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Abstract 23 

Gene fusions are found as cancer drivers in diverse adult and pediatric cancers. Accurate 24 

detection of fusion transcripts is essential in cancer clinical diagnostics, prognostics, and for 25 

guiding therapeutic development. Most currently available methods for fusion transcript 26 

detection are compatible with Illumina RNA-seq involving highly accurate short read sequences. 27 

Recent advances in long read isoform sequencing enable the detection of fusion transcripts at 28 

unprecedented resolution in bulk and single cell samples. Here we developed a new 29 

computational tool CTAT-LR-fusion to detect fusion transcripts from long read RNA-seq with or 30 

without companion short reads, with applications to bulk or single cell transcriptomes. We 31 

demonstrate that CTAT-LR-fusion exceeds fusion detection accuracy of alternative methods as 32 

benchmarked with simulated and real long read RNA-seq. Using short and long read RNA-seq, 33 

we further apply CTAT-LR-fusion to bulk transcriptomes of nine tumor cell lines, and to tumor 34 

single cells derived from a melanoma sample and three metastatic high grade serous ovarian 35 

carcinoma samples. In both bulk and in single cell RNA-seq, long isoform reads yielded higher 36 

sensitivity for fusion detection than short reads with notable exceptions. By combining short and 37 

long reads in CTAT-LR-fusion, we are able to further maximize detection of fusion splicing 38 

isoforms and fusion-expressing tumor cells. CTAT-LR-fusion is available at 39 

https://github.com/TrinityCTAT/CTAT-LR-fusion/wiki. 40 

Introduction 41 

Genomic rearrangements involving chromosomal translocations or deletions can yield fusion 42 

genes, in some cases activating oncogenes or disabling tumor suppressors and contributing to 43 

cancer. While most cancer relevant fusion genes are found at low levels of recurrence in 44 

surveys of diverse tumor types, certain fusions represent hallmark drivers of cancer found at 45 
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high levels of recurrence, such as BCR::ABL1 in chronic myelogenous leukemia (CML) 46 

(Kurzrock et al. 1988), SS18::SSX (Ren et al. 2013) in synovial sarcoma, and TMPRSS2::ERG 47 

(Wang et al. 2017) in prostate cancer. Several gene fusions serve as diagnostic markers for 48 

certain pediatric cancers, including EWSR1::FLI1 for Ewing’s sarcoma (May et al. 1993), 49 

ETV6::RUNX1 in acute lymphoblastic leukemia (Sundaresh and Williams 2017), and 50 

PVT1::MYC in medulloblastoma (Northcott et al. 2012), PAX3::FOXO1 in rhabdomyosarcoma 51 

(Linardic 2008). The molecular mechanisms by which gene fusions contribute to cancer can 52 

widely vary from positioning the 3’ fused gene under the promoter and gene expression 53 

regulatory elements of the 5’ gene, or encoding fusion proteins with altered molecular functions, 54 

all leading to alterations in the cellular circuitry that ultimately drive uncontrolled cellular 55 

proliferation. 56 

 57 

Identification of the gene fusions has been an essential part of charting the landscape of cancer 58 

genomic variations, deriving biomarkers for molecular diagnostics of cancer patients, and 59 

targeting therapies such as tyrosine kinase inhibitors for the treatment of kinase gene fusions 60 

such as BCR::ABL1 in CML patients (Cuellar et al. 2018) and EML4::ALK (Christopoulos et al. 61 

2018) in lung cancer.  Transcribed and translated gene fusions are of particular interest towards 62 

discovering neoantigens in targeted immunotherapies (Yang et al. 2019), yielding additional 63 

opportunities for targeting immunotherapies towards cancers with low mutational burdens.  64 

During the past decade, RNA-seq has been the preferred assay for comprehensive gene fusion 65 

detection due to its lower cost than whole genome sequencing (WGS) and directly measuring 66 

the transcripts arising from the gene fusions. Illumina short-read RNA-seq has become routine 67 

for such studies, and numerous computational methods have been developed to predict fusions 68 

from Illumina RNA-seq (Kim and Salzberg 2011; Li et al. 2011; McPherson et al. 2011; Benelli 69 

et al. 2012; Jia et al. 2013; Wang et al. 2013; Davidson et al. 2015; Latysheva and Babu 2016; 70 
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Okonechnikov et al. 2016; Rodriguez-Martin et al. 2017; Akers et al. 2018; Haas et al. 2019; 71 

Uhrig et al. 2021). Primarily through studies of lllumina RNA-seq, large catalogs of fusions have 72 

been cataloged across large collections of tumor and normal tissues (Klijn et al. 2015; 73 

Yoshihara et al. 2015; Babiceanu et al. 2016; Hu et al. 2018; Dehghannasiri et al. 2019; Haas et 74 

al. 2023). Fusion transcripts relevant to cancer tend to involve genome rearrangements, 75 

whereas fusion transcripts identified in normal tissues tend to derive from cis- or trans-splicing 76 

or otherwise derive from natural population structural variants yielding population-specific cis-77 

spliced fusion transcripts (Nigro et al. 1991; Li et al. 2008; Li et al. 2009; Chase et al. 2010; 78 

Boettger et al. 2012; Qin et al. 2015). 79 

 80 

While short RNA-seq reads have been highly useful for identifying fusion gene candidates and 81 

resolving fusion transcript isoform breakpoints, the reads are not long enough to resolve the 82 

complete isoforms that are expressed, and additional transcript reconstruction methods are 83 

needed to infer potential full-length fusion transcripts. Short read RNA-seq methods that involve 84 

targeted sequencing of the 3’ or 5’ terminus of RNA molecules, which are currently standard in 85 

high throughput single cell sequencing assays, pose further limitations for fusion detection as 86 

short reads are less likely to cover the breakpoint of the fusion transcript. 87 

 88 

Long read isoform sequencing is made possible by PacBio and Oxford Nanopore Technologies 89 

(ONT), enabling full-length isoform sequences via their cDNA, or in the case of ONT, the option 90 

of direct RNA sequencing. Early applications of these technologies have been constrained due 91 

to low throughput and high error rates. Recent advances in both long-read platforms have 92 

enabled high throughput long read transcriptome sequencing at high sequencing accuracy (on 93 

par or exceeding that of conventional short read sequencing) (Wenger et al. 2019; Marx 2023). 94 

Applications of long isoform reads have enabled deeper insights into transcriptome isoform 95 
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diversity in whole tissues (Glinos et al. 2022; Reese et al. 2023), and most recently for single 96 

cells (Al'Khafaji et al. 2023).  Applications of long read RNA-seq is gaining traction in the cancer 97 

research community, particularly involving fusion isoform detection, with several computational 98 

methods now available that are specifically tailored towards characteristics of long reads (Liu et 99 

al. 2020; Davidson et al. 2022; Chen et al. 2023). However, as long read isoform sequencing 100 

technology has been rapidly advancing and most computational tools for fusion detection have 101 

only recently been developed, there has been limited work thus far towards benchmarking their 102 

capabilities or applying them in new areas such as fusion detection in single cells. 103 

 104 

To further advance fusion transcript detection using long read isoform sequencing, we 105 

developed a new method as part of the Trinity Cancer Transcriptome Analysis Toolkit (CTAT) 106 

called CTAT-LR-fusion. CTAT-LR-fusion is specifically developed for long read RNA-seq with or 107 

without short read RNA-seq as a modularized software that contains chimeric read extraction, 108 

fusion transcripts identification, expression quantification, gene fusion annotation and interactive 109 

visualization. To benchmark existing tools, we collected or generated comprehensive simulation 110 

datasets to reflect varied sequencing technologies and sequencing error rates. We also 111 

designed new experiments to profile a normal cell line transcriptome with spiked-in known 112 

oncogenic fusion transcripts and nine cancer cell lines using the same long read sequencing 113 

protocol MAS-ISO-seq (Al'Khafaji et al. 2023). In both simulation and real datasets, we 114 

systematically benchmarked CTAT-LR-fusion accuracy in comparison to available long read 115 

fusion tools, demonstrating top performance in each setting. We finally applied CTAT-LR-fusion 116 

to long isoform read sequences derived from tumor single cell transcriptomes including 117 

melanoma and high grade serous ovarian carcinoma (HGSOC) metastases, in each case 118 

discovering fusion transcripts that distinguished tumor and normal cell states. In all experiments 119 

with real data, we used available sample-matched Illumina short reads or generated companion 120 
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Illumina RNA-seq for comparison to long isoform reads and to augment findings based on long 121 

reads. CTAT-LR-fusion is freely available as an open-source software at 122 

https://github.com/TrinityCTAT/CTAT-LR-fusion/wiki . 123 

Results 124 

CTAT-LR-fusion pipeline 125 

Fusion transcript detection from long reads by CTAT-LR-fusion involves two phases (Figure 126 

1a). In the first phase, candidate chimeric long reads are rapidly identified using a customized 127 

version of the minimap2 aligner (Li 2018) that only reports alignments for reads with preliminary 128 

mappings to multiple genomic loci. Candidate chimeric reads and corresponding fusion gene 129 

pairs are identified based on these preliminary alignments. In the second phase, candidate 130 

fusion gene pairs are modeled as collinear gene contigs by FusionInspector (Haas et al. 2023) 131 

(included with CTAT-LR-fusion), and the candidate chimeric reads are realigned to the fusion 132 

contigs using minimap2 full alignment. Fusion genes are identified based on high quality read 133 

alignments and fusion transcript breakpoints quantified based on the number of supporting long 134 

isoform fusion reads (see Methods for details). If sample-matched Illumina RNA-seq is 135 

available, FusionInspector is further executed to capture short read alignment evidence for 136 

these fusion candidates, and the FusionInspector results are integrated with the long read 137 

results into the final CTAT-LR-Fusion report. Long reads (and with short reads where 138 

applicable) alignment evidence for fusion transcripts is made available for further navigation via 139 

the included interactive web-based IGV-report (Figure 1b) or separately via desktop IGV 140 

