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The human brain is never at “rest”; its activity is constantly fluctuating over time, transitioning
from one brain state–a whole-brain pattern of activity–to another. Network control theory offers a
framework for understanding the effort – energy – associated with these transitions. One branch of
control theory that is especially useful in this context is “optimal control”, in which input signals
are used to selectively drive the brain into a target state. Typically, these inputs are introduced
independently to the nodes of the network (each input signal is associated with exactly one node).
Though convenient, this input strategy ignores the continuity of cerebral cortex – geometrically,
each region is connected to its spatial neighbors, allowing control signals, both exogenous and
endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain
stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue
surrounding the stimulation site. Here, we adapt the network control model so that input signals
have a spatial extent that decays exponentially from the input site. We show that this more realistic
strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce
the energy (effort) associated with brain state transitions. We further leverage these dependencies
to explore near-optimal control strategies such that, on a per-transition basis, the number of input
signals required for a given control task is reduced, in some cases by two orders of magnitude. This
approximation yields network-wide maps of input site density, which we compare to an existing
database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence.
Ultimately, not only do we propose a more efficient framework that is also more adherent to well-
established brain organizational principles, but we also posit neurobiologically grounded bases for
optimal control.

INTRODUCTION

The human connectome is a network map of the
brain’s physical wiring [1, 2]. Nodes correspond to neu-
ral elements – brain regions at the macroscale – where
computations are carried out locally. The outcomes of
those computations are relayed from one node to an-
other along network edges – fasciculated white-matter
[3, 4]. Accordingly, the structure of the connectome
plays an important role in shaping interregional com-
munication patterns [5] and the correlation structure of
brain activity–i.e. functional connectivity (FC) [6].

A node’s state can be defined at any instant based on
its magnitude of fMRI BOLD activity (Fig. 1a). Aggre-
gating these values across all brain regions returns an
N × 1 vector; we refer to this multivariate pattern as
a “brain state”, positioning the brain at a specific loca-
tion in an N -dimensional state space at a given time
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[7]. As the brain’s activity fluctuates over time so does
its state, tracing out a trajectory as it transitions from
one pattern of activity to another.

Even in the absence of input – i.e. experimen-
tal stimuli, environmental perturbations, or internally-
generated signals – the brain is not static; rather, its
state passively evolves along a trajectory owing to the
inertia of its own dynamics [8–10]. We refer to this tra-
jectory as “uncontrolled.” It is possible, however, for the
brain to deviate from this trajectory were it to receive
input.

Recently, there has been considerable interest in in-
vestigating whether input signals could be tailored to
(deliberately) push the brain along a “controlled” tra-
jectory and into a desired target state (Fig. 1b). This
question is presently highly relevant, given the enor-
mous interest in technologies for manipulating ongoing
brain activity, including transcranial magnetic [11] and
direct current stimulation [12] as well as chemogenetic
applications [13] and optogenetic stimulation [14].

One promising framework for understanding the ef-
fect of these perturbations is network control theory,
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a branch of engineering concerned with controlling the
behavior of networked dynamical systems [15–20]. The
optimal control framework, in particular, has proven
especially influential. Briefly, it derives a series of time-
varying inputs that push the network into a target state.
These inputs are optimal in the sense that they mini-
mize a two-term cost function. The first term refers to
the squared amplitude of the input signals integrated
over time – the so-called “control energy.” The second
term is calculated as the distance from a reference state,
typically set equal to either the target state or an N×1
vector of zeros. Here, optimal control balances these
two terms, seeking input signals that are low energy
while keeping brain state trajectories from straying too
far from their reference.

Optimal control has been used to understand the
link between brain structure and function [21–24], to
study brain network development and executive func-
tion [25–27], working memory and schizophrenia [28],
epilepsy [29, 30], psychiatric disorders [31, 32], mind-
fulness training [33], neurostimulation [34, 35], and
psychedelic research [36, 37]. Other work has focused
on understanding the metabolic cost of control [38, 39].

One of the crucial components of optimal control is
the input matrix. This matrix determines the map-
ping of time-varying input signals (Fig. 1c) to neural
elements (nodes) in the brain (Fig. 1d). In most ap-
plications, there is a one-to-one mapping of inputs to
nodes, such that each input signal is delivered to ex-
actly one node. Though mathematically convenient,
this assumption presents some issues. In the context of
neurostimulation, it implies that the stimulation tech-
nique has perfect precision and specificity. That is, a
user is able to target and stimulate a given population
of neurons without impacting the states of its proxi-
mal neighbors. This is unrealistic and especially so for
non-invasive techniques, where not only is the spatial
specificity limited, but where errors in target selection
may also occur. Additionally, if we were to imagine
that the control signal was self-generated by a specific
neuronal population, it is not clear that this popula-
tion will fall neatly within the boundaries of a specific
parcel [40]. More likely, the population is distributed
across multiple parcels, implying that the input signal
is delivered to multiple nodes in the network.

Here, we present a strategy for incorporating spatial
dependencies into the optimal control framework. We
do so by directly modifying the input matrix to account
for nodes’ spatial proximities. Traditionally, to deliver
an input to node i, we create an N -dimensional column
vector whose ith element is equal to 1. If we wanted
to deliver one control signal per brain region, the cor-
responding control matrix would be the identity matrix
(see “single node” example in Fig. 1e). Other stud-
ies have modified this matrix, typically by selectively
rescaling its elements–e.g. to model the effect of corti-

cal thinning or neurochemical variation [23, 36]. Here,
however, we propose a more radical, though eminently
simple, modification. Specifically, we deliver every in-
put signal to every brain region–i.e. the control matrix
contains all non-zero elements–but scale the weights in
the control matrix so that the element {i, j} is a mono-
tonically decreasing function of the distance, Dij , of
node j from the input node, i (Fig. 1e,f).

To our knowledge, this type of modification to the
input matrix, though anticipated [41], has never been
investigated directly. Here, we study the “spatial” in-
put strategy, comparing its performance to that of the
more traditional “local” input strategy and using it to
develop novel neuroscientific insight. We find that the
energy needed to transition between empirically-derived
brain states under the spatial input strategy tends to
be smaller and gives rise to dissimilar time-varying in-
puts and regional control energies. We also propose a
simple strategy for near-optimal control that takes ad-
vantage of correlations among input signals–a measure
of compressiblity–to further reduce the amount of en-
ergy on a per-transition basis by orders of magnitude.
Finally, we show that the topography of the optimal
input patterns is correlated with well-established tran-
scriptomic, neurochemical, metabolic, and functional
brain maps. Though simple, the extension proposed
here pushes the realism of the optimal control frame-
work and opens up avenues for future studies to link
control with empirical observations.

RESULTS

Here, we compare “local” and “spatial” strategies for
delivering control signals. The local strategy injects
each input into one brain region and one region only,
whereas the spatial strategy allows for those input sig-
nals to diffusely impact the states of nearby regions.
We apply these input strategies to a multi-modal hu-
man imaging dataset that includes both diffusion spec-
trum and resting-state imaging data (Ns = 70 adults
age 28.8±9.1 years; 43 males) [42]. We replicate our
main findings using Human Connectome Project data
(Ns = 95) [43].

Defining brain states

The optimal control framework considers transitions
between discrete brain states – i.e. whole-brain pat-
terns of activity. Before we can determine the optimal
input signals, we must first define brain states. Un-
like previous studies, which have defined states meta-
analytically [23] or based on canonical large-scale sys-
tems [21, 22], we do so empirically using the following
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Figure 1. Illustration of optimal control framework. (a) Brain activity changes from time point to time point. The
activity of region i at time t is specified as xi(t). The set x(t) = [x1(t), . . . , xN (t)] defines the brain’s “state” at time t. (b)
For a given node, i, the sequence xi = [xi(1), . . . , xi(T )] defines a 1-dimensional trajectory. When we consider N possible
nodes, we can think of the brain as moving through an N -dimensional state space across time, tracing out a high-dimensional
trajectory. In the absence of any inputs, the brain will follow an “uncontrolled” trajectory given its intrinsic dynamics. (c)
However, control signals–time-varying inputs–can be injected into the brain that change local (regional) states and alter the
trajectory. (d) The signal propagates along white-matter tracts so that the input node relays information about the input
to its connected neighbors. The new trajectory is referred to as the “controlled” trajectory. (e) Traditionally, each control
signal gets injected into a single node. An alternative possibility is that the signal is centered on a particular location in the
brain–e.g. a region’s center of mass–but that nearby regions receive some of that signal, with the amount received decaying
exponentially with distance as controlled by the by the diffusivity parameter, β (see panel f ).

algorithm. First, we detect peaks in the amplitude of
whole-brain activity (root mean square across N = 1000
regions/nodes [44]). We define peaks as frames whose
RMS was greater than that of both the preceding and
following frames. We then aggregate the correspond-
ing patterns (Npeak = 3443 patterns in total) across
participants and calculate Lin’s concordance between
all pairs of patterns. We then cluster the resulting
Npeak×Npeak matrix using a variant of modularity max-
imization [45, 46]. The algorithm returned 139 clus-
ters. Most were small and/or contained peaks from
only a few participants. We defined brain states as the
centroids of clusters in which peak activations from at
least 50% of participants were represented (see Mate-
rials and Methods for more details). Note that this
approach for empirically defining brain states is simi-

lar to that of [25] and [36], wherein fMRI BOLD time
series were clustered into recurring states. It also re-
sembles the well-established method for extracting co-
activation patterns (CAPs) [47–49] from fMRI BOLD
data (though note here that our approach will include
low-amplitude peaks, whereas CAPs retains more ex-
treme peaksx).

