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Abstract8

Spiny projection neurons (SPNs) in dorsal striatum are often proposed as a locus of reinforce-9

ment learning in the basal ganglia. Here, we identify and resolve a fundamental inconsistency10

between striatal reinforcement learning models and known SPN synaptic plasticity rules. Direct-11

pathway (dSPN) and indirect-pathway (iSPN) neurons, which promote and suppress actions,12

respectively, exhibit synaptic plasticity that reinforces activity associated with elevated or sup-13

pressed dopamine release. We show that iSPN plasticity prevents successful learning, as it14

reinforces activity patterns associated with negative outcomes. However, this pathological be-15

havior is reversed if functionally opponent dSPNs and iSPNs, which promote and suppress the16

current behavior, are simultaneously activated by efferent input following action selection. This17

prediction is supported by striatal recordings and contrasts with prior models of SPN repre-18

sentations. In our model, learning and action selection signals can be multiplexed without19

interference, enabling learning algorithms beyond those of standard temporal difference models.20

Introduction21

Numerous studies have proposed that the basal ganglia is a reinforcement learning system (Joel22

et al., 2002; Niv, 2009; Ito and Doya, 2011). Reinforcement learning algorithms use experienced23

and predicted rewards to learn to predict the expected future reward associated with an organism’s24

current state and the action to select in order to maximize this reward (Sutton and Barto, 2018).25

Spiny projection neurons (SPNs) in the striatum are well-positioned to take part in such an algo-26

rithm, as they receive diverse contextual information from the cerebral cortex and are involved in27

both action selection (in dorsal striatum; Packard and Knowlton, 2002; Seo et al., 2012; Balleine28

et al., 2007) and value prediction (in ventral striatum; Cardinal et al., 2002; Montague et al., 1996;29

O’Doherty et al., 2004). Moreover, plasticity of SPN input synapses is modulated by midbrain30

dopamine release (Wickens et al., 1996; Calabresi et al., 2000; Contreras-Vidal and Schultz, 1999).31

A variety of studies support the view that this dopamine release reflects reward prediction error32

(Schultz et al., 1997; Montague et al., 1996; Houk and Adams, 1995), which in many reinforcement33

learning algorithms is the key quantity used to modulate learning (Sutton and Barto, 2018; Niv,34

2009).35
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Despite these links, several aspects of striatal physiology are difficult to reconcile with reinforcement36

learning models. SPNs are classified in two main types – direct-pathway (dSPNs) and indirect-37

pathway (iSPNs). These two classes of SPNs exert opponent effects on action based on perturbation38

data (Kravitz et al., 2010; Freeze et al., 2013; Lee and Sabatini, 2021), but also exhibit highly39

correlated activity (Cui et al., 2013). Moreover, dSPNs and iSPNs express different dopamine40

receptors (D1-type and D2-type) and thus undergo synaptic plasticity according to different rules.41

In particular, dSPN inputs are potentiated when coincident pre- and post-synaptic activity is42

followed by above-baseline dopamine activity, while iSPN inputs are potentiated when coincident43

pre- and post-synaptic activity is followed by dopamine suppression (Shen et al., 2008; Frank, 2005;44

Iino et al., 2020).45

Prior studies have proposed that dSPNs learn from positive reinforcement to promote actions,46

and iSPNs learn from negative reinforcement to suppress actions (Cruz et al., 2022; Collins and47

Frank, 2014; Jaskir and Frank, 2023; Varin et al., 2023; Mikhael and Bogacz, 2016; Dunovan et al.,48

2019). However, we will show that a straightforward implementation of such a model fails to yield49

a functional reinforcement learning algorithm, as the iSPN learning rule assigns blame for negative50

outcomes to the wrong actions. Correct learning in this scenario requires a mechanism to selectively51

update corticostriatal weights corresponding to the chosen action, which is absent in prior models52

(see Discussion).53

In this work, we begin by rectifying this inconsistency between standard reinforcement learning54

models of the striatum and known SPN plasticity rules. The iSPN learning rule reported in the55

literature reinforces patterns of iSPN activity that are associated with dopamine suppression, in-56

creasing the likelihood of repeating decisions that previously led to negative outcomes. We show57

that this pathological behavior is reversed if, after action selection, opponent dSPNs and iSPNs58

receive correlated efferent input encoding the animal’s selected action. A central contribution of our59

model is a decomposition of SPN activity into separate modes of activity for action selection and for60

learning, the latter driven by this efferent input. This decomposition provides an explanation for61

the apparent paradox that the activities of dSPNs and iSPNs are positively correlated despite their62

opponent causal functions (Cui et al., 2013), and provides a solution to the problem of multiplexing63

signals related to behavioral execution and learning. The model also makes predictions about the64

time course of SPN activity, including that dSPNs and iSPNs that are responsible for regulating65

the same behavior (promoting and suppressing it, respectively) should be coactive following action66

selection. This somewhat counterintuitive prediction contrasts with prior proposals that dSPNs67

that promote an action are coactive with iSPNs that suppress different actions (Mink, 1996; Red-68

grave et al., 1999). We find support for this prediction in experimental recordings of dSPNs and69

iSPNs during spontaneous behavior.70

Next, we show that the nonuniformity of dSPN and iSPN plasticity rules enables more sophisticated71

learning algorithms than can be achieved in models with a single plasticity rule. In particular, it72

enables the striatum to implement so-called off-policy reinforcement learning algorithms, in which73

the corticostriatal pathway learns from the the outcomes of actions that are driven by other neural74

pathways. Off-policy algorithms are commonly used in state-of-the-art machine learning models, as75

they dramatically improve learning efficiency by facilitating learning from expert demonstrations,76

mixture-of-experts models, and replayed experiences (Arulkumaran et al., 2017). Following the77

implications of this model further, we show that off-policy algorithms require a dopaminergic signal78

in dorsal striatum that combines classic state-based reward prediction error with a form of action79

prediction error. We confirm a key signature of this prediction in recent dopamine data collected80
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from dorsolateral striatum during spontaneous behavior.81

Results82
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Figure 1: Corticostriatal action selection circuits and plasticity rules. A. Left, diagram of cortical inputs to striatal
populations. Right, illustration of action selection architecture. Populations of dSPNs (blue) and iSPNs (red) in DLS
are responsible for promoting and suppressing specific actions, respectively. Active neurons (shaded circles) illustrate
a pattern of activity consistent with typical models of striatal action selection, in which dSPNs that promote a
chosen action and iSPNs that suppress other actions are active. B. Illustration of three-factor plasticity rules at SPN
input synapses, in which adjustments to corticostriatal synaptic weights depend on presynaptic cortical activity, SPN
activity, and dopamine release. C. Illustration of different models of the dopamine-dependent factor f(δ) in dSPN
(blue) and iSPN (red) plasticity rules.

