contribute to the inflammatory response, especially in delayed 

ischemic injury. Ahnstedt et al. showed that aged male mice had higher CD8+ T cells 

in the brain 15 days after stroke and higher mortality than age-matched females (20–22 

months of age) [80]. In both human and murine studies, females have increased serum 

levels of IL10, which dampens inflammatory responses but led to an increased risk of 

post-stroke infection and delayed recovery in females but not in males [79]. However, 

these elevated levels of IL-10 did not independently predict better outcomes in stroke 

patients (Table 5) [183]. Similar to IL-10, females also have higher levels of IL-4, which 

is associated with decreased recruitment of CD4+ and CD8+ T cells and, consequently, 

smaller infarcts [182]. In transient ischemia models, males had higher Nox2-derived 

superoxide, Cox-2, and VCAM-1 which are proinflammatory proteins. Nox2-containing 

NADPH oxidase contributes to infarct development, whereas VCAM assists with leukocyte 

infiltration into the brain [184]. Females also have higher numbers of regulatory T cells, 

which are protective in ischemic stroke by releasing anti-inflammatory cytokines including 

IL-10 [74]. Estrogen plays a major role in the sexual differences in Treg number and 

function [185]. Despite the enhanced release of anti-inflammatory cytokines, women have 

worse outcomes after ischemic stroke, which may be due in part to a weaker suppressive 

response in Tregs to T cell activation in women, leading to enhanced inflammation [186]. 

Beckmann et al. recently demonstrated sex differences in the Treg response after neonatal 

hypoxic ischemia in male and female mice, at a time point where levels of sex hormones are 

similar between [187]. Female mice had increased cerebral Treg infiltration, coinciding with 

elevated chemokine receptor expression. Treg depletion in females aggravated HI-induced 

brain tissue injury which paralleled an increase in microglia and endothelial activation and 

leukocyte infiltration. Surprisingly, Treg depletion in male mice reduced HI-induced brain 

injury and behavioral deficits. Isolated female Tregs had an increased immunosuppressive 

activity on effector T cell proliferation ex vivo. This is important as it demonstrates that 

sex differences in Treg function are not only due to differences in sex hormone levels, 

but also to differential gene expression (Table 4) [187]. Females also have upregulation of 

genes mediating the IL-12 cytokine signaling pathways which promotes natural killer cell 

toxicity, T cell proliferation, and Th1 cell differentiation (Fig. 3) [188, 189]. The full extent 

of regulatory T cell involvement in post-stroke outcomes remains unclear in aged subjects 

[190].
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Sex differences in the B cell response to stroke

B cells, and in particular IL-10 producing B cells, are associated with decreased infarct 

volume. Female mice have increased regulatory B (Breg) cells (CD19+CD5+CD1dhigh cells) 

in the ischemic hemisphere of the brain after stroke, which corresponds to fewer Breg cells 

in the spleen of females [75]. B cells are also implicated in the increase of anti-inflammatory 

microglia seen in the female brain post-stroke. IL-10 producing Breg cells promote the 

anti-inflammatory phenotype in microglial cells, in both males and females. Female mice 

have higher levels of microglial IL-10 receptor expression, which responds to the IL-10 

released by Bregs. This results in sex differences with higher levels of anti-inflammatory 

microglia in females [191].

Conclusion

Neuroinflammation plays a vital role in post-stroke injury and recovery. Neuronal damage 

induced by inflammation occurs both acutely and chronically following stroke, hence 

providing a larger window for intervention as compared to thrombolytics and thrombectomy. 

The identification of sex differences in post-stroke neuroinflammation is important. There is 

an urgent need for sex-stratified clinical and preclinical analyses to identify and investigate 

these differences and implement this knowledge to develop novel sex-specific treatments for 

both men and women.
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Fig. 1. 
Adaptive immune responses regulated by T and B cells in stroke. (created with 

BioRender.com)
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Fig. 2. 
Sex differences in microglial response following stroke. Female microglia confer 

neuroprotection in stroke by secreting higher levels of anti-inflammatory cytokines 

including IL-4 and IL-10 and lower proinflammatory cytokines including IL-1β, IL-6, and 

TNF-α, compared with male microglia (created with BioRender.com)
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Fig. 3. 
Sex differences in the systemic T cell response following stroke. Tian et al. [188] profiled 

gene expression in the blood from male and female ischemic stroke patients (≤ 3, 5, and 

24 h) and performed functional analysis to identify pathways. Of note, female-specific 

pathways include T-helper cell differentiation and regulation of T cell activation. Canonical 

pathways and GO biological process for ≤ 3 h after stroke were shown here. In a mouse 

model of stroke, females had higher regulatory T cells in the blood compared with males 

[74] (created with BioRender.com)
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Table 1

Components of the CHA2DS2VASc score

Letter Risk factor Score

C History of congestive heart failure 1

H Hypertension 1

A2 Age 75 years or older 2

D Diabetes 1

S2 Stroke/TIA/thromboembolism history 2

V Vascular disease history 1

A Age 65–74 years 1

S Sex, female 1
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Table 2

Annual risk of embolic stroke, transient ischemic attack, and systemic embolism per year in patients with 

atrial fibrillation [192]

CHA2DS2-VASc score Risk of ischemic stroke (%) Risk of stroke/transient ischemic attack/systemic embolism (%)

0 0.2 0.3

1 0.6 0.9

2 2.2 2.9

3 3.2 4.6

4 4.8 6.7

5 7.2 10.0

6 9.7 13.6

7 11.2 15.7

8 10.8 15.2

9 12.2 17.4
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