This procedure resulted in Nstate = 11 brain states
(Fig. 2a) that appeared in anywhere from 99% to 51% of
participants. Broadly, these brain states recapitulated
well-known activation patterns, delineating previously
described large-scale brain systems [50] (Fig. 2b). For
instance, State 1, which appeared in 99% of all par-
ticipants, corresponded to activation of regions in the
salience/ventral attention and somatomotor networks
and deactivation of regions in the default mode and
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Figure 2. Brain state transitions. (a) Spatial topography of eleven empirically-derived brain states. Text above each
brain represents the fraction of participants in which a given brain state was observed. Note that we disallowed states that
appeared in fewer than 50% of participants. (b) z-scored overlap between brain states and canonical resting-state networks.
For each brain state and brain system, we calculate the mean activity within that system. We then compare the mean
activity against a space-preserving null model and express the mean similarity as a standard score (z-score). Large positive
values indicate that the mean activity of nodes within a given system is greater than expected by chance. Large negative
values indicate that the mean deactivation of nodes is greater (more negative) than expected by chance. (c) Global energy
associated with the transition between all pairs of brain states under the “spatial” model in which the control input centered
on region i is also delivered to region i’s neighbors with an amplitude inversely proportional to the Euclidean distance from
region i (negative exponential). (d) Global energy associated with the transition between all pairs of brain states under the
“local” model in which a control input is delivered to region i alone. (e) Spatial similarity of brain state activations with
respect to one another. (f ) Scatterplot comparing the energy associated with every possible transition under both input
models. The color points corresponds to their pairwise similarity from panel e.

control networks. State 2 appeared in 99% of par-
ticipants, and is almost perfectly anti-correlated with
State 1, corresponding to default mode activation and
salience/VAN and somatomotor deactivation. State 3
corresponds to activation of default mode and control
regions; states 4 and 5 are mirrors of one another and
correspond to activation/deactivation of visual regions,
respectively; state 6 corresponds to activation of dorsal
attention and control regions and deactivation of the
default mode; state 7 corresponds to activation of the
somatomotor network and deactivation of the control
network; state 8 corresponds to deactivation of the vi-
sual network; state 9 corresponds to activation of the
control network; state 10 corresponds to activation of
default mode regions and deactivation of dorsal atten-
tion regions; state 11 corresponds to deactivation of the
control network (see Fig. 2a,b,e for topographic maps
of each state, their association with brain systems, and
their correlation with one another, respectively).

Next, we calculated the energy associated with tran-
sitioning between all pairs of states (121 transitions in
total) as the mean squared amplitude of input signals
over time. We performed these control tasks separately
for the “local” and “spatial” input strategies, arbitrar-
ily fixing the diffusivity parameter to β = 0.15 (see
Fig. 2c,d for whole-brain energies associated with all
transitions). Note that in the following subsections we

characterize performance as we vary the value of β.

The diffusivity parameter controls the extent to
which an input signal centered over node i impacts
nodes in the immediate spatial neighborhood. One can
think of the spatial diffusivity in two contexts. If we
imagine that the control signals are being delivered ex-
ogenously, e.g. via stimulation, then the diffusivity of
inputs might reflect the spatial resolution/specificity of
the TMS signal (on the order of 1 cm [51–53]) or volume
conduction [54]. On the other hand, if we imagine that
control signals are delivered endogenously, then the spa-
tial diffusivity could reflect either propagation of electri-
cal signals via superficial fibers [55] that may be poorly
reconstructed from dMRI and tractography data [56].
Smaller and larger value of β correspond to larger and
smaller neighborhoods, respectively. We then compared
global control energies between local and spatial strate-
gies for each of the 121 possible transitions. Although
the energies were correlated with one another (r = 0.86,
p < 10−15; Fig. 2f) and related to the spatial similar-
ity of brain states (r = −0.82, p < 10−15; Fig. 2e), we
found that the energy associated with the spatial strat-
egy was significantly less than that of the local strat-
egy (paired sample t-test; t(120) = −22.6, p < 10−15).
Note that we replicated this finding using Human Con-
nectome Project [43] data (t(143) = −22.7, p < 10−15;
Fig. S1). We also show that this result replicates using
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alternative definitions of brain state (Fig. S2) and with
different parcellations (Fig. S3) and as we vary the free
parameter, ρ, in the optimal control algorithm (Fig. S4).

Together, these results hint that the spatial input
strategy may be less effortful than the local strategy. It
is unclear, however, whether there are other distinctions
between the two strategies and how much these observa-
tions depend on the precise parameterization (the value
for β) of the spatial strategy.

Spatially diffuse control inputs reduce control
energy and correspond to distinct state trajectories

and input signals

In the previous section, we demonstrated that on a
per-transition basis, when the spatial diffusivity param-
eter was set to β = 0.15 the spatial input strategy re-
quired less effort (reduction of the mean squared con-
trol inputs averaged across all brain regions) compared
to the local strategy. Note that the value of β = 0.15
corresponds to, approximately, the widest gap between
transition energy for the spatial and local input strate-
gies. Here, we investigate how these properties vary as
a function of the spatial diffusivity parameter, β, whose
value we limited to the interval [0.01, 0.5]. The lower
bound of this range was selected because smaller values
led to instabilities in the estimation of optimal inputs;
the upper bound was selected as values beyond β ≈ 0.5
yielded results that were qualitatively indistinguishable
from smaller values of β. We focus on addressing four
specific questions.

Here, optimal control seeks to minimize a cost func-
tion that balances distance from the target state with
the squared amplitude of control inputs, integrated over
time (this latter term is referred to as the control en-
ergy). Our first and second questions relate to the rel-
ative contributions of these two terms. First, does the
spatial strategy change the character of the dynamic
trajectory? To address this question, we calculated the
mean distance from the target state across the entire
controlled trajectory under both the spatial and local
strategies (Fig. 3a). Then, for a given transition and β
value, we calculated the difference in distance between
the spatial and local models. Interestingly, we found
that for small values of β, which correspond to greater
spatial diffusivity, the difference in distance was large,
indicating that the spatial model produced trajectories
towards the target state that were less direct (Fig. 3d).
As β increased and the inputs approximated that of
the local strategy, the gap narrowed. See Fig. S5 for
example trajectories.

Second, we asked the complementary question: does
the effort needed to perform control tasks vary with
β? To address this question, we calculated the mean
squared difference in regional energy between the local

and spatial control strategies, yielding a single scalar
value (Fig. 3b). We found that, with the exception of
very small values of β, the spatially diffuse inputs gener-
ally required less energy (Fig. 3e). Interestingly, the gap
between spatial and local control energy increases as the
similarity between input and target states grows (this
is evident in Fig. 2f). In the supplementary material,
we also confirmed that this difference is not obviously
related to differences in the total weight of the input
matrix (Fig. S6b and Fig. S7).

Third, we asked whether the regional control energies
– the mean squared amplitude of the control signal de-
livered to each region – varied with β. That is, how does
the multivariate pattern of input energy across the brain
change as we vary the diffusivity of input signals? To do
this, we estimated the N × 1 vector of regional control
energies for each transition at every β value, and calcu-
lated its similarity with respect to the regional control
energy vector obtained under the local input strategy
(Fig. 3f). Again, we found that, for small values of β,
the control patterns were dissimilar, but with similarity
monotonically increasing as a function of β.

Finally, we asked whether the optimal input signals
associated with the spatial and local input strategies
were correlated across time (see Fig. S8). That is, are
the time-varying inputs – rather than their mean ampli-
tude – similar between spatial and local strategies and
does that level of similarity vary with β? Analogous
to control energy, we found that temporal similarity in-
creased near monotonically with β, though at a slower
rate and never fully saturating over the range of β ex-
plored here (Fig. 3g).

Collectively, these results suggest that the spatially
diffuse input strategy can yield distinct brain state tra-
jectories, corresponds to reductions in the energy/effort
needed to complete control tasks, and does so with dis-
tinct sets of control inputs. It also suggests that in the
limit as β → ∞ the spatial strategy becomes indistin-
guishable from the local strategy, as expected.