In line with previous experimental (Wickens et al., 1996; Calabresi et al., 2000; Contreras-Vidal
and Schultz, 1999) and modeling (Sutton and Barto, 2018; Niv, 2009) studies, we model plasticity
of corticostriatal synapses using a three-factor learning rule, dependent on coincident presynaptic
activity, postsynaptic activity, and dopamine release (Fig 1A,B). Concretely, we model plasticity
of the weight w of a synapse from a cortical neuron with activity x onto a dSPN or iSPN with
activity y as

∆wdSPN = fdSPN(δ) · ydSPN · x, (1)

∆wiSPN = f iSPN(δ) · yiSPN · x, (2)

where δ represents dopamine release relative to baseline, and the functions fdSPN(δ) and f iSPN(δ)83

model the dependence of the two plasticity rules on dopamine concentration.84

For dSPNs, the propensity of input synapses to potentiate increases with increasing dopamine85

concentration, while for iSPNs the opposite is true. This observation is corroborated by converging86

evidence from observations of dendritic spine volume, intracellular PKA measurements, and spike-87

timing dependent plasticity protocols (Shen et al., 2008; Gurney et al., 2015; Iino et al., 2020;88
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Lee et al., 2021). For the three-factor plasticity rule above, these findings imply that fdSPN is an89

increasing function of δ while f iSPN is a decreasing function. Prior modeling studies have proposed90

specific plasticity rules that correspond to different choices of fdSPN and f iSPN, some examples of91

which are shown in Fig. 1C.92

iSPN plasticity rule impedes successful reinforcement learning93

Prior work has proposed that dSPNs activate when actions are performed and iSPNs activate when94

actions are suppressed (Fig. 1A). When an animal selects among multiple actions, subpopulations95

of dSPNs are thought to promote the selected action, while other subpopulations of iSPNs inhibit96

the unchosen actions (Mink, 1996; Redgrave et al., 1999). We refer to this general description as97

the “canonical action selection model” of SPN activity and show that this model, when combined98

with the plasticity rules above, fails to produce a functional reinforcement learning algorithm.99

This failure is specifically due to the iSPN plasticity rule. Later, we also show that the SPN100

representation predicted by the canonical action selection model is inconsistent with recordings of101

identified dSPNs and iSPNs. We begin by analyzing a toy model of an action selection task with two102

actions, one of which is rewarded. In the model, the probability of selecting an action is increased103

when the dSPN corresponding to that action is active and decreased when the corresponding iSPN104

is active. After an action is taken, dopamine activity reports the reward prediction error, increasing105

when reward is obtained and decreasing when it is not.106

It is easy to see that the dSPN plasticity rule in Eq. (1) is consistent with successful reinforcement107

learning (Fig. 2A). Suppose action 1 is selected, leading to reward (Fig. 2A, center). The resulting108

dopamine increase potentiates inputs to the action 1 dSPN from cortical neurons that are active109

during the task, making action 1 more likely to be selected in the future (Fig. 2A, right).110

At first glance, it may seem that a similar logic would apply to iSPNs, since their suppressive effect111

on behavior and reversed dependence on dopamine concentration are both opposite to dSPNs.112

However, a more careful examination reveals that the iSPN plasticity rule in Eq. (2) does not113

promote successful learning. In the canonical action selection model, dSPNs promoting a selected114

action and iSPNs inhibiting unselected actions are active. If a negative outcome is encountered115

leading to a dopamine decrease, Eq. (2) predicts that inputs to iSPNs corresponding to unselected116

actions are strengthened (LTP in Fig. 2B, center). This makes the action that led to the negative117

outcome more rather than less likely to be taken when the same cortical inputs are active in118

the future (Fig. 2B, right). More generally, the model demonstrates that, while the plasticity119

rule of Eq. (1) correctly reinforces dSPN activity patterns that lead to positive outcomes, Eq. (2)120

incorrectly reinforces iSPN activity patterns that lead to negative outcomes. The function of iSPNs121

in inhibiting action does not change the fact that such reinforcement is undesirable.122
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Figure 2: Consequences of the canonical action selection model of SPN activity. A. Example in which dSPN
plasticity produces correct learning. Left: cortical inputs to the dSPN and iSPN are equal prior to learning. Shading of
corticostriatal connections indicates synaptic weight, and shading of blue and red circles denotes dSPN/iSPN activity.
Middle: action 1 is selected, corresponding to elevated activity in the dSPN that promotes action 1 and the iSPN that
suppresses action 2. In this example, action 1 leads to reward and increased DA activity. This potentiates the input
synapse to the action 1-promoting dSPN and (depending on the learning rule, see Fig. 1) depresses the input to the
action 2-suppressing iSPN. Right: in a subsequent trial, cortical input to the action 1-promoting dSPN is stronger,
increasing the likelihood of selecting action 1. Here, the dSPN-mediated effect of increasing action 1’s probability
overcomes the iSPN-mediated effect of decreasing action 2’s probability. B. Example in which iSPN plasticity
produces incorrect learning. Same as A, but in a scenario in which action 2 is selected leading to punishment and a
corresponding decrease in DA activity. As a result, the input synapse to the action 2-promoting dSPN is (depending
on the learning rule) depressed, and the input to the action 1-suppressing iSPN is potentiated. On a subsequent trial,
the probability of selecting action 2 rather than action 1 is greater, despite action 2 being punished. Note that the
dSPN input corresponding to action 2 is (potentially) weakened, which correctly decreases the probability of selecting
action 2, but this effect is not sufficient to overcome the strengthened action 1 iSPN activity. C. Performance of
a simulated striatal reinforcement learning system in go/no-go tasks with different reward contingencies. D. Same
as C, but for action selection tasks with two cortical input states, two available actions, and one correct action per
state, under different reward protocols.

We note that, depending on the learning rule (Fig. 1C), inputs to dSPNs that promote the selected123

action may be weakened (LTD in Fig. 2B, left), which correctly disincentivizes the action that124

led to a negative outcome. However, this dSPN effect competes with the pathological behavior125

of the iSPNs and is often unable to overcome it. We also note that, if dopamine increases lead126

to depression of iSPN inputs (Fig. 1A, center, right), positive outcomes will lead to actions that127

were correctly being inhibited by iSPNs to be less inhibited in the future. Thus, both positive and128

negative outcomes may cause incorrect iSPN learning. Some sources suggest that while dopamine129
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suppression increases D2 receptor activation, dopamine increase has little effect on D2 receptors130

(Dreyer et al., 2010), corresponding to the rectified model of f(δ) (Fig. 1C, left). In this case,131

pathological iSPN plasticity behavior still manifests when dopamine activity is suppressed (as in132

the examples of Fig. 2B).133

We simulated learning of multiple tasks with the three-factor plasticity rules above, with dopamine134

activity modeled as reward prediction error obtained using a temporal difference learning rule. In135

a go/no-go task with one cue in which the “go” action is rewarded (Supp. Fig. 1), the system136

learns the wrong behavior when negative performance feedback is provided on no-go trials, and137

thus iSPN plasticity is the main driver of learning (Fig. 2C). We also simulated a two-alternative138

forced choice task in which there are two cues (corresponding to different cortical input patterns),139

each with a corresponding target action. When performance feedback consists of rewards for correct140

actions, the system learns the task, as dSPNs primarily drive the learning. However, when instead141

performance feedback consists of giving punishments for incorrect actions, the system does not learn142

the task, as iSPNs primarily drive the learning (Fig. 2D). We note that, in principle, this problem143

could be avoided if the learning rate of iSPNs were very small compared to that of dSPNs, ensuring144

that reinforcement learning is always primarily driven by the dSPN pathway (leaving iSPNs to145

potentially perform a different function). However, this alternative would be inconsistent with146

prior studies indicating a significant role for the indirect pathway in reinforcement learning (Peak147

et al., 2020; Lee and Sabatini, 2021). The model we introduce below makes use of contributions to148

learning from both pathways.149

Efferent activity in SPNs enables successful reinforcement learning150

We have shown that the canonical action selection model, when paired with Eqs. (1) and (2),
produces incorrect learning. What pattern of SPN activity would produce correct learning? In the
model, the probability of selecting an action is determined by the “difference mode” ydSPN−yiSPN,
where ydSPN and yiSPN are the activities of dSPN and iSPN neurons associated with that action.
We analyzed how the plasticity rule of Eqs. (1) and (2) determines changes to this difference mode.
In the simplest case in which the SPN firing rate is a linear function of cortical input (that is,
yd/iSPN = wd/iSPN · x) and plasticity’s dependence on dopamine concentration is also linear (that
is, fd/iSPN(δ) ∝ ±δ; Fig. 1C, center), the change in the probability of selecting an action due to
learning is