(Robinson et al. 2011). 141 

 142 
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 143 

 144 

Figure 1: CTAT-LR-fusion algorithm and output. (a) CTAT-LR-fusion workflow. (b) IGV-reports visualization 145 

providing interactive analysis of long isoform read alignment evidence for predicted fusion transcripts, including 146 

alignments for matched Illumina short reads where available. 147 

7 
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 148 

Fusion Transcript Detection Accuracy Using Simulated Long 149 

Reads 150 

Earlier benchmarking of fusion transcript detection by JAFFAL (Davidson et al. 2022) entailed 151 

the use of BadRead (Wick 2019) to simulate long reads for fusion transcripts based on PacBio 152 

and ONT error models and spanning a wide range of sequence divergence from 25% error 153 

(75% alignment identity) to 5% error (95% alignment identity). We leveraged these available test 154 

data to examine CTAT-LR-fusion accuracy in comparison to available alternatives, including 155 

JAFFAL (Davidson et al. 2022), LongGF (Liu et al. 2020), FusionSeeker (Chen et al. 2023), and 156 

pbfusion (Roger Volden 2023). 157 

 158 

For each long read fusion transcript detection method, we computed precision, recall, and 159 

corresponding F1 accuracy score according to minimum read support, and captured the 160 

maximum accuracy for each test data set representative of sequencing technology (PacBio or 161 

ONT) and error rate (75% to 95% sequence identity) (Figure 2a,b). Surprisingly, only CTAT-LR-162 

fusion, JAFFAL, and pbfusion (since version 0.4.0) properly report fusion gene pairs in the order 163 

in which they are fused together from 5’ to 3’ in the corresponding fusion transcript, and so only 164 

CTAT-LR-fusion, JAFFAL, and pbfusion exhibit high accuracy when benchmarking fusion 165 

detection in a ‘strict’ manner requiring ordered gene pairs. Relaxing this requirement and 166 

scoring fusion detection based solely on unordered gene pairings, all methods demonstrate 167 

moderate to high fusion detection accuracy at the lowest sequence divergence (95% identity) 168 

for both PacBio and ONT simulated reads. Unsurprisingly, fusion detection accuracy improves 169 

with read sequence quality for all methods. In comparison to the other methods, pbfusion was 170 

most sensitive to error rates and least capable of fusion detection with the highest error rates 171 
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and largely incompatible with the divergent ONT simulated reads. Overall, CTAT-LR-fusion and 172 

JAFFAL were found to be top-performing with these simulated test data when considering 173 

fusion gene order and orientation, with CTAT-LR-fusion providing top-performance across most 174 

combinations of error rates and sequencing technology. 175 

 176 

While the above test data were useful to differentiate accuracy characteristics across methods, 177 

the sequence error rates do not reflect those of the currently available long read sequencing 178 

technologies, which have rapidly improved to now routinely yield long read sequences at 1% 179 

(Q20) to 0.1% error (Q30) or better (Marx 2023). To that end, we used PBSIM3 (Ono et al. 180 

2022) to simulate PacBio HiFi and ONT R10.4.1 long reads and further investigated fusion 181 

transcript detection accuracy across methods. With these newly simulated reads, all methods 182 

demonstrated high fusion transcript detection accuracy when considering only the unordered 183 

pairs of genes. To further explore differences in accuracy characteristics of these methods, we 184 

evaluated their fusion transcript breakpoint detection accuracy (Figure 2a,c). In particular, we 185 

compared the known simulated fusion breakpoints to the chromosomal location of the estimated 186 

fusion transcript breakpoint at each gene for each method. Interestingly, similar to the fusion 187 

gene ordering, only CTAT-LR-fusion and JAFFAL demonstrated highly accurate fusion 188 

transcript breakpoint detection (ignoring gene ordering during breakpoint evaluation). While 189 

FusionSeeker, LongGF, and pbfusion demonstrated little capacity for detecting exact 190 

breakpoints, the vast majority of breakpoints they reported were within a short distance (+/- 5 191 

bases) from the ground truth breakpoints (Figure 2c). 192 

 193 
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194 

 195 

Figure 2. Accuracy for fusion transcript detection using simulated long reads. (a) Scheme for criteria in 196 

benchmarking fusion detection. (b) Accuracy reported as maximum F1 score determined using simulated PacBio and 197 

ONT long reads with moderate to high error rates (test data derived from [Jaffal paper ref]. (c) Accuracy using pbsim3 198 

simulated PacBio HiFi or ONT R10.4.1 isoform reads at 50x coverage additionally focused on breakpoint resolution, 199 

with mean of maximum F1 values across 5 samples of 500 different target fusions each. 200 

 201 

10 
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Long Read Fusion Isoform Detection with a Reference Fusion 202 

Control RNA Sample 203 

To evaluate CTAT-LR-fusion with real transcriptome sequencing data, we leveraged a 204 

commercial reference RNA sample from SeraCare (Seraseq Fusion RNA Mix v4) containing a 205 

set of 16 clinically-relevant fusion transcripts mixed at a fixed concentration into a background of 206 

total RNA derived from a commonly used human cell line (GM24385). This reference RNA 207 

sample was sequenced for long reads using our newly developed MAS-ISO-seq method 208 

(Al'Khafaji et al. 2023) commercialized by PacBio as Kinnex for augmented sequencing 209 

throughput. Sequencing was performed in triplicate, with replicate-1 using MAS-ISO-seq in a 210 

monomeric format (similar to standard PacBio Iso-Seq) and replicates-2 and -3 using the 211 

standard MAS-ISO-seq 8-mer concatamer format (as in Kinnex).  The higher sequencing depth 212 

(Supplementary Table 1) of the standard MAS-ISO-seq data sets yielded more long fusion 213 

reads than the monomer-based (Iso-Seq -like) library construction, but after normalization for 214 

sequencing depth, rate of recovery of fusion reads was roughly equivalent, consistent with the 215 

sequencing libraries being derived from the single sample (Supp. Figure 1a,b). For comparison 216 

of fusion detection with PacBio long isoform reads vs. Illumina short read RNA-seq, we further 217 

sequenced this SeraCare fusion reference standard using Illumina TruSeq as triplicate libraries 218 

with paired-end 151 base length reads. Both MAS-ISO-seq and TruSeq generated 219 

approximately 5M to 10M reads (or paired-end sequences for TruSeq) per replicate 220 

(Supplementary Table 1). 221 

 222 

Before comparing fusion detection between long and short reads with the Seraseq fusion 223 

sequencing data, we first downsampled the PacBio MAS-ISO-seq reads to match total 224 

sequenced bases from the Illumina sequenced sample replicates, respectively. All 16 control 225 
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fusions were detected by CTAT-LR-fusion across three downsampled replicates with a range of 226 

2 to 52 long PacBio isoform reads per sample (Figure 3a). Although matched Illumina TruSeq 227 

RNA-seq was performed for each of three replicates and overall gene expression was 228 

significantly positively correlated between long and short read sequencing (Supp. Figure 1c), 229 

relatively few control fusion supporting reads were detected and not all fusions were detected 230 

across three replicates based on the Illumina short reads; all fusions were detected in at least 231 

one TruSeq replicate across all samples but were missing in at least one replicate for 9/16 232 

control fusions based on FusionInspector (Figure 3a). 233 

 234 

235 

Figure 3: Fusion transcript detection applied to SeraCare v4 Fusion Reference Control sample. (a) Quantities 236 

of PacBio long reads and TruSeq Illumina short reads identified as evidence for each of the 16 control fusions as 237 

ascertained by CTAT-LR-fusion and FusionInspector, respectively, across each sample replicate. PacBio replicate 238 

reads were downsampled to match the number of sequenced bases from the respective Illumina replicate samples. 239 

(b) Binary heatmap for the identification of the 16 control fusions pairs in different fusion detection software according 240 

to each of the three replicates of long read sequences, using all (not downsampled) sequenced reads. PacBio 241 

replicates are ordered (a) left to right or (b) top to bottom as MAS-ISO-seq monomer (replicate 1), and MAS-ISO-seq 242 

8mer-concatamer sequenced replicates 2 and 3. Counts of sequenced reads are provided in Supplementary Table 243 

S1. 244 

12 
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 245 

We examined the alternative long read fusion transcript detection methods for identification of 246 

the 16 control fusions using all PacBio sequenced long isoform reads (Figure 3b). Only CTAT-247 

LR-fusion and pbfusion (as of v0.4.0) were found to identify each of the 16 control fusions 248 

across each of the three long read sequencing libraries. Fusionseeker and JAFFAL each failed 249 

to report one of the 16 fusions, each a different fusion and consistent across all replicates. 250 

LongGF, while having high accuracy for detection of fusions with simulated data, surprisingly 251 

was found least effective here in consistently missing 4/16 control fusions, only one of which 252 

was missed in common with another method: TMPRSS2::ERG, the hallmark fusion of prostate 253 

cancer, missed by both LongGF and FusionSeeker, while CTAT-LR-fusion detects 45, 98, and 254 

104 long isoform reads supporting TMPRSS2::ERG across the three sequenced libraries. 255 

Long Read Fusion Isoform Detection from MAS-ISO-seq of Nine 256 

Cancer Cell Lines 257 

We further explored long read based fusion transcript detection using transcriptomes from nine 258 

cancer cell lines derived from diverse cancer types including breast cancer (SKBR3, HCC1187, 259 