Differences in local control energy

In the previous section we focused on global differ-
ences in optimal control as a function of the diffusivity
parameter, β. Here, we fix the parameter to a value
β = 0.15 and examine differences at the local (regional
or nodal) level, focusing on energies and three quanti-
ties of interest. First, we calculate the regional control
energy under both the local and spatial strategies. We
also calculate the effective control input to each brain
region under the spatial strategy as sum of its neighbors’
inputs weighted by the elements of the input matrix, i.e.
ueff = Beffu⊺, where Beff = exp(−β ·D). From the
effective input, we then calculate the effective energy
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Figure 3. Comparison of local and spatially diffuse control strategies. (a) We consider transitions from an initial
state x0 to a target state xT . For each such transition, we measure the mean distance from the target state to each point
along the controlled trajectory. (b) We calculate regional control energies for both the “spatial” and “local” input strategies.
Using those values, we derive two additional metrics: the average difference in regional energy and the correlation of the
N × 1 vector of regional energies. We also calculate, for every brain region, the correlation between the input signals
centered on that region under “spatial” and “local” input strategies. (c) We repeat these calculations as we vary the spatial
diffusivity parameter, β, from a highly diffuse regime (small values of β) to a spatially focused regime (larger values of
β).(d) Mean distance from target state as a function of β. Each trajectory represents one of 121 possible transitions. The
inset highlights 0.125 < β < 0.5. (e) Difference in regional control energy averaged across all N = 1000 cortical regions of
interest at each β value. (f ) Spatial similarity (correlation) of regional control profiles. (g) Temporal similarity (correlation)
of regional control inputs.

at region i as Eeff
i =

∫ T

t=0
ueff
i (t)dt. The effective in-

put reflects the incidental amount of energy delivered
to each node given its geometric relationship to other
nodes in the network.

In general, we found significant correlations be-
tween all three measures (rlocal,spatial = 0.58 ± 0.06;
rlocal,eff = 0.59±0.10; rspatial,eff = 0.75±0.02 Fig. 4a-
c); this effect held over most ranges of β (Fig. S6a).
However, and as in the previous subsection, the regional
energies were lowest for the spatially diffuse inputs (one-
way ANOVA, F (2) = 27692.2; p < 10−15; post-hoc
paired-sample t-tests between spatial and effective, ef-
fective and local, and spatial and local had minimum
t(120999) = 41.2; all p < 10−15).

These results suggest that the different input strate-
gies correspond to similar patterns of regional effort but
of dissimilar energy. How are these energy differences
distributed spatially? Is it the case that all nodes uni-
formly increase/decrease their energy from condition to

condition or are the differences more focal? To test this,
we calculated the difference in regional control energies
for local versus spatial (Fig. 4d,e). We found that the
differences were highly dependent on the the topogra-
phy of the target state. Regions whose target activity
was very positive or very negative required significantly
more energy to activate/deactivate under the local con-
trol strategy than the spatial strategy, whereas regions
with relatively low-amplitude activity were largely the
same when comparing across input strategies (Fig. S9).
Interestingly, most regions exhibited reductions in en-
ergy under the spatial input strategy. However, a
small number of regions actually exhibited increases in
energy–i.e. Elocal < Espatial (Fig. S10). These regions
tended to overlap across state transitions, were concen-
trated in the salience/ventral attention network, and
correlated with specific neurochemical profiles, includ-
ing dopamine and acetylcholine transporters (DAT and
VAChT, respectively).
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Figure 4. Comparing regional control energies. Panels a, b, and c show the “local”, “spatial”, and “effective” input
energies at each brain region and for each of the 121 control tasks. Note that the columns in each matrix are ordered based
on target state. The gray text above the heatmaps indicates the mean correlation between columns of these matrices. (d)
Differences in control energy (local minus spatial). Warm colors indicate regions where the control energy under the local
strategy exceeded that of the spatial strategy. Note that for brain plots, the regional differences in energy are averaged
over all transitions in which a given state was the target. For example, the “State 1” sub-panel corresponds to the mean
difference in energy for transitions, 2→1, 3→1, 4→1, and so on. Panel e shows the mean difference across all target states.
Panels f and g are analogous to d and e, but compare local input strategy with the effective input strategy.

We also wanted to assess whether the effective energy
associated with the spatially-diffuse inputs differed from
that of the local input strategy. For example, it could
be the case that the effective energy is similar to that
of the local strategy–i.e. the spatially-diffuse inputs
take advantage of the brain’s geometry to effectively
approximate the optimal inputs under the local policy.
In general, and in line with the previous findings, we
discovered that highly active/inactive regions required

greater energy under the local model compared to the
effective input energy (Fig. 4f,g). There was, however,
one notable distinction. Specifically, regions with weak
activity (close to zero) exhibited slightly reduced energy
under the local policy compared to the spatial (Fig. S9).

Altogether, these results indicate that the patterns
of regional control energies of the proposed (spatial)
model are consistent with those of the conventional (lo-
cal) one. However, under the spatial model the energy

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.27.581006doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.581006
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

required for the state transition is lower, above all in
brain regions with high-amplitude target activity.

The compressibility and low-dimensional structure
of input signals

To this point, we have considered “full control” transi-
tions, whereby input signals are delivered to every node
in the network (or in the case of the spatial strategy, the
input signals are positioned over every node but allowed
to influence neighboring nodes as well). However, visual
inspection suggests that many of these input signals are
highly correlated and nearly identical, suggesting that
the effective dimensionality of the control input is far
smaller than the N input signals currently being deliv-
ered [57]. This prompts the question: Could we ever
recover the effective number of input signals? If we
could construct archetypical input signals based on this
low-dimensional representation, how well would these
signals approximate optimal control? That is, would
small deviations in the input signal result in large errors
so that the system ends up far from its desired target
state? In this section, we explore these questions.

For a given control task in which input signals are de-
livered through Ninputs input sites, we obtain Ninputs

time-varying control signals. In practice, these signals
can be grouped into clusters (Fig. 5a,b). Each clus-
ter is associated with its corresponding centroid (the
mean control signal across all nodes assigned to that
cluster), and therefore a representative control signal.
Rather than deliver control signals to each node sepa-
rately, we can imagine delivering this common signal to
the nodes assigned to the corresponding cluster, modi-
fying our input matrix, B, accordingly (Fig. 5c). This
has the effect of reducing the total number of unique
inputs from the number of nodes, N , to the number of
clusters, k, while still delivering control signals to every
node. This procedure will also generate a map dictating
to which nodes the cluster centroid should be delivered
(Fig. 5d; see also Fig. S11 for “dominance” maps derived
from the input maps). However, this reduction in di-
mensionality is accompanied by increased error; because
the representative control signals will always be imper-
fect approximations of the true optimal inputs, they will
drive the brain into a configuration that is also only an
approximation of the desired target state (see Fig. S12
for an example showing how dimensionality reduction
interacts with error in target state).

In general, we found that even with relatively few
clusters – i.e. small k – we could obtain good approx-
imations of the optimal strategy, as measured by the
difference in state of the system at time T from the
target state (Fig. 5e). Notably, this strategy reduced
the total control energy by a factor of 38.1± 17.1; that
is, the independent control strategy was 3800% more

effortful than that of our approximation (Fig. 5f).
For the sake of comparison, we also asked how many

clusters–i.e. dimensions–are needed to achieve the same
error (deviation from target state) using the local versus
spatial input strategies. Specifically, we identified the
fewest number of clusters, k, at which the mean node-
level error was ≤ 1/1000. In general, we found that
the local strategy tended to require larger values of k
compared to that of the spatial model (5.1 ± 3.9 more
clusters on a per-transition basis; paired-sample t-test,
t(120) = 16.1, p < 10−15; Fig. 5g).

As noted earlier, this approximate version of opti-
mal control yields brain-wide input maps correspond-
ing to how much of each cluster centroid–a represen-
tative control signal–should be delivered to any given
node. We aggregated these maps across all 121 control
tasks, yielding 1711 maps in total (note that the num-
ber of maps varied between tasks, as different numbers
of inputs–i.e. clusters–were required to achieve compa-
rable error in their respective target states). We then
clustered these maps using the same algorithm previ-
ously used to estimate brain states (Fig. 5h). In Fig. 5i
we show maps corresponding to the centroids of the
five largest clusters, collectively accounting for 67.1%
of the total number of maps. We also show the mean
input map (Fig. 5j). The input maps occur dispro-
portionately across brain state transitions; some maps
show clear preferences for transitions involving partic-
ular brain states. For instance, maps 2, 4, and 5 tend
to appear in transitions involving brain state 3, brains
states 10 and 6, and brain state 4 (Fig. 5k, top left).
Though others show a less clear preference; the distri-
butions of maps 1 and 3 across brain states is more
homogeneous. In general, the tendency for maps to
be associated with transitions into a brain state is re-
lated to the spatial similarity of the map with that state
(Fig. 5k, bottom).