∆(ydSPN − yiSPN) = ∆wdSPN · x−∆wiSPN · x
∝ δydSPN(x · x)− (−δ)yiSPN(x · x)
∝ δ(ydSPN + yiSPN). (3)
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Figure 3: The efference model of SPN activity. A. Illustration of the efference model in an action selection task.
Left: feedforward SPN activity driven by cortical inputs. Center: once action 2 is selected, efferent inputs excite the
dSPN and iSPN responsible for promoting and suppressing action 2. Efferent activity is combined with feedforward
activity, such that the action 2-associated dSPNs and iSPNs are both more active than the action 1 dSPNs and
iSPNs, but the relative dSPN and iSPN activity for each action remains unchanged. This produces strong LTD and
LTP in the action 2-associated dSPNs and iSPNs upon a reduction in dopamine activity. Right: In a subsequent
trial, this plasticity correctly reduces the likelihood of selecting action 2. B. The activity levels of the dSPN and iSPN
populations that promote and suppress a given action can be plotted in a two-dimensional space. The difference mode
influences the probabiility of taking that action, while activity in the sum mode drives future changes to activity in
the difference mode via plasticity. Efferent activity excites the sum mode. C. Performance of a striatal RL system
using the efference model on the tasks of Fig. 2C. D. Performance of a striatal RL system using the efference model
on the tasks of Fig. 2D.

Changes to the “difference mode” ydSPN − yiSPN are therefore driven by the “sum mode” ydSPN +151

yiSPN. This implies that the activity pattern that leads to correct learning about an action’s outcome152

is different from the activity pattern that selects the action. To promote or inhibit, respectively, an153

action that leads to a dopamine increase or decrease, this analysis predicts that both dSPNs that154

promote and iSPNs that inhibit the action should be co-active. A more general argument applies155

for other learning rules and firing rate nonlinearities: as long as yd/iSPN is an increasing function156

of total input current, fdSPN(δ) has positive slope, and f iSPN(δ) has negative slope, changes in157

difference mode activity will be positively correlated with sum mode activity (see Supplemental158

Information).159

The key insight of the above argument is that the pattern of SPN activity needed for learning160

involves simultaneous excitation of dSPNs that promote the current behavior and iSPNs that161

inhibit it. This differs from the pattern of activity needed to drive selection of that behavior162

in the first place. We therefore propose a model in which SPN activity contains a substantial163

efferent component that follows action selection and promotes learning, but has no causal impact164

on behavior. In the model, feedforward corticostriatal inputs initially produce SPN activity whose165

difference mode causally influences action selection, consistent with the canonical model (Fig. 3A,166
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left). When an action is performed, both dSPNs and iSPNs responsible for promoting or inhibiting167

that action receive efferent excitatory input, producing sum-mode activity. Following this step,168

SPN activity reflects both contributions (Fig. 3A, center). The presence of sum-mode activity169

leads to correct synaptic plasticity and learning (Fig. 3A, right). Unlike the canonical action170

selection model (Fig. 1A), this model thus predicts an SPN representation in which, after an action171

is selected, the most highly active neurons are those responsible for regulating that behavior and172

not other behaviors.173

In SPN activity space, the sum and difference modes are orthogonal to one another. This orthog-174

onality has two consequences. First, it implies that encoding the action in the difference mode (as175

in the canonical action selection model) produces synaptic weight changes that do not promote176

learning, consistent with the competing effects of dSPN and iSPN plasticity that we previously177

described. Second, it implies that adding efferent activity along the sum mode, which produces178

correct learning, has no effect on action selection. The model thus provides a solution to the179

problem of interference between “forward pass” (action selection) and “backward pass” (learning)180

activity, a common issue in models of biologically plausible learning algorithms (see Discussion).181

In simulations, we confirm that unlike the canonical action selection model, this efference model182

solves go/no-go (Fig. 3C) and action selection (Fig. 3D) tasks regardless of the reward protocol.183

Although the derivation above assumes linear SPN responses and linear dependences of plasticity184

on dopamine concentration, our model enables successful learning even using a nonlinear model185

of SPN responses and a variety of plasticity rules (Fig. 3C,D; see Supplemental Information for186

a derivation that explains this general success). Finally, we also confirmed that our results apply187

to cases in which actions are associated with distributed modes of dSPN and iSPN activity, and188

with a larger action space (Supp. Fig. 2). This success arises from the ability to form orthogonal189

subspaces for action selection and learning in this distributed setting. Although we describe the190

qualitative behavior of our model using discrete action spaces for illustrative purposes, we expect191

such representations to be more faithful to neural recordings.192

Temporal dynamics of the efference model193

We simulated a two-alternative forced choice task using a firing rate model of SPN activity. This194

allowed us to directly visualize dynamics in the sum and difference modes and verify that the195

efference model prevents interference between them. In each trial of the forced choice task, one of196

two stimuli is presented and one of two actions is subsequently selected (Fig. 4A, top row). The197

selected action is determined by the difference mode activity of action-encoding SPNs during the198

first half of the stimulus presentation period. The sum mode is activated by efferent input during199

the second half of this period. Reward is obtained if the correct action is selected in a trial, and200

each stimulus has a different corresponding correct action. Plasticity of cortical weights encoding201

stimulus identity onto SPNs is governed by Eqs. (1), (2).202

The model learned the correct policy in about 10 trials. Early in learning, difference mode activity203

is small and primarily driven by noise, leading to random action selection (Fig. 4B). However, sum204

mode activity is strongly driven after an action is selected (Fig. 4B, bottom). As learning progresses,205

the magnitude of the difference mode activity evoked by the stimulus increases (Fig. 4B, third row).206

Late in learning, dSPN and iSPN firing rates are more separable during stimulus presentation,207

leading to correct action selection (Fig. 4C, second row). Both difference and sum mode activity is208
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evident late in learning, with the former leading the latter (Fig. 4C, bottom two rows).209

Throughout the learning process, difference and sum mode activity for the two actions are separable210

and non-interfering, even when both are present simultaneously. As a result, action selection is not211

disrupted by efferent feedback. We conclude that the efference model multiplexes action selection212

and learning signals without separate learning phases or gated plasticity rules. While we illustrated213

this in a task with sequential trials for visualization purposes, this non-interference enables learning214

based on delayed reward and efferent feedback from past actions even as the selection of subsequent215

actions unfolds.216

Efference model predicts properties of SPN activity217
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Figure 5: Comparisons of model predictions about bulk dSPN and iSPN activity to experimental data. A. Schematic
of experimental setup, taken from Markowitz et al. (2018). Neural activity and kinematics of spontaneously behaving
mice are recorded, and behavior is segmented into stereotyped “behavioral syllables” using the MoSeq pipeline. B.
In simulation of efference model with random feedforward cortical inputs, cross-correlation of total dSPN and iSPN
activity. C. Cross-correlation between fiber photometry recordings of bulk dSPN and iSPN activity in freely behaving
mice, using the data from Markowitz et al. (2018). Line thickness indicates standard error of the mean.