HCC1395), prostate cancer (VCaP), chronic myelogenous leukemia (K562), ALK+ anaplastic 260 

large cell lymphoma (KIJK), T cell lymphoma (MJ), small cell lung cancer (DMS53), and 261 

urothelial bladder cancer (RT112). Several of these cell lines are known to harbor oncogenic 262 

fusions including BCR::ABL1 in K562, TMPRSS2::ERG in VCaP, NPM1::ALK in KIJK, and 263 

FGFR3::TACC1 in RT112. We sequenced the transcriptomes of each cell line using PacBio 264 

MAS-ISO-seq (~3-6M reads per sample, Supplementary Table 1) and called fusions using 265 

each long read fusion transcript prediction method (Supplementary Table 2). Counts of fusions 266 

predicted by each method having at least three long isoform reads as evidence vary greatly by 267 

cell line and by method, with RT112 and KIJK having the fewest fusion predictions, VCaP 268 
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having the most, and the FusionSeeker method producing the greatest numbers of fusion 269 

predictions across all cell lines (Figure 4a). Altogether, we find 133 fusions agreed upon by at 270 

least two long read fusion prediction methods, with as few as 3 identified in cell line MJ and as 271 

many as 31 in VCaP (Figure 4a). Eight COSMIC fusions with known relevance to cancer 272 

biology including the hallmark fusions mentioned above were identified among most (6/9) of the 273 

cell lines and identified by at least two prediction methods with similar quantities of reads for 274 

each fusion, spanning two orders of magnitude (2 reads for K562|BCR::ABL1 to 463 reads for 275 

KIJK|ALK::NPM1)(Figure 4b). 276 

 277 

We separately sequenced these cell line transcriptomes using Illumina TruSeq with ~30-50M 278 

paired-end 151 base length reads per sample (Supplementary Table 1), capturing read 279 

coverage across entire transcripts, and called fusions using STAR-Fusion. Of the 133 agreed-280 

upon long read predicted fusions, more than half (79) were identified by STAR-Fusion with 281 

these short reads. Of another 354 fusions uniquely predicted from long reads by any method, 282 

only 12 (3%) were further identified using short reads. 283 

 284 
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 285 

 286 

Figure 4. Detection of fusion transcripts from MAS-ISO-seq of 9 cancer cell lines. (a) Counts of fusion 287 

predictions according to cell line and prediction method, requiring a minimum of 3 long reads as supporting evidence. 288 

Line drawn indicates the number of fusions agreed upon by at least two methods. (b) Numbers of MAS-ISO-seq 289 

reads identified as evidence for COSMIC fusions according to method. (c) Fusion transcript detection accuracy 290 

according to minimum long reads supporting evidence based on the proxy truth set. (d) Comparison of long (MAS-291 

ISO-seq) vs. short read (TruSeq Illumina) support for fusion isoforms detected by each according to CTAT-LR-fusion 292 

15 
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and FusionInspector, respectively. Read support is normalized for sequencing depth as FFPM. (e, f) Five fusion 293 

isoforms observed for the fusion gene CYTH1::EIF3H of cell line SKBR3 are (e) observed with highly correlated 294 

expression measurements as estimated from long and short RNA-seq reads and (f) shown according to fusion 295 

transcript breakpoints. 296 

 297 

Benchmarking fusion detection accuracy using these cell lines is challenging due to the lack of 298 

absolute truth sets, and experimental validations of fusions from these cell lines are not yet 299 

comprehensive. To assess accuracy, we employed a proxy truth set (as in (Haas et al. 2019)) 300 

where true fusions were operationally defined as those predicted by at least two different 301 

methods with at least 3 supporting reads, excluding likely artifacts and fusions with promiscuous 302 

fusion partners across samples, and treated uniquely predicted fusions as false positives (see 303 

Methods). We further incorporated the 12 Illumina-supported but otherwise uniquely predicted 304 

fusions along with the 133 agreed-upon fusion predictions as our proxy truth set. In 305 

benchmarking fusion detection for these cancer cell lines, CTAT-LR-fusion demonstrated 306 

superior performance across a range of minimum read evidence thresholds (Figure 4c, Supp. 307 

Figure 2). Only the performance of FusionSeeker was found to increase according to 308 

concomitant increase in required minimum read evidence support, primarily due to 309 

correspondingly large decreases of false positives (Supp. Figure 2b). 310 

 311 

In exploring the fusion isoforms identified by CTAT-LR-fusion using combined long and short 312 

reads we found 213 fusion genes with 288 fusion splicing isoforms having both short and long 313 

read alignments together supporting each of the fusion transcript breakpoints. Fusion 314 

expression evidence is significantly but moderately correlated between short and long reads 315 

(R=0.70, p<2.2e-16), and the fraction of fusion-supporting long reads tends to exceed the short 316 

reads, with notable exceptions (Figure 4d, Supplementary Figure 3a). Oncogenic driver fusion 317 

BCR::ABL1 is one notable outlier with >100-fold enrichment of short reads detecting the fusion 318 
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breakpoint than long reads per GB sequenced, apparently due to the long length of the fusion 319 

transcript with the fusion breakpoint up to 5 kb from the very 3’ end of the fusion transcript and 320 

from where PacBio long read isoform sequencing initiates. Short read enrichment for fusion 321 

detection was observed as weakly but significantly correlated (R=0.28, p=2.6e-8) with distance 322 

from the 3’ end of the fusion transcript (Supplementary Figure 3b). 323 

 324 

Seven fusion genes were found with at least three fusion splicing isoforms each, including 325 

CYTH1::EIF3H in cell line SKBR3 with five alternatively spliced fusion isoforms with near 326 

perfectly positively correlated fusion expression as measured from long or short reads 327 

(R=0.997, p=1.9e-4, Figure 4e,f). The remaining examples mostly involved lowly expressed 328 

fusions with weakly- or un-correlated expression as measured according to short and long read 329 

support (Supplementary Figure 4a). Among these multi-isoform fusions, having access to both 330 

long and short reads yielded evidence for fusion isoforms uniquely supported by each read type. 331 

For example, TMPRSS2::ERG in VCaP has evidence for five fusion splicing isoforms where one 332 

is solely supported by long reads (Supplementary Figure 4b). In contrast, fusion 333 

TATDN1::GSDMB in SKBR3 has evidence for 13 fusion splicing isoforms, four of which are 334 

supported uniquely by short reads (Supplementary Figure 4c). 335 

 336 

Long Read Fusion Isoform Detection from Tumor Single Cell 337 

Transcriptomes 338 

 339 

To examine CTAT-LR-fusion and long read isoform sequencing for fusion transcript detection in 340 

single cells, we leveraged earlier published PacBio single cell isoform sequencing data from two 341 

recently published studies: a T-cell infiltrated melanoma tumor sample from (Al'Khafaji et al. 342 
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2023), and three different metastatic high grade serous ovarian carcinoma (HGSOC) omental 343 

samples from (Dondi et al. 2023). In both studies, matching sample Illumina RNA-seq data was 344 

available, enabling us to further explore differences in detection of fusion transcripts based on 345 

long vs. short read sequencing. In these single cell applications, the 10x Genomics single cell 346 

sequencing libraries were based on 3’ end sequencing, inherently biasing sequencing coverage 347 

to the very 3’ ends of sequenced isoforms with Illumina RNA-seq. 348 

 349 

The sequenced T-cell infiltrated melanoma tumor sample consisted of 6932 cells including 701 350 

tumor cells (10%), sequenced with 21M PacBio MAS-ISO-seq reads and 207M single-end 55 351 

base length reads (Supplementary Table 1). Fusion transcripts were examined using CTAT-352 

LR-fusion for PacBio long reads and STAR-Fusion and FusionInspector for Illumina short reads 353 

(Supplementary Table 3). Only one fusion was found in more than 1% of tumor or normal cells: 354 

NUTM2A-AS1::RP11-203L2.4 found in 265 tumor cells (38%) and only 3 normal cells (0.05%) 355 

through a combination of long and short read fusion transcript analyses (Figure 5a); only short 356 

read fusion evidence was found corresponding to these 3 normal cells, all 3 detected by 357 

FusionInspector and one by STAR-Fusion, and such reads might have derived from ambient 358 

tumor RNA. Approximately 60% of the NUTM2A-AS1::RP11-203L2.4 containing tumor cells 359 

were solely identified by long read evidence, another 20% by short reads only, and the 360 

remaining 20% by both short and long reads (Figure 5b). Interestingly, fusion gene partner 361 

NUTM2A-AS1 has recently been identified as an oncogene with roles in multiple cancer types 362 

(Wang et al. 2020; Wang et al. 2021; Long et al. 2023). The long fusion reads appear to be 363 

largely full-length and yield evidence for eight different fusion splicing isoforms, mostly involving 364 

skipping of alternative exons and one isoform involving an alternative terminal exon (Figure 5c). 365 

The short read alignments provide evidence for five alternatively spliced isoforms but because 366 

of the short read length only the partial isoform structure around the fusion transcript 367 
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breakpoints were resolved as opposed to the complete isoform structures clearly evident from 368 

the long reads (Figure 5c). 369 

 370 

We explored the PacBio long isoform reads and Illumina short reads available for three HGSOC 371 

patient samples sequenced at single cell resolution. Here, tumor samples were derived from 372 

omental metastases, and for Patients 1 and 3, matched normal omentum samples were 373 

similarly processed and analyzed for comparison (all fusion predictions available as 374 