These results suggest that we can obtain low-energy
approximations of optimal control by driving multiple
regions with the same control input. Although the same
approximation algorithm can be applied to the local and
spatial input strategies, we find that the spatial strategy
requires fewer inputs and lower energies to achieve an
equivalent approximation of optimal control.

Input maps align with brain annotations

In the previous section we demonstrated that it was
possible to approximately control the brain using a
small set of inputs that were coupled, selectively, to
a large number of regions. This procedure generates a
series of brain maps that represent the coupling of in-
puts to regions. We showed that although these maps
have a link to the topography of initial/target states,
the mapping is inexact, prompting the question: What
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Figure 5. Approximating optimal control with few input signals. (a) When many regions deliver input to the brain,
their input signals tend to be correlated. (b) We can achieve an identical effect by modifying the input matrix so that a
single representative input signal gets delivered to multiple regions in the brain. (c) Here, we use a k-means clustering
algorithm to partition input signals into clusters and identify every node associated with a given cluster (as an example, we
show the cyan cluster here). (d) We then obtain a composite map of that cluster by summing the corresponding columns
of the input matrix. Then, the cluster centroid (its representative input signal) can be delivered through the composite
input map. We vary the number of clusters from k = 2 to k = 40. We measure how close we get to the target state using
the cluster centroids as input signals. (e) Error in target state as a function of the number of clusters, k. (f ) Mean energy
associated with transitions. (g) For a given transition, we can ask on average how many clusters we need before the error
falls below a specific threshold. The left and center heatmaps indicate the number of clusters needed to achieve an error
of ε = 1/1000. The right heatmap shows their difference; cool colors are transitions where the spatial model requires fewer
clusters. (h) We can combine input maps across tasks and cluster them. Here, we show the pairwise concordance matrix
ordered by clusters. (i) Top five centroids by cluster size. The values above each brain represent the fraction of all input
maps assigned to that given cluster. (j ) The maximum input weight for each region across the top five maps. (k) We
calculated the similarity of the input maps to each of the eleven brain states involved in the transitions. We found that
the input maps were “enriched” for particular brain states (greater similarity than expected) but with no clear one-to-one
mapping.

other brain annotations are the input maps linked to?
In this section, we address this question by leveraging
a large and recently published set of brain annotations
[58].

We calculated the correlation between six input maps
– the top five maps in terms of cluster size and the maxi-
mum input weight across the five maps – with 57 anno-
tations representing neurochemical receptor densities,
metabolic measures, brain structural and functional

metrics, and spatial transcriptomics (Fig. 6a) [59]. We
compared the observed correlation magnitudes with
those obtained under a space-preserving null model–
the so-called “spin test”–and identified those correlations
whose magnitude was significantly greater than chance
(accepted false discovery rate fixed at q = 0.05; adjusted
critical value of padjusted = 8.57× 10−4; Fig. 6b).

We identified multiple statistically significant associa-
tions of input maps to annotations. In Fig. 6c,d we show
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Figure 6. Comparing input maps to brain annotations. (a) We calculated the correlation between six input maps
with 57 additional maps corresponding to metabolism, neurochemical densities, brain function, brain structure, and spatial
transcriptomics. (b) We then compared each observed correlation against a null distribution generated under a “spin test”,
yielding z-scores for each correlation coefficient, which we used to identify statistically significant correlations. (c) Each input
map alongside the annotated maps with the strongest correspondence and that passed statistical testing. (d) Scatterplots
depicting the relationship between select sets of input maps and annotated maps.

a select set of the strongest associations for each input
map alongside scatterplots. Input map 1, which was
the largest in terms of cluster size, was strongly corre-
lated with the sensory-association axis [60, 61] (SAaxis;
ρ = −0.83) and brainwide myelination (ρ = 0.75).
Other maps exhibited strong associations with cogni-
tive and functional measures. For instance, input map
2 exhibited a close correspondence with the first princi-
pal component of the Neurosynth cognitive atlas [62, 63]
(cogpc1; ρ = 0.55) and the first functional gradient [64]
(fcgradient1; ρ = 0.59). Other input maps were signifi-
cantly correlated with neurochemical receptors, includ-
ing maps 3 and 5, which were correlated with vesicular

acetylcholine transport (VAChT; ρ = 0.61, ρ = 0.54, re-
spectively), while map 3 was correlated with dopamine
transport (DAT; ρ = 0.40).

Collectively, these observations complement other re-
cent studies seeking a neurobiological basis for the effort
measured using optimal control [23, 38].

DISCUSSION

Optimal control is an engineering framework that has
recently been applied in neuroscience, where it has be-
come useful to studying brain state transitions. One of
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the primary assumptions is that control signals have a
one-to-one mapping with brain regions. That is, every
control signal gets delivered to one brain region and one
region only. This assumption clashes with the reality of
neurostimulation, which affects not only a target site,
but also proximal off-target areas. Here, we present a
simple extension to account for this reality by modify-
ing the input matrix to include spatial dependencies.
In this way, input signals are injected into the network
in a spatially diffuse manner. We find that this ex-
tension takes advantage of spatial regularities in brain
activations and brain network topology, reducing the
total energy needed for brain state transitions. We also
show that, using a similar approach, we can devise an
input strategy for achieving near-optimal control but
with much smaller set of effective input signals. This
approach generates maps of those sites, which we com-
pare against a set of brain annotations, identifying sev-
eral maps that correspond closely with the input maps
and help establish a stronger neurobiological basis for
optimal control.

Spatially diffuse inputs reduce global control
energy

Here, we present evidence that, on a per-transition
basis, spatially diffuse inputs reduce control energies
needed to go from one brain state to another. This ob-
servation suggests that previous studies using the stan-
dard “local input” strategy may represent overestimates
of control energies. The reduction in energy is likely due
to spatial correlations in both brain activation maps and
the connectome itself. If two spatially proximal nodes
have similar initial/target activation patterns, similar
connectivity patterns, and require similar input signals,
the local input strategy would nonetheless need to stim-
ulate both nodes independently. In contrast, a single
spatially diffuse input signal could, in principle, be used
to deliver inputs to both nodes simultaneously. This ob-
servation is in line with studies documenting strong spa-
tial autocorrelation in meso-/macro-scale connectomes
[65, 66] and functional imaging data [67, 68].

Interestingly, we found that this effect – wherein the
control energy was reduced for spatial inputs compared
to local inputs – was restricted to a specific range of
the diffusivity parameter. For small parameter values,
corresponding to exceptionally broad spatial inputs, the
local strategy actually outperforms the spatial strategy.
This is likely due to the fact that, in this range, the
inputs effectively have no specificity in terms of which
nodes they impact and therefore has implications for
neurostimulation studies [69–72]. Namely, it predicts
that a given stimulation technique – e.g. transcranial
magnetic stimulation – may be inefficacious in driving
the brain into specific states if it cannot achieve stimu-

lation precision below a specific threshold. Here, we can
provide an estimate of that threshold based on Fig. 3e.
The “crossover” point occurs when β ≈ 0.05. At this pa-
rameter value, the exponential function decays to half
its peak by approximately 15 mm, falling off sharply for
longer distances.

Approximate control with few inputs

One of the challenges associated with optimal control
is to identify not only the lowest-energy input signals,
but also the fewest number of inputs and their locations
(control sites). Previous studies have been forced, due
to mathematical constraints, to solve for the optimal
inputs using a relatively large number of input sites [21,
22]. In fact, due to this limitation, most contemporary
applications of optimal control deliver inputs through
every brain region [23, 25, 37, 38].

Here, we show that control signals are highly com-
pressible and redundant. That is, when we consider the
shape and amplitude of the control signal, we find that
many regions receive similar patterns of inputs, suggest-
ing that the total number of independent inputs can be
reduced to a much smaller set of relevant “exemplar”
input signals (either via clustering, as we did here, or
through other dimension reduction techniques). Here,
we used cluster labels to obtain “input maps,” which
highlighted the spatial extent of each cluster and re-
vealed regions that receive similar inputs. Broadly, the
maps are distributed across cortex and vary smoothly,
reinforcing the “network” perspective of brain organiza-
tion and function. That is, that brain regions do not act
independently; rather, they function collectively as spa-
tially distributed network entities [50] and their inputs,
in the context of optimal control and brain stimulation,
should be tailored accordingly.

We also show that the input maps exhibit a broad
correspondence with other well-established brain maps.
On one hand, this is unsurprising – the input maps
are closely aligned with the activation patterns of the
eleven brain states and many studies have documented
statistical associations between maps of brain function
and other annotations [73–75]. On the other hand, our
findings complement recent work seeking to understand
the biological basis of optimal control [38], identifying
a series of markers that may play a role in dictating the
efficacy of control.

Future directions

This study presents a number of opportunities for fu-
ture studies. One such extension involves the decision
to model the spatial dependence of the input signals as
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a decaying exponential; the framework presented here
is generic and amenable to many different spatial re-
lationships. For instance, it would be straightforward
to model the effect of space as a Gaussian distribution
(centered on a given control site) or a “Mexican hat”
function that depends on spatial proximity.