Thus far, we have provided theoretical arguments and model simulations that suggest that simul-218

taneous efferent input to opponent dSPNs and iSPNs is necessary for reinforcement learning, given219

known plasticity rules. We next sought to test this prediction in neural data. We predict these220

dynamics to be particularly important in scenarios where the action space is large and actions221

are selected continuously, without a clear trial structure. We therefore used data from a recent222

study which recorded bulk and cellular dSPN and iSPN activity in spontaneously behaving mice223

(Fig. 5A; Markowitz et al., 2018). As no explicit rewards or task structure were provided during224

recording sessions, we adopted a modeling approach that makes minimal assumptions about the225

inputs to SPNs besides the core prediction of efferent activity. Specifically, we used a network226

model in which (1) populations of dSPNs and iSPNs promote or suppress different actions, (2) the227

feedforward inputs to all SPNs are random, (3) actions are sampled with log-likelihoods scaling228

according to the associated dSPN and iSPN difference mode, and (4) efferent activity excites the229

sum mode corresponding to the chosen action.230

In this model, difference mode dSPN and iSPN activity drives behaviors, and those behaviors cause231

efferent activation of the corresponding sum mode. As a result, on average, dSPN activity tends to232

lead to increased future iSPN activity, while iSPN activity leads to decreased future dSPN activity.233

Consequently, the temporal cross-correlation between total dSPN activity and iSPN activity is234
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asymmetric, with present dSPN activity correlating more strongly with future iSPN activity than235

with past iSPN activity (Fig. 5B). Such asymmetry is not predicted by the canonical action selection236

model, or models that assume dSPNs and iSPNs are co-active. Computing the temporal cross-237

correlation in the bulk two-color photometry recordings of dSPN and iSPN activity, we find a very238

similar skewed relationship in the data (Fig. 5C). We confirmed this result is not an artifact of the239

use of different indicators for dSPN and iSPN activity by repeating the analysis on data from mice240

where the indicators were reversed and finding the same result (Supp. Fig. 3).241

Our model makes even stronger predictions about SPN population activity and its relationship to242

action selection. First, it predicts that both dSPNs and iSPNS exhibit similar selectivity in their243

tuning to actions. This contrasts with implementations of the canonical action selection model in244

which iSPNs are active whenever their associated action is not being performed and thus are more245

broadly tuned than dSPNs (Fig. 1A). Second, it also predicts that efferent activity excites dSPNs246

that promote the currently performed action and iSPNs that suppress the currently performed247

action. As a result, dSPNs whose activity increases during the performance of a given action248

should tend to be above baseline shortly prior to the performance of that action. By contrast,249

iSPNs whose activity increases during an action should tend to be below baseline during the same250

time interval (Fig. 6A, left; Fig. 4C). Moreover, this effect should be action-specific: the dSPNs and251

iSPNs whose activity increases during a given action should display negligible average fluctuations252

around the onset of other actions (Fig. 6A, right). These predictions can also be reinterpreted in253

terms of the sum and difference modes. The difference mode activity associated with an action is254

elevated prior to selection of that action, while the sum mode activity is excited following action255

selection (Fig. 6B; Fig. 4C). These two phases of difference and sum mode activity are not predicted256

by the canonical action selection model.257
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Figure 6: Comparisons of model predictions about action-tuned SPN subpopulations to experimental data. A.
Activity of dSPNs (blue) and iSPNs (red) around the onset of their associated action (left) or other actions (right)
in the simulation from Fig. 5. B. Same information as A, but plotting activity of the sum (dSPN + iSPN) and
difference (dSPN - iSPN) modes. C. For an example experimental session, dSPN activity modes associated with each
of the behavioral syllables, in z-scored firing rate units. D. Correlation between identified dSPN and iSPN activity
modes in two random subsamples of the data, for shuffled (left, circles) and real (right, x’s) data. E. Projection of
dSPN (blue) and iSPN (red) activity onto the syllable-associated modes identified in panel C, around the onset of
the associated syllable (left panel) or other syllables (right panel) averaged across all syllables. Error bars indicate
standard error of the mean across syllables. F. Same as panel E, restricting the analysis to mice in which dSPNs and
iSPNs were simultaneously recorded. G. Same data as panel F, but plotting activity of the sum (dSPN + iSPN) and
difference (dSPN - iSPN) modes.

To test these hypotheses, we used calcium imaging data collected during spontaneous mouse behav-258

ior (Markowitz et al., 2018). The behavior of the mice was segmented into consistent, stereotyped259

kinematic motifs referred to as “behavioral syllables,” as in previous studies (Fig. 5A). We regard260

these behavioral syllables as the analogs of actions in our model. First, we examined the tuning261

of dSPNs and iSPNs to different actions and found that, broadly consistent with what our model262

predicts, both subpopulations exhibit similar selectivities (Supp. Fig. 4). Next, to test our predic-263

tions about dynamics before and after action selection (Fig. 6A,B), we identified, for each syllable,264

dSPN and iSPN population activity vectors (“modes”) that increased the most during performance265

of that syllable (Fig. 6C). We confirmed that these modes are meaningful by checking that modes266

identified using two disjoint subsets of the data are correlated (Fig. 6D). We then plotted the activ-267

ity of these modes around the time of onset of the corresponding syllable, and averaged the result268

across the choice of syllables (Fig. 6E). The result displays remarkable agreement with the model269

prediction in Fig. 6A.270
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The majority of the above data consisted of recordings of either dSPNs or iSPNs from a given271

mouse. However, in a small subset (n=4) of mice, dSPNs and iSPNs were simultaneously recorded272

and identified. We repeated the analysis above on these sessions, and found the same qualitative273

results (Fig. 6F). The simultaneous recordings further allowed us to visualize the sum and difference274

mode activity (Fig. 6G), which also agrees with the predictions of our model (Fig. 6B).275

Efference model enables off-policy reinforcement learning276
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Figure 7: The efference model enables off-policy reinforcement learning. A. Illustration of the efference model
when the striatum shares control of behavior with other pathways. In this example, striatal activity biases the
action selection toward choosing action 2, but other neural pathways override the striatum and cause action 1 to be
selected instead (left). Following action selection, efferent activity excites the dSPN and iSPN associated with action
1. However, the outputs of the striatal population remain unchanged. B. Performance of RL models in a simulated
action selection task (10 cortical states, 10 available actions, in each state one of the actions results in a reward of 1
and the others result in zero reward). Control is shared between the striatal RL circuit and anothere pathway that
biases action selection toward the correct action. Different lines indicate different strength of striatal control relative
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Markowitz et al. (2023). Each dot indicates a different experimental session.
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Prior studies have argued for the importance of motor efference copies during basal ganglia learn-277

ing, in particular when action selection is influenced by other brain regions (Fee, 2014; Lindsey278

and Litwin-Kumar, 2022). Indeed, areas such as the motor cortex and cerebellum drive behavior279

independent of the basal ganglia (Exner et al., 2002; Wildgruber et al., 2001; Ashby et al., 2010;280

Silveri, 2021; Bostan and Strick, 2018). Actions taken by an animal may therefore at times differ281

from those most likely to be selected by striatal outputs (Fig. 7A), and it may be desirable for282

corticostriatal synapses to learn about the consequences of these actions.283

In the reinforcement learning literature, this kind of learning is known as an “off-policy” algorithm,284

as the reinforcement learning system (in our model, the striatum) learns from actions that follow285

a different policy than its own. Off-policy learning has been observed experimentally, for instance286

in the consolidation of cortically driven behaviors into subcortical circuits including dorsolateral287

striatum (Kawai et al., 2015; Hwang et al., 2019; Mizes et al., 2023). Such learning requires efferent288

activity in SPNs that reflects the actions being performed, rather than the action that would be289

performed based on the striatum’s influence alone.290

We modeled this scenario by assuming that action selection is driven by weighted contributions from291

both the striatum and other motor pathways and that the ultimately selected action drives efferent292

activity (Fig. 7A; see Methods). We found that when action selection is not fully determined by the293

striatum, such efferent activity is critical for successful learning (Fig. 7B). Notably, in our model,294

efferent activity has no effect on striatal action selection, due to the orthogonality of the sum and295

difference modes (Fig. 3B). In a hypothetical alternative model in which the iSPN plasticity rule296

is the same as that of dSPNs, the efferent activity needed for learning is not orthogonal to the297

output of the striatum, impairing off-policy learning (Supp. Fig. 5). Thus, efferent excitation of298

opponent dSPNs/iSPNs is necessary both to implement correct learning updates given dSPN and299

iSPN plasticity rules, and to enable off-policy reinforcement learning.300

Off-policy reinforcement learning predicts relationship between dopamine activ-301

ity and behavior302

We next asked whether other properties of striatal dynamics are consistent with off-policy re-
inforcement learning. We focused on the dynamics of dopamine release, as off-policy learning
makes specific predictions about this signal. Standard temporal difference (TD) learning models of
dopamine activity (Fig. 7C, top) determine the expected future reward (or “value”) V (s) associated
with each state s using the following algorithm:

δt = rt + V (st)− V (st−1) (4)

V (st)← V (st) + αδt, (5)

where st and st−1 indicate current and previous states, rt indicates the currently received reward,303

α is a learning rate factor, and δt is the TD error thought to be reflected in phasic dopamine304

responses. These dopaminergic responses can be used as the learning signal for a updating action305

selection in dorsal striatum (Eq. 1, 2), an arrangement commonly referred to as an“actor-critic”306

architecture (Niv, 2009).307

TD learning of a value function V (s) is an on-policy algorithm, in that the value associated with
each state is calculated under the assumption that the system’s future actions will be similar to
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those taken during learning. Hence, such algorithms are is poorly suited to training an action
selection policy in the striatum in situations where the striatum does not fully control behavior, as
the values V (s) will not reflect the expected future reward associated with a state if the striatum
were to dictate behavior on its own. Off-policy algorithms such as Q-learning solve this issue by
learning an action-dependent value function Q(s, a), which indicates the expected reward associated
with taking action a in action s (Fig. 7C, bottom), via the following algorithm:

δt = rt + V (st)−Q(st−1, at−1) (6)

V (s) = max
a

Q(s, a). (7)

This algorithm predicts that the dopamine response δt is action-dependent. The significance of on-308

policy vs. off-policy learning algorithms can be demonstrated in simulations of operant conditioning309

tasks in which control of action selection is shared between the striatum and another “tutor”310

pathway that biases responses toward the correct action. When the striatal contribution to decision-311

making is weak, it is unable to learn the appropriate response when dopamine activity is modeled312

as a TD error (Fig. 7D). On the other hand, a Q-learning model of dopamine activity enables313

efficient striatal learning even when control is shared with another pathway.314

For the spontaneous behavior paradigm we analyzed previously (Fig. 5A), Q-learning but not315

TD learning of V (s) predicts sensitivity of dopamine responses to the likelihood of the previous316

syllable-to-syllable transition. Using recordings of dopamine activity in the dorsolateral striatum317

in this paradigm (Markowitz et al., 2023), we tested whether a Q-learning model could predict318

the relationship between dopamine activity and behavioral statistics, comparing it to TD learning319

of V (s) and other alternatives (see Supplemental Information). The Q-learning model matches320

the data significantly better than alternatives (Fig. 7E), providing support for a model of dorsal321

striatum as an off-policy reinforcement learning system.322

Discussion323

We have presented a model of reinforcement learning in the dorsal striatum in which efferent ac-324

tivity excites dSPNs and iSPNs that promote and suppress, respectively, the currently selected325

action. Thus, following action selection, iSPN activity counteruintively represents the action that326

is inhibited by the currently active iSPN population. This behavior contrasts with previous pro-327

posals in which iSPN activity reflects actions being inhibited. This model produces updates to328

corticostriatal synaptic weights given the known opposite-sign plasticity rules in dSPNs and iSPNs329

that correctly implement a form of reinforcement learning (Fig. 3), which in the absence of such330

efferent activity produce incorrect weight updates (Fig. 2). The model makes several novel pre-331

dictions about SPN activity which we confirmed in experimental data (Figs. 5, 6). It also enables332

multiplexing of action selection signals and learning signals without interference. This facilitates333

more sophisticated learning algorithms such as off-policy reinforcement learning, which allows the334

striatum to learn from actions that were driven by other neural circuits. Off-policy reinforcement335

learning requires dopamine to signal action-sensitive reward predictions errors, which agrees better336

with experimental recordings of striatal dopamine activity than alternative models (Fig. 7).337
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Other models of striatal action selection338

Prior models have modeled the opponent effects of dopamine on dSPN and iSPN plasticity (Frank,339

2005; Collins and Frank, 2014; Jaskir and Frank, 2023). In these models, dSPNs come to represent340

the positive outcomes and iSPNs the negative outcomes associated with a stimulus-action pair. Such341

models can also represent uncertainty in reward estimates (Mikhael and Bogacz, 2016). Appropriate342

credit assignment in these models requires that only corticostriatal weights associated with SPNs343

encoding the chosen action are updated. Our model clarifies how the neural activity required344

for such selective weight updates can be multiplexed with the neural activity required for action345

selection, without requiring separate phases for action selection and learning.346

Bariselli et al. (2019) also argue against the canonical action selection model and propose a com-347

petitive role for dSPNs and iSPNs that is consistent with our model. However, the role of efferent348

activity and distinctions between action- and learning-related signals are not discussed.349

Our model is related to these prior proposals but identifies motor efference as key for appropri-350

ate credit assignment across corticostriatal synapses. It also provides predictions concerning the351

temporal dynamics of such signals (Fig. 4) and a verification of these using physiological data352

(Fig. 7).353

Other models of efferent inputs to the striatum354

Prior work has pointed out the need for efference copies of decisions to be represented in the355

striatum, particularly for actions driven by other circuits (Fee, 2014). Frank (2005) propose a model356

in which premotor cortex outputs collateral signals to the striatum that represent the actions under357

consideration, with the striatum potentially biasing the decision based on prior learning. Through358

bidirectional feedback (premotor cortex projecting to striatum, and striatum projecting to premotor359

cortex indirectly through the thalamus) a decision is collectively made by the combined circuit, and360

the selected action is represented in striatal activity, facilitating learning about the outcome of the361

action. While similar to our proposal in some ways, this model implicitly assumes that the striatal362

activity necessary for decision-making is also what is needed to facilitate learning. As we point out363

in this work, due to the opponent plasticity rules in dSPNs and iSPNs, a post-hoc efferent signal364

that is not causally relevant to the decision-making process is necessary for appropriate learning.365

Other authors have proposed models in which efferent activity is used for learning. In the context of366

vocal learning in songbirds, Fee and Goldberg (2011) proposed that the variability-generating area367

LMAN, which projects to the song motor pathway, sends collateral projections to Area X, which368

undergoes dopamine-modulated plasticity. In this model, the efferent inputs to Area X allow it to369

learn which motor commands are associated with better song performance (signaled by dopamine).370

Similar to our model, this architecture implements off-policy reinforcement learning in Area X,371

with HVC inputs to Area X being analogous to corticostriatal projections in our model. However,372

in our work, the difference in plasticity rules between dSPNs and iSPNs is key to avoiding inter-373

ference between efferent learning-related activity and feedforward action selection-related activity.374

A similar architecture was proposed in Fee (2012) in the context of oculomotor learning, in which375

oculomotor striatum receives efferent collaterals from the superior colliculus and/or cortical areas376

which generate exploratory variability. Lisman (2014) also propose a high-level model of striatal377

efferent inputs similar to ours, and also point out the issue with the iSPN plasticity rule assigning378
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credit to inappropriate actions without efferent inputs. Rubin et al. (2021) argue that sustained379

efferent input is necessary for temporal credit assignment when reward is delayed relative to action380

selection.381

Our model is consistent with these prior proposals, but describes how efferent input must be382

targeted to opponent SPNs. In our work, the distinction between dSPN and iSPN plasticity rules383

is key to enable multiplexing of action-selection and efferent learning signals without interference.384