Supplementary Table 4). Numbers of PacBio long reads ranged from 22-54M reads along with 375 

matched 35-102M Illumina 56 base length single-end reads (Supplementary Table 1).  In 376 

addition to identifying previously described fusions for these samples, we identified additional 377 

fusion genes and fusion isoforms supported by long and/or short RNA-seq reads, with multiple 378 

different fusion gene products generated from the same genome restructuring events. For 379 

detecting somatic cancer-specific fusions in these samples, we required at least five tumor cells 380 

to exhibit long or short read RNA-seq alignment evidence, and for identified fusions to be 381 

missing from matched normal samples where available. 382 

 383 
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384 

 385 

Figure 5: Detection of Fusion NUTM2A-AS1::RP11-203L2.4 in a T-cell infiltrated melanoma tumor sample. 386 

MAS-ISO-seq and matched Illumina RNA-seq data from a melanoma tumor sample M132TS 10x single cell library 387 

[published in (Al'Khafaji et al. 2023) were examined for fusion transcripts using CTAT-LR-fusion for PacBio long reads388 

and STAR-Fusion and FusionInspector for Illumina short reads. (A) UMAP for melanoma sample M132TS single 389 

cells. Cells identified with the NUTM2A-AS1::RP11-203L2.4 fusion transcript are colored according to the detection 390 

method, predominantly labeling the cluster of malignant cells. (B) Venn diagram indicating the numbers of fusion-391 

containing cells according to detection methods. (C) Fusion supporting read alignments and derived transcript 392 

isoform structures based on long (center) or short (bottom) read sequences in the context of the FusionInspector 393 

modeled gene fusion contig. Gencode v22 reference isoform transcript structures for NUTM2A-AS1 and RP11-394 

203L2.4 genes are shown at top. 395 

 396 

Sequencing of the Patient-1 tumor sample yielded 497 total cells, with 92 cells (19%) identified 397 

as HGSOC cells, from which we identified only four somatic fusion transcripts: SMG7::CH507-398 

20 

 

ds 
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513H4.1 (26 cells), RAPGEF5—AGMO (6 cells),  NTN1--CDRT15P2 (5 cells), and GS1-399 

279B7.2--GNG4 (5 cells) (Supplementary Table S5).  For RAPGEF5::AGMO, half (3/6) of the 400 

cells were detected only by long reads, and 1/6 exclusively by short reads. The other three 401 

fusions were found only by long reads. Expression-based clustering of cells for the Patient 1 402 

tumor sample resolved two HGSOC cell clusters, with fusion RAPGEF5::AGMO evident in 403 

tumor cells largely clustered separately from cells expressing  SMG7::CH507-513H4.1 and 404 

GS1-279B7.2--GNG4, potentially reflecting tumor heterogeneity Figure 6a,b). Fusion 405 

NTN1::CDRT15P2 was found expressed in both tumor cell clusters and more likely clonal 406 

(Figure 6b). 407 

 408 

409 

 410 

Figure 6: Fusion expression intra-tumor heterogeneity observed in cancer cells. (A) UMAP embedding of all 411 

cells from HGSOC Patient 1, colored by cell type. Fusion RAPGEF5::AGMO and SMG7::CH507-513H4.1 are 412 

expressed in two different HGSOC cell clusters. (B) UMAP embedding of HGSOC cells from HGSOC Patient 1, 413 

colored by fusions expressed. RAPGEF5::AGMO is expressed exclusively in the right cluster. SMG7::CH507-414 

513H4.1 and GS1-279B7.2::GNG4 fusions coexpress and are expressed almost exclusively in the left cluster. The 415 

two NTN1::CDRT15P2 fusion expressing cells in the left cluster co-express the SMG7::CH507-513H4.1 fusion. 416 

 417 

21 
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The Patient-2 tumor sample yielded 453 total cells, with 208 (46%) identified as HGSOC cells, 418 

from which we identified 16 different malignant cell enriched fusion transcripts (Supplementary 419 

Table S5), including the earlier-identified IGF2BP2::TESPA1 fusion between chr3 and chr12 420 

evident in 176/208 (85%) of the tumor cells. Another fusion is found with proximal breakpoints 421 

yielding fusion transcript SPATS2::TRA2B (21 tumor cells, 10%), and likely resulting from the 422 

same tumor genome rearrangements involving chr3 and chr12. Both of these fusions were 423 

detected via long and short RNA-seq reads. While a single fusion splicing isoform dominated 424 

IGF2BP2::TESPA1 detection in cells by both long and short reads, additional fusion splicing 425 

isoforms were detected with only short read support according to both STAR-Fusion and 426 

FusionInspector (Supplementary Table S4). Nearly all (20/21) of the SPATS2::TRA2B 427 

expression cells are found to co-express IGF2BP2::TESPA1. Other notable fusions in the 428 

Patient 2 tumor sample involve known tumor oncogenes and include CBL::KMT2A (16 tumor 429 

cells) and DEK::CASC17(11 tumor cells), both identified solely by long reads.  The previously 430 

reported FNTA fusion supported by long reads was missed here but manually verified, as the 431 

FNTA fusion partner transcribed region was lacking from the reference annotation and currently 432 

required for ctat-LR-fusion reporting. Another prevalent fusion PSMB7::SCAI (52 tumor cells) 433 

detected mostly by long reads and with four fusion splicing isoforms involves suppressor of 434 

cancer cell invasion gene SCAI. The reciprocal fusion SCAI::PSMB7 was previously detected in 435 

serous ovarian cancer cell line COV504_OVARY of the Cancer Cell Line Encyclopedia 436 

(Barretina et al. 2012), further implicating this rearrangement as of particular interest to this 437 

cancer type. 438 

 439 

The Patient-3 tumor sample yielded 646 total cells with only 38 (6%) HGSOC cells.  Here, only 440 

2 fusions identified as enriched in the tumor cells: the previously identified CBLC::CTC-232P5.1 441 

fusion in 16 cells and additionally found SNRNP70::ZIK1 in 8 cells (Supplementary Tables S5). 442 
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Interestingly, each of these SNRNP70::ZIK1-expressing cells co-expressed the CBLC::CTC-443 

232P5.1 fusion. Both fusions involve genes localized to the bottom arm of chr19 (CBLC and 444 

SNRNP70 transcriptional breakpoints within 5Mb), and potentially derive from the same genome 445 

restructuring events. There is evidence for five fusion transcript breakpoints for the CBLC::CTC-446 

232P5.1 fusion indicating at least five fusion splicing isoforms, and all but one has support from 447 

both short and long reads. Fusion SNRNP70::ZIK1 was identified only by long reads. 448 

 449 

Consistent with earlier studies, we find evidence of fusion transcripts expressed in normal cells, 450 

both from normal cells identified within the tumor microenvironment and from cells derived from 451 

the tumor-free matched normal samples. Excluding fusion transcripts previously identified in 452 

earlier large-scale studies of normal tissues, we find several fusion transcripts evident from the 453 

long isoform sequences that are patient-specific or in common across different patients, 454 

sometimes involving known oncogenes and previously implicated as potentially oncogenic. 455 

Examples include fusion RP11-444D3.1::SOX5, previously implicated in endometrial cancer 456 

(Yao et al. 2019) and meningioma (Viaene et al. 2019) and recently reported as found in normal 457 

tissues in glioblastoma (Hernandez et al. 2022), but found here in small numbers of malignant 458 

(7) and normal (3) cells in the melanoma tumor sample and similarly identified among small 459 

numbers of cells (2 to 11) among each of the three HGSOC patient samples sets of tumor and 460 

matched normal samples. Fusion YWHAE::CRK involving fused oncogenes was detected in 461 

HGSOC Patient-1 normal sample in five mesothelial cells and in the tumor sample only one 462 

HGSOC cell. Fusion ZCCHC8--RSRC2, previously detected in several tumor studies (Yoshihara 463 

et al. 2015; Hu et al. 2018; Dehghannasiri et al. 2019; Jang et al. 2020; Haas et al. 2023), was 464 

identified as highly prevalent and broadly expressed across cell types in HGSOC Patient-3 465 

tumor and matched normal samples, identified in 46% and 36% of sequenced cells, 466 

respectively. 467 
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Discussion 468 

As sequencing technologies and experimental methods continue to advance, we are faced with 469 

new challenges and opportunities for development of computational methods to extract deeper 470 

insights and further our understanding of biological systems. Rapid innovation in the long-read 471 

sequencing space has enabled full-length single cell RNA isoform sequencing, pushing the 472 

boundaries of transcriptome research. This leap in resolution has transformed our ability to 473 

accurately identify, discover, and quantify isoforms from genes and gene fusions, further 474 

accelerating biomedical research including studies of cancer and clinical applications to support 475 

personalized medicine. 476 

 477 

Here we describe a new addition to our Trinity Cancer Transcriptome Analysis Toolkit (CTAT) 478 

for detection of fusion transcripts from long isoform read sequences called CTAT-LR-fusion. 479 

This module complements our earlier-developed Trinity CTAT methods available for detecting 480 

fusions based on shorter Illumina reads (usually 50-150 bases in length, single-end or paired-481 

end), including TrinityFusion (Haas et al. 2019) for fusion transcripts based on genome-free 482 

Trinity (Grabherr et al. 2011; Haas et al. 2013) de novo assembled fusion isoforms, STAR-483 

Fusion (Haas et al. 2019)  for fusion detection based on chimeric short-read alignments, and 484 

FusionInspector (Haas et al. 2023) for supervised in silico validation of targeted gene fusions. 485 

Our CTAT-LR-fusion method for long isoform read fusion detection was motivated by 486 

TrinityFusion, using long isoform reads instead of Trinity-reconstructed transcripts for fusion 487 

detection, and by FusionInspector for modeling fusion gene contigs and quantification of fusion 488 

read support. FusionInspector is also further integrated into CTAT-LR-fusion as a submodule for 489 

evaluation of Illumina short read fusion evidence for candidates identified from the long reads in 490 

the case both long and short reads are provided as inputs. 491 
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 492 