The spatial input strategy opens up other unique op-
portunities for exploring network control. For instance,
one could model the effect of a control signal whose in-
put site does not overlap with the centroid of a given
parcel/node. That is, we could imagine a control sig-
nal originating at a location positioned exactly on the
border of two parcels (a scenario that the current opti-
mal control framework would disallow), but under the
spatial model we could calculate the effect of that in-
put signal on each node by weighting its effect on either
node based on their distance from the input site.

Another important extension of this work involves ex-
ploring the efficacy of spatially diffuse control for tran-
sitions other than the discrete set of empirically-derived
brain states considered here. That is, for other states –
e.g. task activations or meta-analytic maps – does the
spatial model hold an advantage over the local input
strategy? Future work should investigate this question
in greater detail.

A final extension includes the exploration of alter-
native distance metrics for defining the spatial input
matrix. Here, we used Euclidean distance between par-
cel centers of mass to determine the spatial diffusivity of
control signals. However, if we imagine that the diffusiv-
ity reflects volume conduction, then our distance metric
should take into account cortical folding patterns. Ac-
cordingly, a more appropriate distance metric would be
the geodesic distance between regions along the cortical
surface. We leave this exploration for a future study.

Limitations

This study has a number of limitations. Here, we fo-
cus on large-scale human connectome data estimated
from tractography. The procedure for reconstruct-
ing connectome data suffers from well-known biases
[56, 76, 77]. Because control energies – estimated un-
der both the “local” and “spatial” strategies – depend on
the topology of the network, any error in the estimate
of the connectome will propagate to errors in the energy
estimate.

An additional limitation concerns the exclusion of
subcortical regions of interest from this analysis. The
decision to focus on only neocortex was motivated prac-
tically. Namely, most standard subcortical parcellations
are developed in isolation and are integrated “as is”
into existing pipelines for parcellating neocortex. Of-
tentimes, this results in parcels whose volumes differ
(sometimes dramatically) from those of cortical parcels,

which can inadvertently inflate estimates of connectiv-
ity. For instance, combining small cortical parcels with
large subcortical parcels can give the impression that
subcortical regions are connected to virtually every cor-
tical ROI. While recent advances have helped remedy
this [78], it remains an open issue. Future work should
be focused on jointly parcellating and modeling corti-
cal/subcortical/cerebellar connectomes.

MATERIALS AND METHODS

Datasets

In this study we analyzed two separate MRI datasets.
We refer to the primary dataset, reported on in the main
text, as the “Lausanne dataset,” and the replication
dataset as the “Human Connectome Project dataset.”

Lausanne dataset

In this study we examined optimal control in MRI-
defined connectomes. We carried out these compar-
isons using diffusion spectrum MRI data parcellated
networks at a single organizational scale (N = 1000 cor-
tical nodes). Here, we describe those processing steps
in greater detail.

Informed written consent in accordance with insti-
tutional guidelines (protocol approved by the Ethics
Committee of Clinical Research of the Faculty of Bi-
ology and Medicine, University of Lausanne, Switzer-
land, #82/14, #382/11, #26.4.2005) was obtained for
all subjects. Data provided are fully anonymized. A
total of 70 healthy participants (age 28.8 ± 9.1 years,
27 females) were scanned in a 3-Tesla MRI scanner
(Trio, Siemens Medical, Germany) using a 32-channel
head-coil. The session protocol was comprised of (1) a
magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence sensitive to white/gray matter
contrast (1-mm in-plane resolution, 1.2-mm slice thick-
ness), (2) a DSI sequence (128 diffusion-weighted vol-
umes and a single b0 volume, maximum b-value 8,000
s/mm2, 2.2×2.2×3.0 mm voxel size), and (3) a gradient
echo EPI sequence sensitive to BOLD contrast (3.3-mm
in-plane resolution and slice thickness with a 0.3-mm
gap, TR 1,920 ms, resulting in 280 images per partic-
ipant). During the fMRI scan, participants were not
engaged in any overt task, and the scan was treated as
eyes-open resting-state fMRI (rs-fMRI).

Initial signal processing of all MPRAGE, DSI, and rs-
fMRI data was performed using the Connectome Map-
per pipeline [44]. Gray and white matter were seg-
mented from the MPRAGE volume using freesurfer [79]
and parcellated into 83 cortical and subcortical areas.
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The parcels were then further subdivided into 129 (114
cortical), 234 (219 cortical), 463 (448 cortical) and 1015
(1000 cortical) approximately equally sized parcels ac-
cording to the Lausanne anatomical atlas following the
method proposed by [80].

DSI data were reconstructed following the protocol
described by [81], allowing us to estimate multiple dif-
fusion directions per voxel. The diffusion probability
density function was reconstructed as the discrete 3D
Fourier transform of the signal modulus. The orien-
tation distribution function (ODF) was calculated as
the radial summation of the normalized 3D probability
distribution function. Thus, the ODF is defined on a
discrete sphere and captures the diffusion intensity in
every direction.

Structural connectivity matrices were estimated for
individual participants using deterministic streamline
tractography on reconstructed DSI data, initiating 32
streamline propagations per diffusion direction, per
white matter voxel [82]. Within each voxel, the starting
points were spatially random. For each starting point,
a fiber streamline was grown in two opposite directions
with a fixed step of 1 mm. Once the fiber entered a new
voxel, the fiber growth continued along the ODF maxi-
mum direction that produces the least curvature for the
fiber (i.e., was most similar to the trajectory of the fiber
to that point). Fibers were stopped if the change in di-
rection was greater than 60 degrees/mm. The process
was complete when both ends of the fiber left the white
matter mask. Structural connectivity between pairs of
regions was measured in terms of fiber density, defined
as the number of streamlines between the two regions,
normalized by the average length of the streamlines and
average surface area of the two regions [83]. The goal
of this normalization was to compensate for the bias
toward longer fibers inherent in the tractography pro-
cedure, as well as differences in region size.

Functional data were pre-processed using routines
designed to facilitate subsequent network exploration
[84, 85]. fMRI volumes were corrected for physio-
logical variables, including regression of white matter,
cerebrospinal fluid, as well as motion (three transla-
tions and three rotations, estimated by rigid body co-
registration). BOLD time series were then subjected
to a lowpass filter (temporal Gaussian filter with full
width half maximum equal to 1.92 s). The first four
time points were excluded from subsequent analysis to
allow the time series to stabilize. Motion “scrubbing”
was performed as described by [85].

Rather than analyze data from individual partici-
pants, we constructed a group-representative connec-
tome. The typical procedure for doing is to apply a
consensus threshold across edges, retaining only those
edges that appear in a fixed fraction of participants.
This fraction is generally uniform across all edges. How-
ever, this procedure generates consensus networks with

fewer long-distance connections and more short-range
connections than the typical subject. To circumvent
these issues, we used a distance-dependent consensus
algorithm for generating the group-representative net-
works [86]. All analyses were carried out using this
network.

Human Connectome Project dataset

The Human Connectome Project (HCP) dataset
[43] consists of structural magnetic resonance imag-
ing (T1w), resting state functional magnetic resonance
imaging (rsfMRI) data, and diffusion MRI (dMRI) data
from young adult subjects. The dataset spans two col-
lection sites, at Washington University in St. Louis on
a 3T MRI machine. For the present study, the MRI
data consist of a subset of 100 unrelated adults (“100
Unrelated Subjects” published by the Human Connec-
tome Project). The study was approved by the Wash-
ington University Institutional Review Board and in-
formed consent was obtained from all subjects. HCP
3T data were quality controlled based on motion sum-
mary statistics and visual inspection. After exclusion
of four high motion subjects and one subject due to
software error, the final HCP 3T subset consisted of 95
subjects the final subset utilized included 95 subjects
(56% female, mean age = 29.29 ± 3.66, age range =
22-36).

A comprehensive description of the HCP imaging
parameters and image prepocessing can be found in [87]
and in HCP’s online documentation (https://www.
humanconnectome.org/study/hcp-young-adult/
document/1200-subjects-data-release). For all
HCP subjects, T1w were collected on a 3T Siemens
Connectome Skyra scanner with a 32-channel head coil.
Subjects underwent two T1-weighted structural scans,
which were averaged for each subject (TR = 2400 ms,
TE = 2.14 ms, flip angle = 8◦, 0.7 mm isotropic voxel
resolution). For all fMRI data collected, 4 gradient-
echo planar imaging sequences were collected for each
subject: two runs were acquired with left-to-right
phase encoding direction and two runs were acquired
with right-to-left phase encoding direction.

HCP 3T fMRI was collected on a 3T Siemens Connec-
tome Skyra with a 32-channel head coil. Each resting
state run duration was 14:33 min, with eyes open and
instructions to fixate on a cross (TR = 720 ms, TE =
33.1 ms, flip angle = 52◦, 2 mm isotropic voxel resolu-
tion, multiband factor = 8).

