Skip to main content
. 2024 Mar 9;24:316. doi: 10.1186/s12903-024-04073-4

Table 2.

Machine learning approach and metrics for adolescents. SBMS 2018/2019. (n = 615)

Collect metrics xgboost Decision trees Logistic regression
Sensitivity 0.42(CI95% ± 0.02) 0.44(CI95% ± 0.02) 0.40(CI95% ± 0.02)
Specificity 0.92(CI95% ± 0.02) 0.88(CI95% ± 0.02) 0.80(CI95% ± 0.02)
Acuraccy 0.75(CI95% ± 0.01) 0.79(CI95% ± 0.01) 0.76(CI95% ± 0.01)
AUC 0.84 (CI95% ± 0.01) 0.81(CI95% ± 0.01) 0.73(CI95% ± 0.01)
Three Main contributors importance* Three Main contributors importance* Three Main contributors importance*
Dental Floss** 0.37 Unhealthy** 0.20 Unhealthy** 0.15
Unhealthy consumption ** 0.30 Whites 0.17 Dental Floss** 0.13
Whites 0.17 Dental Floss** 0.14 Fluoridation 0.09

* importance ranges from 0 to 1. The main gain in information, the more important the predictor role on the outcome ( untreated dental caries)

** Possibly modified factors to be addressed for Primary health care workers