We demonstrated superior accuracy of CTAT-LR-fusion for fusion detection based on long 493 

isoform reads derived from simulated data and from real data as derived from our application of 494 

high throughput PacBio long read RNA-seq, MAS-ISO-seq, to the Seraseq Fusion RNA Mix v4 495 

control sample containing 16 spiked-in oncogenic fusion transcripts and to nine cancer cell 496 

lines. CTAT-LR-fusion was shown capable of robust identification of all 16 control fusions within 497 

the Seraseq fusion mix, and most accurate at identifying fusion transcripts based on simulated 498 

data across broad ranges of sequencing error. While high error rates are relegated to the 499 

earliest implementations of long read sequencing technologies, due to continued advancements 500 

in sequencing chemistries and computational methods for base-calling, contemporary 501 

sequencing accuracies of long reads no longer necessitate fusion detection methods compatible 502 

with high sequencing error rates. However, as newer and cheaper long read sequencing 503 

technologies are developed, the more extensive fusion detection capabilities of CTAT-LR-fusion 504 

could prove useful. 505 

 506 

Proper detection and reporting of fusion transcripts require consideration of the order and 507 

orientation of the fused genes in the context of the fusion transcripts expressed and accurate 508 

reporting of the fusion transcript breakpoint, which most often involves standard transcript 509 

splicing that fuses an exon of one gene to an exon of the fusion partner. Of the evaluated long 510 

read isoform fusion detection methods, only CTAT-LR-fusion, JAFFAL, and pbfusion (as of 511 

v0.4.0) properly reported fusions in proper order and orientations along with precisely defined 512 

fusion isoform breakpoints. Reporting of fusion gene order and orientation is essential, as the 513 

alternate fusions made possible between two fusion genes have different interpretations and 514 

ramifications regarding oncogenicity, with relevance to clinical applications. For example, genes 515 

TACC3 and FGFR3 neighbor each other within a 100 kb region on chr4. A fusion detected as 516 
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TACC3::FGFR3 could be considered an example of cis-splicing between neighboring genes, 517 

and potentially discarded as irrelevant. However, a genome rearrangement yielding the 518 

oncogenic fusion FGFR3::TACC3 (Costa et al. 2016) would be imperative to report. Other 519 

scenarios where fusion order and orientation are important considerations include reciprocal 520 

translocations, such as frequently encountered for the oncogenic BCR::ABL1 fusion among 521 

others (Haas et al. 2023). Finding BCR::ABL1 and its reciprocal ABL1::BCR fusions in the same 522 

patient sample via their distinct fusion transcripts could be considered evidence for a reciprocal 523 

chromosome translocation event. Note that in this case the BCR::ABL1 fusion transcript is the 524 

variant that yields the oncogenic fusion protein that drives tumorigenesis, and ABL1::BCR is 525 

likely collateral damage with questionable relevance to disease. 526 

 527 

Accurate detection of fusion transcript breakpoints is essential for characterizing the splicing 528 

complexity of gene fusions. It is often the case that gene fusions produce multiple fusion 529 

transcript isoforms. For example, for fusion TATDN1::GSDMB in breast cancer cell line SKBR3, 530 

we find evidence of 13 distinct fusion transcript isoforms. Alternative splicing of fusion genes in 531 

cancer provides additional opportunities for neoantigen candidate discovery for applications in 532 

personalized immunotherapy, and their consideration could be especially useful when exploring 533 

cancers with low tumor mutation burden and limited candidates for neoantigen discovery based 534 

on expressed and translated somatic variants. 535 

 536 

In all our applications of CTAT-LR-fusion to bulk and single cell transcriptomes presented here, 537 

we examined the capabilities of both long and short RNA-seq reads with matched samples. 538 

With few exceptions, fusion detection from long isoform reads greatly outperformed short reads, 539 

with more fusion genes and fusion transcript splicing isoforms and greater numbers of tumor 540 

single cells expressing fusions detected via long isoform reads. Perhaps unsurprisingly, fusion 541 
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evidence is more concentrated among the long reads due to the sheer length of each long read, 542 

often providing full length isoform sequences for fused and normal isoforms of transcribed 543 

genes, as opposed to Illumina RNA-seq which entails fragmentation of long isoforms into 544 

shorter sequenceable fragments of transcripts, with fusion evidence restricted to the sequenced 545 

fragments of expressed transcripts. For single cell transcriptomes, the disparity between long 546 

and short reads widens as both long and short reads tend to initiate from the very 3’ end of 547 

transcripts. Detection of fusion isoforms based on short 3’ end sequences poses inherently strict 548 

limitations on short reads towards detecting breakpoints that occur proximal to the very 3’ end of 549 

the downstream fusion partner. In our survey of a melanoma tumor sample with single cell 550 

transcriptome data, long reads greatly outperformed short reads for detecting potentially 551 

oncogenic and tumor-specific NUTM2A-AS1::RP11-203L2.4 fusion-expressing cells.  In our 552 

exploration of HGSOC tumor sample transcriptomes at single cell resolution, we mostly 553 

detected tumor-relevant fusions with long isoform reads. 554 

 555 

Through combined use of short and long reads data, we increase detection sensitivity of gene 556 

fusions and numbers of cells with evidence of expressed fusions, demonstrating the synergy of 557 

both data types in bulk and single-cell samples. In bulk isoform sequencing, fractions of reads 558 

corresponding to fusion isoforms by long and short reads were significantly positively correlated, 559 

with specific examples such as CYTH1::EIF3H demonstrating near-perfect correlation. 560 

Exceptions do exist where long or short reads were found to exclusively detect specific fusion 561 

isoforms or contrasting enrichments in detection of isoforms such that the dominant fusion 562 

splicing isoform detected via short reads was not always the dominant fusion isoform detected 563 

via long reads. Some differences such as the high enrichment of BCR::ABL1 fusion detection 564 

from short reads can be partially attributed to transcript breakpoints distal from the 3’ end and 565 

requiring very long isoform read sequencing to be able to traverse the breakpoint with long 566 
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reads. Other differences are not yet understood and may reflect sequencing biases between 567 

platforms or sequencing protocols. As long read isoform sequencing becomes more routine, 568 

and as we explore increasing numbers of tumor cell lines and tumor single cell samples, we’ll 569 

have more opportunities to explore these differences, further optimize long read sequencing 570 

methods and continue to evaluate our toolkit and capabilities for integrated long and short RNA-571 

seq along the way. 572 

Methods 573 

CTAT-LR-fusion long read fusion isoform detection 574 

The CTAT-LR-fusion workflow has two phases: (1) initial rapid detection of fusion gene 575 

candidates and (2) fusion contig modeling with fusion candidate read alignment and breakpoint 576 

support quantification. These phases are described in detail below: 577 

 578 

CTAT-LR-fusion phase 1: Rapid detection of fusion gene candidates. Long isoform reads are 579 

aligned to the human reference genome using a customized version of minimap2 called ctat-580 

minimap2 (https://github.com/TrinityCTAT/ctat-minimap2), which generates full read alignments 581 

only for reads that have preliminary mappings to multiple genomic regions. As most long reads 582 

are non-chimeric and mapped to single genomic regions, ctat-minimap2 avoids computational 583 

effort in generating alignments for reads that are unlikely to correspond to fusion genes, 584 

speeding up this initial read alignment stage 4-fold (see Supplemental Code).  Chimeric read 585 

alignments derived from ctat-minimap2 are then assigned to reference gene annotations based 586 

on genomic coordinates. A preliminary list of fusion candidates is defined based on proximity to 587 

reference gene structures, requiring read alignments to have a default minimum of 70% 588 
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alignment identity. Chimeric long reads are tallied according to candidate gene pairs and read 589 

alignment breakpoints are compared to the nearest neighboring exon boundaries. For all 590 

supporting reads, the minimum distance between exon boundaries and read alignment 591 

breakpoints are determined and candidate fusion gene pairs are pursued if either of the 592 

following conditions are met: 593 

 594 

● Both chimeric alignment boundary minimum distances are within 50 bases of a 595 

reference transcript structure exon boundary. 596 

● One chimeric boundary minimum distance is within 50 bases and the other is within 1kb 597 

of a reference transcript structure exon boundary, and multiple reads support the fusion 598 

between candidate gene pairs. 599 

 600 

Fusion gene pair candidates are further filtered according to minimum expression threshold 601 

criteria (default: minimum 0.1 FFPM = at least 1 fusion long read per 10M total long reads), and 602 

such candidates are pursued in CTAT-LR-fusion phase 2 for further vetting and breakpoint 603 

quantification. 604 

 605 

CTAT-LR-fusion phase 2: Fusion contig modeling, long read realignment and breakpoint 606 

quantification. Phase 2 leverages techniques and methods in FusionInspector with 607 

modifications for long read alignment. Contig models for fusion genes are constructed using 608 

utilities in FusionInspector as previously described (Haas et al. 2023), positioning fusion gene 609 

structure candidates in the proposed order and orientation in single contigs with intronic regions 610 

shrunken to 1 kb. Candidate fusion-supporting long reads identified in Phase 1 are realigned to 611 

these fusion contigs using minimap2 (Li 2018). Read alignments with segments that terminate 612 

within 3 bases of a reference transcript exon boundary are snapped to that exon boundary, 613 
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found useful for highly divergent read alignments and largely unnecessary for current HiFi 614 

reads. Fusion reads are identified as those that align spanning both genes in the fusion contig 615 

and breakpoints are tallied according to alignment ends that bridge the two genes. Fusions are 616 

filtered similarly as done for STAR-Fusion, requiring a minimum of 0.1 FFPM fusion expression 617 

evidence, and a minimum of 2 fusion reads where non-consensus splice dinucleotides exist at 618 

fusion breakpoints.  By default, fusions known to occur in normal tissues are eliminated by 619 

looking up the GTEx fusions catalog, as incorporated into FusionAnnotator (Haas 2023) used 620 

with CTAT Human Fusion Lib (Haas 2021) (v0.3.0). Where there is evidence for multiple fusion 621 

splicing isoforms for a given fusion gene, those isoforms with less than 5% of the dominant 622 

isoform expression are discarded as potential noise. 623 

 624 

When long reads are supplemented with Illumina short reads, FusionInspector is executed with 625 

the short reads and the fusion contig gene models derived from CTAT-LR-fusion Phase 1. The 626 