Structural and functional HCP images were mini-
mally preprocessed according to the description pro-
vided in [87]. Briefly, T1w images were aligned to MNI
space before undergoing FreeSurfer’s (version 5.3) cor-
tical reconstruction workflow. fMRI images were cor-
rected for gradient distortion, susceptibility distortion,
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and motion, and then aligned to the corresponding T1w
with one spline interpolation step. This volume was
further corrected for intensity bias and normalized to a
mean of 10000. This volume was then projected to the
2mm 32k_fs_LR mesh, excluding outliers, and aligned
to a common space using a multi-modal surface regis-
tration [88]. The resultant cifti file for each HCP sub-
ject used in this study followed the file naming pattern:
*_Atlas_MSMAll_hp2000_clean.dtseries.nii.

All resting state fMRI images were nuisance regressed
in the same manner. Each minimally preprocessed
fMRI was linearly detrended, band-pass filtered (0.008-
0.08 Hz), confound regressed and standardized using
Nilearn’s signal.clean function, which removes con-
founds orthogonally to the temporal filters. We used the
following confound regression strategy, termed “aCom-
pCor”. Briefly, this approach included six motion esti-
mates, derivatives of these previous six regressors, and
squares of these 12 terms, in addition to five anatomi-
cal CompCor components [89]; aCompCor is a non-GSR
strategy. Following these preprocessing operations, the
mean signal was taken at each time frame for each
node, forming nodal time series. Cortical nodes were
defined by the Schaefer 400 cortical parcellation [90] in
the 32k_fs_LR surface space.

dMRI images were normalized to the mean b0 im-
age, corrected for EPI, eddy current, and gradient non-
linearity distortions, and motion, and aligned to sub-
ject anatomical space using a boundary-based registra-
tion [91]. In addition to HCP’s minimal preprocess-
ing, diffusion images were corrected for intensity non-
uniformity with N4BiasFieldCorrection [92]. FSL’s
dtifit was used to obtain scalar maps of fractional
anisotropy, mean diffusivity, and mean kurtosis. The
Dipy toolbox (version 1.1) [93] was used to fit a multi-
shell multi-tissue constrained spherical deconvolution
[94] to the diffusion data with a spherical harmonics or-
der of 8, using tissue maps estimated with FSL’s fast
[95]. Tractography was performed using Dipy’s Local
Tracking module [93]. Multiple instances of probabilis-
tic tractography were run per subject [96], varying the
step size and maximum turning angle of the algorithm.
Tractography was run at step sizes of 0.25 mm, 0.4 mm,
0.5 mm, 0.6 mm, and 0.75 mm with the maximum turn-
ing angle set to 20◦. Additionally, tractography was run
at maximum turning angles of 10◦, 16◦, 24◦, and 30◦
with the step size set to 0.5 mm. For each instance of
tractography, streamlines were randomly seeded three
times within each voxel of a white matter mask, re-
tained if longer than 10 mm and with valid endpoints,
following Dipy’s implementation of anatomically con-
strained tractography [97], and errant streamlines were
filtered based on the cluster confidence index [98].

For each tractography instance, streamline counts
were normalized by dividing the count between nodes
by the geometric average volume of the nodes. Since

tractography was run nine times per subject, edge val-
ues were collapsed across runs. To do this, the weighted
mean was taken with weights based on the proportion of
total streamlines at that edge. This amounts to calcu-
lating the expected value, where probabilities are based
on the proportion of total edge weight across tracotg-
raphy instances. This operation biases edge weights
towards larger values, which reflect tractography in-
stances better parameterized to estimate the geometry
of each connection.

As with the Lausanne dataset, we focused on a group-
representative network with distance-dependent con-
sensus binning [86].

Brain state detection

We z-scored parcel (nodal/regional) time series for
each participant and calculated at each frame the root
mean square activity. That is, if xi(t) corresponds
to the activity of region i at time t, we calculated

RMS(t) =
√

1
N

∑N
i=1 xi(t)2. We then identified peaks

in the RMS time series as any frame whose preceding
and following frame had smaller RMS, collected the
corresponding peak activation patterns across partici-
pants, and calculated the Npeaks ×Npeaks concordance
matrix [99].

The concordance between between two vectors x and
y is calculated as:

Cxy =
2 · Cov(x, y)

V ar(x) + V ar(y) + (µx − µy)2
(1)

where µx and V ar(x) are the sample mean and variance
of x, and Cov(x, y) is the covariance between x and y.
Intuitively, if the variances and means of x and y are
identical, then this expression evaluates to the correla-
tion coefficient, rxy. However, if those statistics differ,
then Cxy < rxy. That is, Cxy is a measure of statis-
tical similarity that penalizes for differences in mean
and variance. The concordance metric has been used in
previous studies for brain state detection [46].

We then use modularity maximization to identify
clusters in the concordance matrix. Briefly, modularity
maximization is a heuristic for discovering communities
(clusters) in graphs [45]. Intuitively, it defines commu-
nities as groups of nodes whose density of connectivity
to one another maximally exceeds that of a null model.
This intuition can be formalized with quality function:

Q =
∑
ij

[Lij − Pij ]δ(gi, gj) (2)

where Lij , in this case, represents the concordance be-
tween peak activation maps i and j, δ(·, ·) is the Kro-
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necker delta function, which evaluates to 1 when its
inputs are identical and 0 otherwise, and gi is the com-
munity to which activation map i is assigned.

It is up to the user how to define Pij [100], the ex-
pected concordance between maps i and j. Here, we
define Pij = mean(W) + stdv(W). That is, we set
the expected concordance to be the mean concordance
between all pairs of activation maps plus one standard
deviation.

We use the Louvain algorithm to optimize Q with
1000 random restarts. This procedure yields 1000 dis-
similar estimates of communities, which we combine to
generate a single set of consensus communities [101].
Briefly, the consensus community algorithm works by
calculating for every pair of peak activation maps the
fraction of the 1000 Louvain runs in which they were
assigned to the same community. It also calculates
the expected co-assignment probability (by randomly
permuting the detected community labels). This al-
lows us to compare the observed and expected coas-
signment probabilities, setting up a consensus modu-
larity function, which we optimize using the same Lou-
vain algorithm. Clustering the consensus matrix re-
duces variability across the detected communities, of-
tentimes yielding a single solution across the 1000 runs.
If that is the case, then the algorithm has discovered
the “consensus clusters”. If variability remains, the con-
sensus algorithm is applied again to the new estimates
of communities. These steps – generating estimates of
communities and calculating the coassignment matrix –
are repeated until the estimated clusters are all identi-
cal.

Each community is composed of activation maps
whose mean pairwise concordance exceeded the ex-
pected concordance. We calculated community cen-
troids as the midpoint across all maps assigned to a
given community. We also calculated, for each com-
munity, the fraction of the 70 participants with at least
one activation assigned to that community. We retained
those communities in which at least 50% of participants
were represented.

Here we clustered whole-brain activity patterns cor-
responding to peaks in the activity time series. Alter-
natively, one could cluster activity patterns at every
frame. However, there are at least two reasons why this
may be sub-optimal. First, it would result in orders of
magnitude more patterns, drastically lengthening the
runtime of the clustering algorithm and limiting its util-
ity for larger datasets. Second, clustering the complete
set of activity patterns would likely not result in the de-
tection of novel brain states; the strong autocorrelation
observed in the fMRI BOLD data ensures that tempo-
rally proximal frames are highly similar [102]. Thus, the
peak sampling approach can be viewed as a means of
downsampling the fMRI data and reducing biases that
arise from clustering highly autocorrelated samples.

Optimal control

We consider the linear dynamical system:

ẋ = Ax(t) +Bu(t). (3)

Here, x(t) = [x1(t), . . . , xN (t)] is the brain state at time
t; A ∈ RN×N is the weighted (and in this case) sym-
metric connectivity matrix whose element Aij denotes
the presence/absence of the connection between nodes
i and j; u(t) is the set of control inputs, with one input
per control point; B is the input matrix, which maps
control inputs to network nodes.

Note that here we normalize the connectome so that
A = A

λ(A)max
− I, where λ(A)max is the largest eigen-

value of A and I is the identity matrix. This normaliza-
tion step ensures that all of A eigenvalues are negative,
prohibiting explosive growth.

Taken together, this equation implies that, in the ab-
sence of any input signals the system evolves passively
according to ẋ = Ax(t). However, if the control set is
not empty then the evolution of nodes’ states will de-
pend on the control signal u and where it gets injected
into the system, which is specified by the coupling ma-
trix, B.

Optimal control is an engineering framework that
seeks to drive a networked dynamical system from an
initial brain state, x0 = x(t = 0) into a desired target
state, xT = x(t = T ), where the time t = T is referred
to as the “control horizon.”

