Table 2.
Machine learning approach and metrics for adolescents. SBMS 2018/2019. (n = 615)
| Collect metrics | xgboost | Decision trees | Logistic regression | ||
|---|---|---|---|---|---|
| Sensitivity | 0.42(CI95% ± 0.02) | 0.44(CI95% ± 0.02) | 0.40(CI95% ± 0.02) | ||
| Specificity | 0.92(CI95% ± 0.02) | 0.88(CI95% ± 0.02) | 0.80(CI95% ± 0.02) | ||
| Acuraccy | 0.75(CI95% ± 0.01) | 0.79(CI95% ± 0.01) | 0.76(CI95% ± 0.01) | ||
| AUC | 0.84 (CI95% ± 0.01) | 0.81(CI95% ± 0.01) | 0.73(CI95% ± 0.01) | ||
| Three Main contributors | importance* | Three Main contributors | importance* | Three Main contributors | importance* |
| Dental Floss** | 0.37 | Unhealthy** | 0.20 | Unhealthy** | 0.15 |
| Unhealthy consumption ** | 0.30 | Whites | 0.17 | Dental Floss** | 0.13 |
| Whites | 0.17 | Dental Floss** | 0.14 | Fluoridation | 0.09 |
* importance ranges from 0 to 1. The main gain in information, the more important the predictor role on the outcome ( untreated dental caries)
** Possibly modified factors to be addressed for Primary health care workers