FusionInspector results are then merged with the CTAT-LR-fusion results based on long reads. 627 

In this case, filtering of fusion candidates is modified to consider results based on the short 628 

reads such that all fusion isoforms with a minimum of 0.1 FFPM as computed separately from 629 

long reads or short reads are included in the final report. 630 

 631 

Fusion results based on single cell transcriptomes are further processed to generate per-cell 632 

fusion read support. Before running single cell transcriptome long or short reads through CTAT-633 

LR-fusion, we encoded cell barcodes and read UMI data into the read name. The fusion reports 634 

from CTAT-LR-fusion and other CTAT fusion modules include lists of reads that support each 635 

fusion transcript isoform. From the read names in the fusion reports, we then extract the cell 636 

barcodes and UMIs and provide the per-cell reporting of fusion content. 637 
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Fusion isoform detection via long read or short read sequencing 638 

For each of the long read isoform sequencing based fusion prediction methods, we created 639 

docker images with the most recently available software versions installed. Workflows were built 640 

using WDL and data were processed using the Terra cloud computing framework. Software 641 

versions used are as follows:  we used our latest CTAT-LR-fusion (v0.13.0) which we made 642 

available on GitHub at https://github.com/TrinityCTAT/CTAT-LR-fusion , JAFFAL (v2.3) from 643 

https://github.com/Oshlack/JAFFA, pbfusion (v0.4.0) from 644 

https://github.com/PacificBiosciences/pbfusion/releases, FusionSeeker (v1.0.1 commit 5710dc4 645 

from https://github.com/Maggi-Chen/FusionSeeker, and LongGF(version 0.1.2) from 646 

https://github.com/WGLab/LongGF. Docker files and WDL workflows are made available at: 647 

https://github.com/broadinstitute/CTAT-LRF-Paper/tree/main/0.Workflows_and_Dockers . We 648 

prepared the reference data for each of the software based on its tutorial, and consistently used 649 

GRCh38 as the reference genome, and used GENCODE (Frankish et al. 2019) annotation 650 

version 22 for the transcriptome annotation. Illumina RNA-seq were analyzed using STAR-651 

Fusion v2.12.0 and FusionInspector v2.8.0 as previously described (Haas et al. 2023). 652 

Simulated RNA-seq 653 

Simulated fusion isoform reads were obtained from two sources: the JAFFAL published 654 

simulated data containing high error rates leveraging Badread (Wick 2019), and our own 655 

simulated high fidelity reads using PBSIM3 (Ono et al. 2022). 656 

 657 

Badread simulated fusion reads from the JAFFAL publication:  We used the JAFFAL study 658 

(Davidson et al. 2022) simulated data for ONT and PacBio across the range of sequence 659 

divergences (75% identity to 95% identity), which was based on the set of simulated fusion 660 
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transcripts sequences FASTA files generated in Haas et al, GB 2019 [31639029] for five 661 

different tissues 662 

(https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_663 

data/simulated_fusion_transcript_sequences/): adipose, brain, colon, heart, testis. The 664 

simulated JAFFAL datasets were downloaded from 665 

https://ndownloader.figshare.com/files/27676470. 666 

 667 

PBSIM3 simulated fusion reads: To reflect the error profiles of the latest PacBio and ONT 668 

sequencing technologies, we also simulated new ONT and PacBio long reads from these five 669 

different tissues using the long-read simulator PBSIM3 v3.0.1 (Ono et al. 2022) at 50x coverage 670 

as follows. To simulate PacBio HiFi reads, we first used PBSIM3 in full-length template-based 671 

mode (“--strategy templ”) with the provided PacBio Sequel continuous long reads (CLR) error 672 

model (“--errhmm data/ERRHMM-SEQUEL.model”) to generate multi-pass CLR sequencing 673 

data, producing 20 passes (“--pass-num 20”) for each input template to approximate high-674 

accuracy HiFi reads; and then ran the PacBio CCS program v6.4.0 675 

(https://github.com/PacificBiosciences/ccs) to generate HiFi reads from the multi-pass 676 

sequencing data produced by PBSIM3. To simulate ONT R10.4.1 reads, we similarly used the 677 

PBSIM3 full-length template-based simulation mode (“--strategy templ”) and the recently 678 

provided error model trained on R10.4 data (“--errhmm data/ERRHMM-ONT-HQ.model”) with a 679 

mean accuracy of 98% (“--accuracy-mean 0.98”), as recommended by PBSIM3 authors for ONT 680 

R10.4.1 reads (https://github.com/yukiteruono/pbsim3/issues/12). To obtain the desired 681 

coverage, we created multiple copies of the initial tissue templates and provided the resulting 682 

FASTA file as the “--template” parameter to PBSIM3. To link the reads to the original templates 683 

from which they were simulated for benchmarking, we made a small update to the PBSIM3 684 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.24.581862doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.24.581862
http://creativecommons.org/licenses/by/4.0/


 
33 

 

code in a PBSIM3 fork (https://github.com/MethodsDev/pbsim3) to report the read to template 685 

name mapping. 686 

 687 

Benchmarking of fusion transcript detection 688 

 689 

When benchmarking using simulated long read fusion sequences, we parsed the gold standard 690 

fusion genes and breakpoints from sequences names in the simulated fusion transcripts 691 

sequence FASTA files (See Simulated RNA-seq section above). 692 

 693 

We assessed the true positive (TPs), false positive (FPs) and false negative (FNs) for each 694 

fusion detection method by comparing their predictions against the respectively defined truth 695 

set. To quantify and compare the fusion detection performance, we applied three standard 696 

metrics for benchmarking fusion detection: 697 

 698 

1) precision = TP / (TP+FP) 699 

2) recall = TP / (TP+FN) 700 

3) F1 = 2*precision*recall / (precision + recall) 701 

 702 

For fusion genes, we have two modes of benchmarking by defining different levels of properly 703 

true positives: strict and “allow reverse”. In strict mode, we compared both of the gene pairs 704 

while strictly keeping their predicted gene order geneA::geneB, and assessed each fusion by 705 

matching both pairs of the genes with their official gene symbols, gene symbols for paralogs, 706 

and genes with overlapping coordinates along the genome. In “allow reverse” mode, we allowed 707 

the predicted gene order to be geneA::geneB or geneB::geneA when comparing with the 708 
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corresponding truth set. For both geneA and geneB, gene symbols for genes with overlapping 709 

genomic coordinates were allowed as proxies and scored equivalently. 710 

 711 

For breakpoints comparisons, we also implemented fuzzy or exact modes of performing the 712 

benchmarking. The two breakpoints were always sorted before comparison in either mode. In 713 

exact mode we strictly compared the sorted two breakpoint genomic coordinates for identity, 714 

and in fuzzy mode we expanded the allowed breakpoints of a fusion event to a window 715 

encompassing 5 bases upstream and downstream from each breakpoint. 716 

 717 

When benchmarking using bulk cancer cell lines MAS-ISO-seq data, we filtered all the methods 718 

fusion calls based on 3 minimum long reads support. We further excluded fusions that tend to 719 

be enriched for artifacts, commonly encountered fusion from normal samples, or likely resulting 720 

from cis-splicing of neighboring transcripts; specifically, we filtered fusions including 721 

mitochondrial genes, HLA genes, gene pairs involving immunoglobulin gene rearrangements, 722 

fusions involving neighboring genes within 100 kb on a chromosome, or any fusions annotated 723 

as previously found in normal samples according to FusionAnnotator. Fusions passing these 724 

criteria were further filtered to retain fusions most relevant to individual cell lines by excluding 725 

fusions that involved promiscuous genes reported in fusion predictions by at least two different 726 

methods across at least three of the nine different cell lines examined here.  After filtering, we 727 

defined truth set (TPs) as those fusions predicted by at least two different predictors, and FPs 728 

as fusions uniquely predicted by the corresponding method. Precision, recall, and F1 metrics 729 

were computed using this truth set. We examined how accuracy changed as a function of 730 

strength of evidence by evaluating accuracy metrics after filtering fusion predictions according to 731 

minimum read support (eg. Supp. Figure 2a). 732 

 733 
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A small fraction of pbfusion v0.4.0 results (~1%) involved complex fusions involving multiple 734 

partners that were not always clearly identified with breakpoint information. For benchmarking 735 

purposes, we ignored instances where there lacked a clear one-to-one mapping between 736 

breakpoint coordinates and fusion partners, as recommended by the pbfusion developers 737 

(personal communication). In evaluation of the SeraCare fusions, the pbfusion output was 738 

manually examined to confirm capture of a reference fusion where breakpoint information was 739 

not clearly defined. 740 

 741 

All benchmarking analysis code and the raw outputs from each of the evaluated prediction 742 

methods are available at: https://github.com/fusiontranscripts/LR-FusionBenchmarking . 743 

Bulk 8-mer MAS-ISO-seq for nine DepMap cell lines and two SeraCare fusion mix v4 744 

replicates. 745 

 746 

RNA QC of Cancer Cell lines and Seraseq Fusion RNA mix: RNA samples were extracted 747 

form 9 cancer cell lines (VCAP, MJ, K562, RT112, KIJK, HCC1187, HCC1395, DMS53, and 748 