The optimal control framework seeks to minimize the
quantity:

min
uκ

∫ T

t=0

(xT−x(t))⊺(xT−x(t))+ρ(uκ(t)
⊺uκ(t))dt. (4)

We can think of this minimization problem as be-
ing composed of two terms. The first term, (xT −
x(t))⊺(xT − x(t)), corresponds to the distance of the
brain’s state at time t from its target state. The sec-
ond term, uκ(t)

⊺uκ(t), corresponds to amplitude of the
control signals. The parameters T and ρ refer to the
control horizon and the balance between the two terms
to be minimized, respectively. Here, we follow previous
studies [21, 22] and set T = 1 and ρ = 100. The vari-
able κ denotes the set of input sites. Here, we consider
the case where all brain regions receive control signals,
i.e. κ = {1, . . . , N}.

To identify the optimal inputs, uK, we define the
Hamiltonian:

H(p,x,u, t) = (xT−x)T (xT−x)+ρuT
KuK+p(Ax+BKu).

(5)
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From the Pontryagin minimization principle, if u∗
K is

an optimal solution to the minimization problem with
corresponding trajectory, x∗, then there exists p∗ such
that:

∂H

∂x
= −2(xT − x∗) +ATp∗ = ṗ∗ (6)

∂H

∂uK
= 2ρu∗

K +BT
Kp

∗ = 0. (7)

This set of equations reduces to:

[
ẋ∗

ṗ∗

]
=

[
A −(2ρ)−1BBT

−2I −AT

] [
x∗

p∗

]
+

[
0
I

]
2xT (8)

.
If we denote:

Ã =

[
A −(2ρ)−1BBT

−2I −AT

]
(9)

x̃ =

[
x∗
p∗

]
(10)

b̃ =

[
0
I

]
2xT (11)

we can then write the reduced equation as:

˙̃x = Ãx̃+ b̃ (12)

which we can solve as:

x̃(t) = eÃtx̃(0) +

∫ t

0

[eA(t−τ)b̃]dτ (13)

or, alternatively

x̃(t) = eÃtx̃(0) +A−1(eAt − I)b̃. (14)

Then, substituting t = T , we arrive at:

x̃(T ) = eÃT x̃(0) +A−1(eAT − I)b̃. (15)

Let

c = A−1(eAT − I)b̃. (16)

We can then write:

[
x∗(T )
p∗(T )

]
=

[
E11 E12

E21 E22

] [
x∗(0)
p∗(0)

]
+

[
c1
c2

]
(17)

Rewriting this, we get:

x∗(T ) = E11x
∗(0) +E12p

∗(0) + c1 (18)

which can be rearranged to write:

p∗(0) = E−1
12 [x

∗(T )−E11x
∗(0)− c1] (19)

Given p∗(0) and x0, we can then integrate x̃ forward,
thereby obtaining xT from which we subsequently ob-
tain the optimal inputs, u∗

K.
Note, in this derivation of the optimal inputs, we need

only specify the free parameter ρ and the boundary con-
ditions, namely xT and x0. Collectively, these variables
determine the value of p∗(0). It is also worth noting
that while some of the variables have clear physical in-
terpretations (e.g. (xT − x)T (xT − x) is the distance
from the target state and uT

KuK is related to the total
energy) other variables do not. The additional variables
that appear in this section are a consequence of the op-
timization technique that we used and come from the
technique of Lagrange multipliers [103].

A spatially diffuse input matrix

In its “classical” form, the input matrix, B, is com-
posed of indicator column vectors. The elements of the
ith vector are all equal to zero except that of row i,
whose value is set equal to 1; this ensures that the cor-
responding input signal is delivered only to node i and
nowhere else. If all nodes are treated as control points,
then B = I, where I ∈ RN×N is the identity matrix.
We denote the “local” input matrix as Blocal.

Although convenient, strictly local inputs are not
compatible with existing methodologies for perturbing
large-scale brain systems nor do they agree with dom-
inant theories of brain function. Specifically, injecting
an input signal into a region i such that the effect of
the perturbation is circumscribed to that region of in-
terest, alone, is not plausible. Rather, stimulation to
region i is “felt” by regions spatially proximal to that of
i. Additionally, it is well established that brain regions
(nodes) behave in concert with one another as part of
distributed brain-wide networks. This suggests that the
“local” input strategy, which assumes independence of
the input signals, is not plausible.

Instead, we can incorporate some realism by model-
ing the effect of space on input signals. Specifically, we
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model this effect as a negative exponential [68, 104].
That is, region j receives the following contribution
from the input signal centered on i:

e−β×Dij · ui. (20)

Here, Dij is the Euclidean distance between the centers
of mass for regions i and j. The parameter β determines
the rate at which the spatial effect diminishes. As β →
∞, the value e−β×Dij → 0.

More generally, we can think of the above expression
as defining the elements of a spatially-diffuse input ma-
trix: Bspatial

κ = e−βD.

Approximations of optimal control

In the main text we described an algorithm for ap-
proximating optimal control using a much smaller set
of input signals. The algorithm for doing so proceeds
as follows. First, using every node as an input site,
we obtain the optimal input signals. We then use the
k-means clustering algorithm (varying the number of
clusters from k = 2 to k = 40; Euclidean distance) to
partition input signals based on their temporal similar-
ity. We then estimate the mean input signal for each
cluster, c:

uc =
1

Nc

∑
i∈c

ui. (21)

Next, we calculate a composite input matrix using a
similar strategy:

Bc =
∑
i∈c

B(:, i ∈ c). (22)

Here, B(:, i ∈ c) refers to the ith column of the input
matrix.

Given the low-dimensional input matrix, Bc, and con-
trol signals, uc, and subject to the boundary constraint
such that x(t = 0) = x0, we can integrate this system to
obtain an estimate of the target brain state x′(t = T ).
In general, because the input signals are inexact (due to
the clustering procedure), x′(t = T ) ̸= xT . We can then
calculate the discrepancy between the approximation of
the target state with the true target state as:

error =
√

(x′(t = T )− xT )2 (23)

Brain annotations

A curated set of brain maps were fetched
from the neuromaps toolbox [59] and parcel-
lated into 1000 equally-sized parcels using the
same atlas used to parcellate the connectivity
data [80]. More information on each individual
brain map is available in the toolbox’s repository
(https://github.com/netneurolab/neuromaps). Briefly,
the annotations included 27 neurotransmitter re-
ceptor and transporter PET tracer density maps
[105] from nine different neurotransmitter systems
including serotonin [106, 107], dopamine [108–112],
norepinephrine [113, 114], histamine [115], acetyl-
choline [105, 116–119], cannabinoid [120, 121], opioids
[122–124], glutamate [125, 126] and GABA [127]. Re-
ceptor/transporter with more than one mean density
map were combined to obtain a total of 19 density
maps for individual neurotransmitter receptors and
transporters. Listed in italics are the labels used in the
text for each: 5HT1a, 5HT1b, 5TH2a, 5HT4, 5HT6,
5HTT, a4b2,CB1,D1,D2,DAT,GABAa, H3, KOR,
M1, mGluR5, MOR, NAT, VAChT. The annotations
also included 10 maps of diffusion map embedding
gradients of group-averaged functional connectiv-
ity (fcgradient01 to fcgradient10 ) [64], 5 maps of
metabolic measures including cerebral blood flow (cbf
and cbfmean) and volume (cbv), oxygen metabolism
(cmro2 ), and glucose metabolism (cmrglu) [128, 129],
6 maps of MEG frequency power distribution (megal-
pha, megbeta, megdelta, meggamma1, meggamma2,
megtheta) and a map of MEG-derived intrinsic time
scale (megtimescale) [43, 130]. Also included are 2
maps of morphometric MRI measures: T1w/T2w ratio
acting as a proxy for myelin (myelinmap) and cortical
thickness (thickness) [131], a map of cross-species
functional homology (Fchomology) [132], a map of
evolutionary cortical expansion (evoexp) [132], the
sensory-association mean rank axis (SAaxis) [60],
the principal component of neurosynth terms in the
cognitive atlas (cogPC1 ) [62, 63], the principal compo-
nent of gene expression (genePC1 ) [133, 134], a map
of intersubject variability of resting-state functional
connectivity (intersubjvar) [135], a map of synapse
density (SV2A) [136] and 3 maps of cortical areal
scaling during development [137], which were averaged
and combined into a single annotation (scaling).
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Figure S1. Independent replication of main finding. In the main text we showed that spatially diffuse inputs reduce
the control energy needed to transition between a set of 11 empirically defined brain states compared to the traditional
“local” input strategy. Here, we replicate this finding using a larger and independently acquired and processed dataset.
Specifically, we used resting-state and diffusion MRI data from the Human Connectome Project. In general, we followed
an analysis pipeline identical to the one described in the main text. We used peak sampling to obtain 6241 peaks in the
resting-state activity (REST1_LR) from 95 unrelated participants with complete datasets that also met minimum data quality
standards. (a) After clustering the peak activity patterns, we identified 12 brain states that appeared in at least 50% of
the participants. We show the topography of those states here. Panels b and c show control energies for all pairs of brain
state transitions. (d) Scatter plot of energies. For all 144 transitions, the spatial input strategy yielded lower energies than
the local strategy.
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Figure S2. Alternative state definitions. In the main text we showed that spatially diffuse inputs reduce the control
energy needed to transition between a set of 11 empirically defined brain states compared to the traditional “local” input
strategy. The brain states we defined by sampling and clustering whole-brain activation patterns from peaks in the global
signal. However, some of these peaks may reflect “noise” – i.e. though technically peaks, the peak may not be prominent.
Here, we explore the effect of alternative brain state definitions in which we retain only the most prominent peaks by
adjusting the ‘prominence” parameter (the drop on both sides of the peak) from 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, and 1.
(a) Cluster centroids at each prominence value. Note that, as in the main text, we retain only those clusters in which
at least 50% of the participants were represented. Cluster centroids have been aligned visually so that columns reflect,
approximately, the same clusters across parameter values. Treating the clusters as estimates of “brain states”, we calculated
all pairwise transitions under both the spatial and local input strategies. (b) Scatter plot comparing energies under spatial
and local models. As in the main text, on a per-transition basis, the spatial energy was consistently lower than the local
energy. Panels c and d show energy values for the spatial input strategy (panel c) and local strategy (panel d).
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Figure S3. Alternative parcel definitions. The “Lausanne” parcellation is multiscale. The five scales contain 68, 114,
219, 448, and 1000 cortical parcels. We repeated our main analysis using connectomes and brain states defined at these
other scales. In general, we found that our results replicated. Here, the x and y axes correspond to the energy for each
transition under the spatial and local input strategies, respectively. In the title of each plot, “frac” refers to the fraction of
transitions in which the spatial model yielded a smaller energy compared to the local model. That is, a value of 1.00 means
that all 121 transitions resulted in lower energy under the spatial model.