Previous authors have proposed other mechanisms to avoid interference. For instance, Fee (2014)385

propose that efferent inputs might influence plasticity without driving SPN spiking by synapsing386

preferentially onto dendritic shafts rather than spines. To avoid action selection-related spikes387

interfering with learning, the system may employ spike timing-dependent plasticity rules that are388

tuned to match the latency at which efferent inputs excite SPNs. While these hypotheses are389

not mutually exclusive to ours, our model requires no additional circuitry or assumptions beyond390

the presence of appropriately tuned efferent input (see below) and opposite-sign plasticity rules391

in dSPNs and iSPNs, due to the orthogonality of the sum and difference modes. An important392

capability enabled by our model is that action selection and efferent inputs can be multiplexed393

simultaneously, unlike the works cited above, which posit the existence of temporally segregated394

action-selection and learning phases of SPN activity.395

Biological substrates of striatal efferent inputs396

Efferent inputs to the striatum must satisfy two important conditions for our model to learn cor-397

rectly. Neither of these has been conclusively demonstrated, and the two conditions thus represent398

predictions or assumptions necessary for our model to function. First, they must be appropriately399

targeted: when an action is performed, dSPNs and iSPNs associated with that action must be400

excited, but other dSPNs and iSPNs must not be. The striatum receives topographically organized401

inputs from cortex (Peters et al., 2021) and thalamus (Smith et al., 2004), with neurons in some402

thalamic nuclei exhibiting long-latency responses (Minamimoto et al., 2005). SPNs tuned to the403

same behavior tend to be located nearby in space (Barbera et al., 2016; Shin et al., 2020; Klaus404

et al., 2017). This anatomical organization could enable action-specific efferent inputs. We note405

that this does not require a spatially specific dopaminergic signal (Wärnberg and Kumar, 2023).406

In our models, we assume that dopamine conveys a global, scalar prediction error. Another pos-407

sibility is that targeting of efferent inputs could be tuned via plasticity during development. For408

instance, if a dSPN promotes a particular action, reward-independent Hebbian plasticity of its ef-409

ferent inputs would potentiate those inputs that encode the promoted action. Reward-independent410

anti-Hebbian plasticity would serve an analogous function for iSPNs. Alternatively, if efferent in-411

puts are fixed, plasticity downstream of striatum could adapt the causal effect of SPNs to match412

their corresponding efferent input.413

A second key requirement of our model is that efferent input synapses should not be adjusted414

according to the same reward-modulated plasticity rules as the feedforward corticostriatal inputs,415

as these rules would disrupt the targeting of efferent inputs to the corresponding SPNs. This416

may be achieved in multiple ways. One possibility is that efferent inputs project from different417

subregions or cell types than feedforward inputs and are subject to different forms of plasticity.418

Alternatively, efferent input synapses may have been sufficiently reinforced that they exist in a less419

labile, “consolidated” synaptic state. A third possibility is that the system may take advantage of420

latency in efferent activity. Spike timing dependence in SPN input plasticity has been observed in421
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several studies (Shen et al., 2008; Fino et al., 2005; Pawlak and Kerr, 2008; Fisher et al., 2017).422

This timing dependence could make plasticity sensitive to paired activity in state inputs and SPNs423

while being insensitive to paired activity in efferent inputs and SPNs. Investigating the source of424

efferent inputs to SPNs and how it is differentiated from other inputs is an important direction for425

future work.426

Extensions and future work427

We have assumed that the striatum selects among a finite set of actions, each of which corresponds428

to mutually uncorrelated patterns of SPN activity. In reality, there is evidence that the striatal429

code for action is organized such that kinematically similar behaviors are encoded by similar SPN430

activity patterns (Klaus et al., 2017; Markowitz et al., 2018). Other work has shown that the431

dorsolateral striatum can exert influence over detailed kinematics of learned motor behaviors, rather432

than simply select among categorically distinct actions (Dhawale et al., 2021). A more continuous,433

structured code for action in dorsolateral striatum is useful in allowing reinforcement learning434

to generalize between related actions. The ability afforded by our model to multiplex arbitrary435

action selection and learning signals may facilitate these more sophisticated coding schemes. For436

instance, reinforcement learning in continuous-valued action spaces requires a three-factor learning437

rule in which the postsynaptic activity factor represents the discrepancy between the selected action438

and the action typically selected in the current behavioral state (Lindsey and Litwin-Kumar, 2022),439

which in our model would be represented by efferent activity in SPNs. Investigating such extensions440

to our model and their consequences for SPN tuning is an interesting future direction.441

In this work we find strong empirical evidence for our model of efferent activity in SPNs and442

show that in principle it enables off-policy reinforcement learning capabilities. A convincing ex-443

perimental demonstration of off-policy learning capabilities would require a way of identifying the444

causal contribution of SPN activity to action selection, in order to distinguish between actions that445

are consistent (on-policy) or inconsistent (off-policy) with SPN outputs. This could be achieved446

through targeted stimulation of SPN populations, or by recording SPN activity during behaviors447

that are known to be independent of striatal influence (Mizes et al., 2023). Simultaneous record-448

ings in SPNs and other brain regions would also facilitate distinguishing between actions driven by449

striatum from those driven by other pathways. Our model predicts that the relative strength of450

fluctuations in difference mode versus sum mode activity should be greatest during striatum-driven451

actions. Such experimental design would also enable a stronger test of the Q-learning model of452

dopamine activity: actions driven by other regions should lead to increased dopamine activity, as453

they will be predicted according to the striatum’s learned action-values to have low value.454

In our model, the difference between dSPN and iSPN plasticity rules is key to enabling multiplexing455

of action-selection and learning-related activity without interference. Observed plasticity rules456

elsewhere in the brain are also heterogeneous; for instance, both Hebbian and anti-Hebbian behavior457

are observed in cortico-cortical connections (Koch et al., 2013; Chindemi et al., 2022). It is an458

interesting question whether a similar strategy may be employed outside the striatum, and in other459

contexts besides reinforcement learning, to allow simultaneous encoding of behavior and learning-460

related signals without interference.461
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Methods475

Numerical simulations476

Code implementing the model is available on GitHub.477

Basic model architecture478

In our simulated learning tasks, we used networks with the following architecture.479

SPNs receive inputs from cortical neurons. In our simulated go/no-go tasks, there is a single cortical480

input neuron (representing a task cue) with activity equal to 1 on each trial. In simulated tasks with481

multiple different task cues (such as the two-alternative forced choice task), there is a population482

of cortical input neurons, each of which is active with activity 1 when the corresponding task cue483

is presented and 0 otherwise. The task cue is randomly chosen with uniform probability each trial.484

For each of the A actions available to the model, there is an assigned dSPN and iSPN. We choose to
use a single neuron per action for simplicity of the model, but our model could easily be generalized
to use population activity to encode actions. The activities of the dSPN and iSPN associated with
action a are denoted as ydSPNa and yiSPNa , respectively. Each dSPN and iSPN receives inputs from M
cortical neurons, and the synaptic input weights from cortical neuron j to dSPN or iSPN associated
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with action a are denoted as wdSPN
aj or wiSPN

aj . Feedforward SPN activity is given by

ydSPNa = ϕ

 M∑
j=1

wdSPN
aj xj

 (8)

yiSPNa = ϕ

 M∑
j=1

wiSPN
aj xj

 , (9)

where ϕ is a nonlinear activation function. We choose ϕ to be the rectified linear function: ϕ(h) =485

max(0, h).486

Action selecton depends on SPN activity in the following manner. The log-likelihood of an action487

a being performed is proportional to ℓa = ydSPNa − yiSPNa . That is, dSPN activity increases the488

likelihood of taking the action and iSPN activity decreases the likelihood of taking the action.489