SKBR3) using Qiagen's RNEasy Plus Kit (Qiagen, cat. no. 74134), and RNA from the Seraseq 749 

Fusion RNA mix v4 (SeraCare, cat. no. 0710-0497) were quality checked using a High 750 

Sensitivity RNA ScreenTape (Agilent, cat. no’s. 5067-5579 and 5067-5580) on an Agilent 4150 751 

TapeStation system (Agilent, cat. no. G2992AA) to determine RNA Integrity Number (RIN) prior 752 

to first strand synthesis (FSS). 753 

 754 

cDNA Synthesis from Cancer Cell Lines and SeraCare Fusion RNA mix: For both the 755 

cancer cell lines and the Seraseq Fusion RNA mix, cDNA was generated from RNA using 756 

components from a NEBNext® Single Cell/Low Input cDNA Synthesis & Amplification Module 757 

(New England Biolabs, cat. no. E6421S). The RNA Samples were diluted, the cancer cell lines 758 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.24.581862doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.24.581862
http://creativecommons.org/licenses/by/4.0/


 
36 

 

to 50 ng/µl, and the SeraSeq fusion RNA mix to 15ng/ul. Per sample, the diluted RNA 759 

(200ng/cancer cell line sample, 100ng/SeraSeq fusion mix) was combined with 3µL of water, 760 

and 2µL of NEBNext Single cell RT primer (Sequence: AAG CAG TGG TAT CAA CGC AGA 761 

GTA CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TV), mixed via pipetting, and incubated at 762 

70° C for 45 minutes before cooling to 20° C. Each reaction was then immediately combined 763 

with a second reaction mix consisting of 5µl of NEBNext Single Cell buffer, 2µl of NEBNext 764 

Single Cell RT Enzyme Mix, and 3µl of Nuclease-free water. The reaction was then incubated at 765 

42°C for 45 minutes before being removed from the thermal cycler, having 1µl of 100µM 766 

Template switch oligo (Sequence; GCA ATG AAG TCG CAG GGT TrGrG rG) mixed in via 767 

pipetting, returning the reaction mix to the thermal cycler and incubating at 42°C for 15 minutes, 768 

then 85°C for 5 minutes, holding at 4°C.  30µl of elution buffer was added to each reaction for a 769 

total volume of 50µl, each reaction was then cleaned using 40µL (0.8x reaction volume) of SPRI 770 

beads (Beckman Coulter Inc, B23318) according to the manufacturer’s recommendations. The 771 

reaction was eluted in 50µl of elution buffer. 15µl of each cDNA was taken from the previous 772 

elution volume, and then combined with 25µl of NEBNext Single Cell cDNA PCR Master Mix, 773 

2.5µl of 5µM Forward Primer (Sequence: AAG CAG TGG TAT CAA CGC AGA G), 2.5µl of an 774 

Indexed reverse primer (Sequence, variable, see Supplementary Table S6) and 5µl of 775 

Nuclease-free water for a total volume of 50µl. The reaction was mixed and then incubated in 776 

the thermal cycler for one cycle of 3 minutes at 98°C, 12 cycles of 20 seconds at 98°C – 30 777 

seconds at 62°C – 8 minutes at 72°C, then one cycle of 5 minutes at 72°C, holding at 4°C. Each 778 

reaction was then cleaned using 35µL (0.7x reaction volume) of SPRI beads. The reaction was 779 

eluted off the beads in 50µl of elution buffer. The samples were quantified using a Qubit Flex 780 

Fluorometer (Thermo Fisher Scientific, cat. no. Q33327) and Qubit dsDNA HS Assay kit 781 

(Thermo Fisher Scientific, cat. no. Q32854) and analyzed via High Sensitivity D5000 782 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.24.581862doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.24.581862
http://creativecommons.org/licenses/by/4.0/


 
37 

 

ScreenTape (Agilent, cat. no’s.  5067-5594, 5067-5593, and 5067-5592) on an Agilent 4150 783 

TapeStation system. The resultant cDNA was diluted down to 5ng/µl. 784 

 785 

PacBio SMRTBell library preparation: The following section of the sequencing preparation 786 

was completed using kit components from the MAS-Seq for 10x Single Cell 3' kit (PacBio, cat. 787 

no. 102-659-600), as well as individually created oligos. 788 

A PCR master mix for each sample was made using 100µl of MAS PCR Mix, 20ng of cDNA in 789 

4µl of volume, and 96µl of nuclease-free water for a total volume of 200µl. The master mix was 790 

mixed and 22.5µl aliquots were distributed to each well of a 0.2ml PCR tube strip (USA 791 

Scientific Inc., cat. no. 1402-2500) where a 2.5µl addition of a 5µM primer mix was added (see 792 

Supplementary Table S7). The samples were mixed and incubated in the thermal cycler for an 793 

initial denaturation step of one cycle for 3 minutes at 98°C, then seven cycles of denaturation for 794 

20 seconds at 98°C, annealing for 30 seconds at 68°C, and extension for 8 minutes at 72°C, 795 

finally, a terminal extension of one cycle for 5 minutes at 72°C, holding at 4°C. 796 

After incubation, the entire volume of each strip tube was pooled into a 1.5ml tube (total volume 797 

200µl) prior to a 0.95x SPRI bead clean. The resultant product was eluted into 50µl of elution 798 

buffer. The product was quantified via Qubit Flex Fluorometer. 47µl from the previous elution 799 

was transferred into a 0.2ml PCR tube, 10µl of MAS Enzyme was added to each reaction then 800 

pipette mixed. The reactions were then incubated for 30 minutes at 37°C, holding at 4°C. The 801 

reactions were removed, and two reaction mixes were added, the first consisted of 1.5µl of MAS 802 

Adapter A Fwd 1.5 µl of MAS Adapter Q Rev, and 20µl of MAS Ligation additive. The second 803 

reaction mix added consisted of 10µl of Mas Ligase Buffer, and 10ml of MAS Ligase for a total 804 

combined reaction of 100µl. The reaction was mixed with wide bore pipette tips (Mettler-Toledo 805 

Rainin LLC, cat. no. 30389241), prior to being incubated for 60 minutes at 42°C, holding at 4°C. 806 

The reactions were removed from the thermal cycler and 75µl (0.75x) of resuspended SPRI 807 
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beads were added. The reactions were mixed thoroughly using wide bore pipette tips and then 808 

left to incubate at room temperature for 10 minutes. The reactions were placed on a magnetic 809 

strip to pellet the beads, which were then washed twice in 200µl of 80% ethanol. 45µL of elution 810 

buffer was added to the reactions after the second ethanol wash and were left to elute off the 811 

beads for five minutes at room temperature. The reaction was then added back on to the 812 

magnet and the 45µl eluted MAS Array was moved to a separate 0.2ml PCR tube. 42µL of each 813 

of the eluted MAS array was transferred to a new 0.2ml PCR tube and a reaction mix consisting 814 

of 6µl of Repair buffer, and 2µl of DNA Repair Mix, was added for a total volume of 50µl. The 815 

reaction was mixed using wide bore pipette tips before incubating for 30 minutes at 37°C, 816 

holding at 4°C. The reactions were removed from the thermal cycler and 37.5µl (0.75x) of 817 

resuspended SPRI beads were added, and then cleaned according to the manufacturer’s 818 

specifications. The reaction was eluted in 40µl of elution buffer. To the 40µl of eluted DNA, a 819 

reaction mix consisting of 5µl of Nuclease buffer and 5ml of Nuclease mix was added for a total 820 

volume of 50µl. The reaction was pipette mixed using wide bore pipettes then incubated for 60 821 

minutes at 37°C, holding at 4°C. The reactions were removed from the thermal cycler and 822 

37.5µl (0.75x) of resuspended SPRI beads were added. The reactions were mixed thoroughly 823 

using wide bore pipette tips and then left to incubate at room temperature for 10 minutes. The 824 

reactions were placed on a magnetic strip to pellet the beads, which were then washed twice in 825 

200µl of 80% ethanol. 25µL of elution buffer was added to the reactions after the second 826 

ethanol wash and were left to elute off the beads for five minutes at room temperature. The 827 

reaction was then added back on to the magnet and the 25µl eluted MAS Array was moved to a 828 

separate 0.2ml PCR tube. The reaction was then quantified using a Qubit Flex Fluorometer, and 829 

characterized using a Genomic DNA ScreenTape Analysis (Agilent, cat. no’s. 5067-5366 and 830 

5067-5365) on an Agilent 4150 TapeStation system. 831 

 832 
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 833 

PacBio Monomeric MAS-ISO-seq for SeraCare fusion RNA mix v4 834 

 835 

RNA QC of Seraseq Fusion RNA Mix v4 for Monomeric MAS-Seq: The RNA sample 836 

(Seraseq® Fusion RNA Mix v4, cat. no. 0710-0497) was quality checked using a High 837 

Sensitivity RNA ScreenTape(Agilent, cat. no’s. 5067-5579 and 5067-5580) on an Agilent 4150 838 

TapeStation system (Agilent, cat. no. G2992AA) to determine RNA Integrity Number (RIN) prior 839 

to first strand synthesis (FSS). 840 

 841 

cDNA Synthesis from Seraseq RNA Mix v4 for Monomeric MAS-Seq 842 

cDNA was generated from RNA using components from a NEBNext® Single Cell/Low Input 843 

cDNA Synthesis & Amplification Module (New England Biolabs, cat. no. E6421S), MAS-Seq for 844 

10x Single Cell 3' kit (PacBio, cat. no. 102-659-600), and individually created oligos. The RNA 845 

mix was diluted to 10ng/µl and split iIto two separate reaction vessels. Per reaction, the diluted 846 