Figure S4. Effect of varying ρ. In the optimal control framework, the parameter ρ controls the balance of the two terms
in the optimization: larger values of ρ upweight the importance of the control energy relative to the distance from the
reference state. Here, we show that, across wide ranges of ρ (spanning roughly six decades, from ρ = 10−1 to at least
ρ = 104), the spatial input strategy results in reduced control energy compared to the local input strategy. At extremely
small values of ρ, we find numerical instabilities, resulting in energies on the order of 10100, and inaccurate estimates of the
optimal control signal, making comparisons between the two input strategies difficult.
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Figure S5. Brain state trajectories under spatial versus local control strategies. (a) Heatmaps showing nodes’
states across an example control task (a transition from state 4 into state 7). Trajectories were estimated using a diffusivity
parameter of β = 0.15. The top plot shows node state changes under the spatial input strategy, the middle shows local,
and the bottom plot local minus spatial. In the main text, we showed that state trajectories were less direct under the
spatial input strategy. That is, the trajectory was allowed to move further from the target state than compared to the local
input strategy. To visualize this, we projected brain states onto two random N × 1 vectors whose elements were sampled
from a normal distribution with zero mean and unit variance. In panel b, we show low-dimensional representations of the
transitions between all pairs of states under the spatial input strategy. Note that the trajectories tend to be curved. In
panel c we show an analogous plot for transition under the local strategy. Note that, in this case, the trajectories tend to
be straight lines. This effect is evident when we plot the distance from target for each transition as a function of time.
Panels d and e show distances for all 121 transitions (spatial and local control strategies, respectively), while panel f shows
the differences in distances. Positive/negative values indicate that the trajectory under the spatial/local input strategy was
“loopier.”
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Figure S6. Supplementary analyses. (a) Similarity of control energy vectors as a function of the diffusivity parameter,
β. Each curve corresponds to one of the possible 121 state transitions. (b) In the main text we show that the spatial input
strategy leads to a reduction in the control energy. We hypothesized that this is because it, effectively, takes advantage of
spatial correlations in structural connectivity and brain activations (states). That is, because nearby nodes tend to have
similar state values and similar connectivity patterns, weaker but spatially diffuse inputs can have the same effect as the
strong but spatially localized inputs. To test this, we simply randomly permuted the rows/columns of the input matrix,
thereby destroying any spatial relationships but otherwise preserving exactly its total weight and global structure. We
found that when we destroy spatial relationships the control energy increases dramatically. The gold curve is identical to
the curve shown in Fig. 3f. The dark blue curve is the energy after destroying spatial structure. (c) Regional energies under
the spatial input strategy, after calculating the effective energy under the spatial model, and under the local model. We
find significant differences between all three distributions.

Figure S7. Control energies under null model. The spatial model effectively adds extra nonzero elements to the input
matrix. To ensure that the reduction in control energy under the spatial model is not driven exclusively by the added
weight, we compared the control energy for all 121 transitions against the energies obtained under the following null model.
For column i, we calculate wi =

∑
j ̸=i B

spatial
ij . The value of wi varies from node to node and corresponds to the additional

weight added to column i under the spatial model. Next, we initialize a null input matrix as the identity matrix, i.e. Bii = 1
for all i. We then set all off-diagonal elements, Bij with i ̸= j, equal to wi

n−1
. That is, we uniformly distribute the added

weight across all non-identity elements within each column. This resulting input matrix has total weight equal to that of
the spatial model, its column sums are identical to that of the spatial model, and it preserves the identity line (a feature
that both the spatial and local models both exhibit). Next, using this matrix, we calculated the control energy associated
with each of the 121 transitions, comparing it to the corresponding energy under the spatial model. We found that the
energy under the uniform model was greater than that of the spatial model for every transition. This observation suggests
that the observed reduction in energy under the spatial model is not driven solely by the weight added to the input matrix.
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Figure S8. Correlated input signals. In the main text we described a procedure in which we calculated the correlation
between regional input signals under the spatial and local input strategies. Here, we elaborate on that procedure. (a)
Schematic showing input signals being delivered to the same node under different input strategies. Each element in
the heatmap shown in b corresponds to a correlation coefficient. Rows correspond to nodes and columns correspond to
transitions. The columns are ordered by target state. In panel c we show, in anatomical space, the mean correlation
projected into anatomical space. In panel d we show mean correlation at the level of brain systems. The correlation in the
control network was the only system whose mean correlation exceeded chance (spin tests).

Figure S9. Regions that drive differences between spatial and local input strategies. In the main text we showed
that the spatial input strategy reduced control energies compared to the local input strategy. Here, we show that these
global reductions are driven by regions whose activity in the target state is extreme (highly active, positively or negatively).
The left-most plot (red) depicts regional energies for all control tasks as a function of their activity. The next two plots
are analogous to the first; they show (in blue and yellow) regional energies under the local strategy and their effective
energy under the spatial strategy. The next panel shows the difference in energy – local minus spatial. It shows that the
biggest differences are at the extremes; regions with high activity require proportionally less input under the spatial strategy
than under the local strategy. Regions with low levels of activity are comparable between the two input strategies. The
right-most panel is analogous to the previous, but shows the difference between local and effective energies. Note that,
again, the energy of regions with extreme levels of activity correspond to the biggest gap. However, regions with relatively
low levels of activity now receive slightly more energetic inputs compared to the local control strategy.
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Figure S10. Regions whose energy increased under the spatial input strategy. In the main text we noted that a
small subset of brain regions exhibited consistent increases in energy under the spatial input strategy compared to the local.
(a) Spatial distribution of increases. (b) Correlation of the brain map from a with the annotations. Red outlines indicate
statistically significant correlations. We show the annotation maps associated with the strongest statistically significant
correlations in panel c.
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Figure S11. Dominance of input maps. In the main text we derived a series of brainwide input maps. Each map is
associated with a specific input (control) signal; its elements correspond to how much of that signal should be delivered to
each node. In the main text we focused on the top five maps, each of which appeared across many different control tasks.
We also calculated for every node i its maximum input weight – that is, Ii = max{m1

i ,m
2
i ,m

3
i ,m

4
i ,m

5
i }. Here we show a

series of “dominance maps”. That is, the index corresponding to the maximum input weight. We show four versions of the
dominance maps, each of which we threshold so that the lowest quartile of maximum input weights are “greyed out”. (a)
Dominance map using the raw (untransformed) input maps. (b) Dominance map after rescaling each map to the interval
[0, 1] by subtracting the smallest input weight and dividing by the maximum value. (c) Dominance map after z-scoring the
input maps. (d) Dominance map after rank-transforming each input map.
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Figure S12. Example of approximation algorithm. On the left we show an example target state (state 1). The top
row shows example approximations of the target state using k inputs instead of the N inputs usually required. The bottom
row shows the error (approximation minus true state) for each k at a regional level.
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