Concretely, the probability of action a being taken is:490

p(a) =
eβℓa

cno−go +
∑

a′ e
βℓa′

, (10)

where β is a parameter controlling the degree of stochasticity in action selection (higher β corre-491

sponds to more deterministic choices), and c controls the probability that no action is taken. In492

the simulated go/no-go tasks we choose cno−go = 1 and in the tasks involving selection among493

multiple actions we choose cno−go = 0. Except where otherwise noted we used β = 10.0 in all task494

simulations.495

Models of SPN activity following action selection496

In the “canonical action selection model” (Fig. 1), following action selection, the activity of the497

dSPN associated with the selected action and the activity of all iSPNs associated with unselected498

actions are set to 1. Biologically, this activity pattern can be implemented via effective mutual499

inhibition between SPNs with opponent functions (dSPNs tuned to different actions, iSPNs tuned500

to different actions, and dSPN/iSPN pairs tuned to the same action) and mutual excitation between501

SPNs with complementary functions (dSPNs tuned to one action and iSPNs to another) (Burke502

et al., 2017).503

In the proposed efference model, following selection of an action a∗, activity of the SPNs associated
with action a∗ is updated as follows:

ydSPNa ← ϕ

cefference · 1[a = a∗] +

M∑
j=1

wdSPN
aj xj

 (11)

yiSPNa ← ϕ

cefference · 1[a = a∗] +

M∑
j=1

wiSPN
aj xj

 , (12)

(13)

where 1[a = a∗] equals 1 for a = a∗ and 0 otherwise. The parameter c controls the strength of504

efferent excitation.505
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Learning rules506

In all models, SPN input weights are initialized at 1 and weight updates proceed according to the
plasticity rules given below:

∆wdSPN
aj = α

(
fdSPN(δ) · ydSPNa · xj

)
, (14)

∆wiSPN
aj = α

(
f iSPN(δ) · yiSPNa · xj

)
, (15)

where α is a learning rate, set to 0.05 throughout all learning simulations (except the tutoring
simulations of Fig. 7 where it is set to 0.01). In the paper we experiment with various choices of
fdSPN and f iSPN.

fdSPN(δ) = δ, f iSPN(δ) = −δ (Linear),

(16)

fdSPN(δ) = max(δ, 0), f iSPN(δ) = max(−δ, 0) (Rectified),
(17)

fdSPN(δ) =
1

2

(
a+

(
b

(1 + ce1−dδ

))
, f iSPN(δ) =

1

2

(
a+

(
b

(1 + ce1+dδ

))
(Offset sigmoid),

(18)

with the offset sigmoid parameters chosen as a = −3.5, b = 11.5, c = 0.9, d = 1 (taken from Cruz
et al. (2022)). The quantity δ indicates an estimate of reward prediction error. In our experiments
in Fig 2 and Fig. 3 we use temporal difference learing to compute δ:

δ = r − V (s) (19)

∆V (s) = αV δ, (20)

where αV is a learning rate, set to 0.05 throughout all learning simulations (except the tutoring507

simulations of Fig. 7 where it is set to 0.25) and s indicates the cortical input state (indicating508

which cue is being presented). V (s) is initialized at 0.509

In our experiments in Fig. 7 we use Q-learning to enable off-policy learning, corresponding to the
following value for δ:

δ = r −Q(s, a), (21)

where a indicates the action that was just taken in response to state s, and Q(s, a) is taken to be510

equal to the striatal output ℓa = ydSPNa − yiSPNa in response to the state s.511

Firing rate simulations512

In each trial of the two-alternative forced choice task (Fig. 4), one of two stimuli is presented for
2 s. Cortical activity x representing the stimulus is encoded in a one-hot vector. Four SPNs are
modeled, one dSPN and one iSPN for each of two actions. The dynamics of SPN i follows:

τ
dyi
dt

= −yi +

∑
j

wijxj + ηi(t) + ei(t) + b


+

. (22)
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Here, τ = 100 ms, [·]+ denotes positive rectification, wij represent corticostriatal weights initialized513

following a Gaussian distribution with mean 0 and standard deviation 1 Hz, ηi(t) is an Ornstein-514

Uhlenbeck noise process with time constant 600 ms and variance 1/60 Hz2, ei(t) denotes efferent515

input, and b = 5 Hz is a bias term. Simulations were performed with dt = 20 ms.516

On each trial, an action is selected based on the average difference-mode activity for the two actions
during the first 1 s of stimulus presentation. In the second half of the stimulus presentation period,
efferent input is provided to the dSPN and iSPN corresponding to the chosen action by setting
ei(t) = 7.5 Hz for these neurons. Learning proceeds according to

dwij

dt
= ηfi(δ)(yi(t)− b)xj(t), (23)

where in the second half of the stimulus presentation period fi(δ) = 1 for dSPNs after a correct517

action is taken and iSPNs after an incorrect action is taken, and -1 otherwise, and η = 5 × 10−4
518

ms−1.519

Experimental prediction simulations520

For the model predictions of Fig. 5 and Fig. 6, we used the following parameters: A = 50, β =521

100, cefference = 1.5 and set cno−go such that the no-action option was chosen 50% of the time.522

Feedforward SPN activity was generated from a Gaussian process with kernel k(t1, t2) = e−|t1−t2|/10523

(exponentially decaying autocorrelation with a time constant of 10 timesteps). Efference activity524

also decayed exponentially with a time constant of 10 timesteps. Action selection occured every 10525

timesteps based on the SPN activity at the preceding timestep.526

Neural data analysis527

For our analysis of SPN data we used recordings previously described by Markowitz et al. (2018).528

For our analysis of dopamine data we used the recordings described in Markowitz et al. (2023).529

Fiber photometry data530

Adeno-associated viruses (AAVs) expressing Cre-On jRCaMP1b and Cre-Off GCaMP6s were in-531

jected into the dorsolateral striatum (DLS) of n = 10 Drd1a-Cre mice to measure bulk dSPN (red)532

and iSPN (green) activity via multicolor photometry. Activity of each indicator was recorded at533

a rate of 30Hz using an optical fiber implanted in the right DLS. Data was collected during spon-534

taneous behavior in a circular open field, for 5-6 sessions of 20 minutes each for each mouse. In535

the reversed indicator experiments of Supp. Fig. 3, A2a-Cre mice were injected with a mixture of536

the same AAVs, labeling iSPNs with jRCaMP1b (red) and dSPNs with GCaMP6s (green). More537

details are reported in Markowitz et al. (2018).538

In our data analyses in Fig. 5C and Supp. Fig 3, for each session (n = 48 and n = 8, respectively)539

we computed the autocorrelation and cross-correlation of the dSPN and iSPN indicator activity540

across the entire session.541
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Miniscope data542

Drd1a-Cre AAVs expressing GCaMP6f were injected into the right DLS of n = 4 Drd1a-Cre mice (to543

label dSPNs) and n = 6 A2a-Cre mice (to label iSPNs). A head-mounted single-photon microscope544

was coupled to a gradient index lens implanted into the dorsal striatum above the injection site.545

Recordings were made, as for the photometry data, during spontaneous behavior in a circular open546

field. Calcium activity was recorded from a total of 653 dSPNs and 794 iSPNs for these mice, with547

the number of neurons per mouse ranging from 27–336. To enable simultaneous recording of dSPNs548

and iSPNs in the same mice, a different protocol was used: Drd1a-Cre mice were injected with an549

AAV mixture which labeled both dSPNs and iSPNS with GCaMP6s, but additionally selectively550

labeled dSPNS with nuclear-localized dTomato. This procedure enabled (in n = 4 mice) cell-type551

identification of dSPNs vs. iSPNs with a two-photon microscope which was cross-referenced with552

the single-photon microscope recordings. More details are given in Markowitz et al. (2018). In our553

analyses, these data were used for the simultaneous-recording analyses in Fig. 6L,M,N,O and were554

also combined with the appropriate single-pathway data in the analyses of Fig. 6J,K.555