RNA (10ng/µl, 7µl total volume, 70 ng total) was combined with 2µL of NEBNext Single cell RT 847 

primer (Sequence: AAG CAG TGG TAT CAA CGC AGA GTA CTT TTT TTT TTT TTT TTT TTT 848 

TTT TTT TTT TV), mixed via pipetting, and incubated at 70° C for 45 minutes before cooling to 849 

20° C. Each reaction was then immediately combined with a second reaction mix consisting of 850 

5µl of NEBNext Single Cell buffer, 2µl of NEBNext Single Cell RT Enzyme Mix, and 3µl of 851 

Nuclease-free water. The reaction was then incubated at 42°C for 45 minutes before being 852 

removed from the thermal cycler, having 1µl of 100µM Template switch oligo (Sequence; GCA 853 

ATG AAG TCG CAG GGT TrGrG rG) mixed in via pipetting, returning the reaction mix to the 854 

thermal cycler and incubating at 42°C for 15 minutes, then 85°C for 5 minutes, holding at 4°C.  855 

30µl of elution buffer was added to each reaction vessel for a total volume of 50µl, each reaction 856 

was then cleaned using 40µL (0.8x reaction volume) of SPRI beads (Beckman Coulter Inc, 857 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.24.581862doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.24.581862
http://creativecommons.org/licenses/by/4.0/


 
40 

 

B23318) according to the manufacturer’s recommendations. The reaction was eluted off the 858 

beads in 50µl of elution buffer. 15µl of each cDNA reaction was aliquoted from the previous 859 

elution volume, and then combined with 25µl of NEBNext Single Cell cDNA PCR Master Mix, 860 

2.5µl of MAS Capture Primer FWD (Sequence: AAG CAG TGG TAT CAA CGC AGA G), 2.5µl 861 

of MAS Capture Primer REV, and 5µl of Nuclease-free water for a total volume of 50µl. The 862 

reaction was mixed and then incubated in the thermal cycler for one cycle of 3 minutes at 98°C, 863 

14 cycles of 20 seconds at 98°C – 30 seconds at 62°C – 8 minutes at 72°C, then one cycle of 5 864 

minutes at 72°C, holding at 4°C. Each reaction was then cleaned using 35µL (0.7x reaction 865 

volume) of SPRI beads. The reaction was eluted off the beads in 50µl of elution buffer. The 866 

samples were quantified using a Qubit Flex Fluorometer (Thermo Fisher Scientific, cat. no. 867 

Q33327) and Qubit dsDNA HS Assay kit (Thermo Fisher Scientific, cat. no. Q32854) and 868 

analyzed via High Sensitivity D5000 ScreenTape (Agilent, cat. no’s.  5067-5594, 5067-5593, 869 

and 5067-5592) on an Agilent 4150 TapeStation system. 870 

 871 

PacBio SMRTBell library preparation: The following section of the sequencing preparation 872 

was completed using kit components from the MAS-Seq for 10x Single Cell 3' kit (PacBio, cat. 873 

no. 102-659-600), as well as individually created oligos. A PCR mix for the sample was made 874 

using 25µl of MAS PCR Mix, 5ng of cDNA in 2µl of volume, and 23µl of nuclease-free water for 875 

a total volume of 50µl. The master mix was mixed and a 45µl aliquot was distributed to one well 876 

of a 0.2ml PCR tube strip (USA Scientific Inc., cat. no. 1402-2500) where 5µl addition of a 5µM 877 

primer mix of primers A-FWD and Q-REV was added (A-FWD, Sequence: 878 

AGCTTACTUGTGAAGAUCTACACGACGCTCTTCCGATCT, Q-REV, Sequence: 879 

AUGCACACAGCUACUAAGCAGTGGTATCAACGCAGAG). The sample was mixed and 880 

incubated in the thermal cycler for an initial denaturation step of one cycle for 3 minutes at 98°C, 881 

then seven cycles of denaturation for 20 seconds at 98°C , annealing for 30 seconds at 68°C, 882 
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and extension for 8 minutes at 72°C, finally, a terminal extension of one cycle for 5 minutes at 883 

72°C, holding at 4°C. After incubation, 47.5µl (0.95x) SPRI beads were added for a clean. The 884 

resultant product was eluted into 60µl of elution buffer. The product was quantified via Qubit 885 

Flex Fluorometer. 55µl was transferred into a 0.2ml PCR tube, 2µl of MAS Enzyme was added 886 

to each reaction then pipette mixed. The reaction was incubated for 30 minutes at 37°C, holding 887 

at 4°C. The reaction was removed, and two reaction mixes were added, the first consisted of 888 

1.5µl of MAS Adapter A Fwd 1.5 µl of MAS Adapter Q Rev, and 20µl of MAS Ligation additive. 889 

The second reaction mix added consisted of 10µl of Mas Ligase Buffer, and 10ml of MAS 890 

Ligase for a total combined reaction of 100µl. The reaction was mixed with wide bore pipette 891 

tips (Mettler-Toledo Rainin LLC, cat. no. 30389241), prior to being incubated for 60 minutes at 892 

42°C, holding at 4°C. The reactions were removed from the thermal cycler and 75µl (0.75x) of 893 

resuspended SPRI beads were added and cleaned according to the manufacturer’s 894 

recommendations. The reaction was eluted in 45µl of elution buffer 42µL of the eluted MAS 895 

array was transferred to a new 0.2ml PCR tube and a reaction mix consisting of 6µl of Repair 896 

buffer, and 2µl of DNA Repair Mix was added for a total volume of 50µl. The reaction was mixed 897 

using wide bore pipette tips before incubating for 30 minutes at 37°C, holding at 4°C. The 898 

reactions were removed from the thermal cycler and 37.5µl (0.75x) of resuspended SPRI beads 899 

were added, and then cleaned according to the manufacturer’s recommendations. The reaction 900 

was eluted in 40µl of elution buffer. To the 40µl of eluted DNA, a reaction mix consisting of 5µl 901 

of Nuclease buffer and 5ml of Nuclease mix was added for a total volume of 50µl. The reaction 902 

was pipette mixed using wide bore pipettes then incubated for 60 minutes at 37°C, holding at 903 

4°C. The reactions were removed from the thermal cycler and 37.5µl (0.75x) of resuspended 904 

SPRI beads were added and cleaned according to the manufacturer’s recommendations. The 905 

reaction was eluted in 25µl of elution buffer. The final product was then quantified using a Qubit 906 
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Flex Fluorometer and characterized using a High Sensitivity D5000 ScreenTape on an Agilent 907 

4150 TapeStation system. 908 

 909 

Illumina TruSeq RNA-seq for nine DepMap cell lines and three SeraCare fusion RNA mix 910 

v4 replicates:   DepMap samples were quantified by Qubit Ribogreen and normalized to 350 ng 911 

inputs respectively for the TruSeq stranded RNA protocol. All samples were determined by 912 

Agilent BioAnalyzer to have high quality with RINS > 9.  Poly-adenylated RNAs were selected 913 

prior to fragmentation on the Covaris.  Stranded cDNA libraries were generated following the 914 

Illumina TruSeq Stranded Total RNA protocol  (TruSeq Stranded Total RNA Reference Guide ).  915 

cDNA libraries incorporating ligated adapters were pooled and loaded on the NovaSeq SP for 916 

paired-end 151 bp sequencing targeting 50M paired reads per sample. 917 

 918 

Single cell RNA-seq data: Melanoma sample M132TS – used previously published data from 919 

Aziz et al. (Al'Khafaji et al. 2023). This earlier publication focused on the T-cells and here we 920 

focused on the tumor cells, and so we extracted both and reprocessed through CellBender 921 

(Fleming et al. 2023). HGSOC – used previously published data from Dondi et al. (Dondi et al. 922 

2023), reads downloaded from the European Genome-Phenome Archive (EGA) (Freeberg et al. 923 

2022) under accessions EGAD00001009814 (PacBio) and EGAD00001009815 (Illumina).  Cell 924 

annotations and long read gene counts per cell were retrieved from Dondi et al. For 925 

visualization, counts were normalized independently for each patient using sctransform 926 

(Hafemeister and Satija 2019), regressing out cell cycle effects and library size as non-927 

regularized dependent variables. Similar cells were grouped using Seurat FindClusters (Satija et 928 

al. 2015). The results of cell clustering and cell typing were visualized in a low-dimensional 929 

representation using Uniform Manifold Approximation and Projection (UMAP) (Leland McInnes 930 

2018). 931 
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Supplemental Code 932 

All analyses and figures generated as part of this work are available at 933 

https://github.com/broadinstitute/CTAT-LRF-Paper . 934 

 935 

Data Access 936 

Simulated fusion reads leveraged from the earlier JAFFAL study (Davidson et al. 2022)  were 937 

downloaded from 938 

https://ndownloader.figshare.com/files/27676470. Our PBSIM3 simulated fusion reads are 939 

available at Zenodo at: https://zenodo.org/records/10650516  doi:10.5281/zenodo.10650516. 940 

Illumina TruSeq and PacBio MAS-ISO-seq reads generated for the SeraCare SeraSeq Fusion 941 

Mix RNA v4 are available in SRA under BioProject ID PRJNA1076207, and for the nine 942 

DepMap cell line transcriptomes under BioProject ID PRJNA1077632. The human T-cell 943 

infiltrating melanoma single-cell RNA-sequencing data examined here and previously published 944 

in (Al'Khafaji et al. 2023) are available from dbGAP with accession number phs003200.v1.p1. 945 

The HGSOC single cell data were obtained from EGA study EGAS00001006807 as data set 946 

IDs EGAD00001009814 (PacBio) and EGAD00001009815 (Illumina).  947 
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