Behavioral data556

Mouse behavior in the circular open field was recorded as follows: 3D pose information was recorded557

using a depth camera at a rate of 30Hz. The videos were preprocessed to center the mouse and align558

the nose-to-tail axis across frames and remove occluding objects. The videos were then fed through559

PCA to reduce the dimensinoality of the data and fed into the MoSeq algorithm (Wiltschko et al.,560

2015) which fits a generative model to the video data that automatically infers a set of behavioral561

“syllables” (repeated, stereotyped behavioral kinematics) and assigns each frame of the video to562

one of these syllables. More details on MoSeq are given in Wiltschko et al. (2015) and more details563

on its application to this dataset are given in Markowitz et al. (2018). There were 89 syllables564

identified by MoSeq that appear across all the sessions. We restricted our analysis to the set of 62565

syllables that appear at least 5 times in each behavioral session.566

Syllable-tuned SPN activity mode analysis567

In our analysis, we first z-scored the activity of each neuron across the data collected for each mouse.568

We divided the data by the boundaries of behavioral syllables and split it into two equally sized569

halves (based on whether the timestamp, rounded to the nearest second, of the behavioral syllable570

was even or odd). To compute the activity modes associated with each behavioral syllable, we571

first computed the average change in activity for each neuron during each syllable and fit a linear572

regression model to predict this increase from a one-hot vector indicating the syllable identity.573

The resulting coefficients of this regression indicate the directions (“modes”) in activity space that574

increase the most during performance of each of the behavioral syllables. We linearly time-warped575

the data in each session based on the boundaries of each MoSeq-identified behavioral syllable, such576

that in the new time coordinates each behavioral syllable lasted 10 timesteps. The time course of577

the projection of SPN activity along the modes associated with each behavioral syllable was then578

computed around the onset of that syllable, or around all other sllables. As a way of crossvalidating579

the analysis, we performed the regression on one half of the data and plotted the average mode580

activity on the other half of the data (in both directions, and averaged the results). We averaged581
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the resulting time courses of mode activity across all choices of behavioral syllables. This analysis582

was performed for each mouse and the results in Fig. 6 show means and standard errors across583

mice.584

Dopamine activity data and analysis585

For 7E we used data from Markowitz et al. (2023). Mice (n = 14) virally expressing the dopamine586

reporter dLight1.1 in the DLS were recorded with a fiber cannula implanted above the injection587

site. Mice were placed in a circular open field for 30 minute sessions and allowed to behave freely588

while spontaneous dLight activity was recorded. MoSeq (described above) was used to infer a set589

of S = 57 behavioral syllables observed across all sessions. As in Markowitz et al. (2023), the data590

were preprocessed by computing the maximum dLight value during each behavioral syllable. These591

per-syllable dopamine values were z-scored across each session and used as our measure of dopamine592

activity during each syllable. We then computed an S × S table of the average dopamine activity593

during each syllable st conditioned on the previous syllable having been syllable st−1, denoted as594

D(st−1, st). We also computed the S ×X table of probabilities of transitioning from syllable s′ to595

syllable s across the dataset, denoted as P (st−1, st). These tables were computed separately for596

each mouse. In Fig. 7E we report the Pearson correlation coefficient between the predicted and597

actual values of P (st−1, st). We then experimented with several alternative models (see Supple-598

mental Information) that predict P (st−1, st) based on D(st−1, st). In Fig. 7E we report the Pearson599

correlation coefficient between the predicted and actual values of P (st−1, st).600

601
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Supplemental information602

Model of go/no-go task603

A
dSPN LTP

LTP

Cortical input

p(Go) = p(No go) Go selected p(Go) > p(No go)

iSPN

DA decrease

p(Go) = p(No go) No go selected p(Go) < p(No go)

B

DA increase

C

p(Go) > p(No go) p(Go) > p(No go)

Go selected

Supplemental Fig. 1: Go/no-go task. A. Example in which dSPN plasticity produces correct learning behavior
in a go/no-go task. Left: cortical inputs to the dSPN and iSPN are equal prior to learning. Shading of corticostriatal
connections indicates synaptic weight, and shading of blue and red circles denotes dSPN/iSPN activity. Middle: the
“go” response is selected, corresponding to elevated dSPN activity. In this example, the “go” response is rewarded,
leading to elevated DA activity and thus potentiation of the dSPN input synapse. Right: in a subsequent trial,
cortical input to the dSPN is stronger, increasing the likelihood of selecting the “go” response. B. Example in which
iSPN plasticity produces incorrect learning behavior in a go/no-go task. Left: same as panel B. Middle: the “no
go” response is selected, corresponding to elevated iSPN activity. In this example, the “no-go” response is punished,
leading to decreased DA activity and thus potentiation of the iSPN input synapse. Right: in a subsequent trial,
cortical input to the iSPN is stronger, decreasing the likelihood of selecting the “go” response. C. Illustration of the
efference model in a go/no-go task. Left: feedforward SPN activity driven by cortical inputs. Right: once the “go”
response is selected, the dSPN and iSPN are both excited by efferent input, which is combined with their original
input. As a result, both the dSPN and iSPN are more active than prior to action selection, but the dSPN is still
more active than the iSPN.

Relationship between sum mode activity and future difference mode activity604

In the main text we provided an argument for why sum mode activity drives changes to future605

difference mode activity, assuming a linear fd/iSPN(δ) and linear neural activation functions. Here606

we generalize this argument to more general learning rules and activation functions ϕ, assuming607

only that fdSPN(δ) is monotonically increasing, f iSPN(δ) is monotonically increasing, and ϕ(·) is608

monotonically increasing. We have that yd/iSPN = ϕ(wd/iSPN · x), and δwd/iSPN = (fd/iSPN(δ) ·609

yd/iSPN)x. Thus, in the limit of small small weight updates, we can write:610
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∆(ydSPN − yiSPN) = ∆ϕ(wdSPN · x)−∆ϕ(wiSPN · x)
≈ ϕ′(wdSPN · x)(∆wdSPN · x)− ϕ′(wiSPN · x)(∆wiSPN · x)
∝ ϕ′(wdSPN · x)(fdSPN(δ) · ydSPNx · x)− ϕ′(wiSPN · x)(f iSPN(δ) · yiSPNx · x)

= ∥x∥2
(
ϕ′(wdSPN · x)(fdSPN(δ) · ydSPN)− ϕ′(wiSPN · x)(f iSPN(δ) · yiSPN)

)
∝ cdSPNfdSPN(δ)ydSPN + (−ciSPNf iSPN(δ)yiSPN). (24)

where cdSPN and ciSPN are nonnegative because ϕ′ is always nonnegative by assumption. Snce by611

assumption fd/iSPN are increasing/decreasing, respectively, the first term of the above sum has612

nonnegative correlation with δydSPN and the second term has nonnegative correlation with δyiSPN.613

Thus, changes ∆(ydSPN − yiSPN) to difference mode activity are always nonnegatively correlated614

with sum mode activity. If we assume that efferent excitation is always sufficiently strong that615

cdSPN = ϕ′(wdSPN · x) and ciSPN = ϕ′(wiSPN · x) are positive, and that there are no values of δ616

for which fd/iSPN(δ) both have zero derivative, we can further guarantee that changes to difference617

mode activity will always be positively correlated with sum mode activity.618

Generalizing the model to a distributed code for actions619

In our model simulations in the main text we assumed for convenience that there is a single dSPN620

and iSPN that promote and suppress each available action, respectively. It is more realistic to model621

the code for action as distributed among many SPNs. Our model generalizes easily to this case; all622

that is necessary is for the efferent activity following action selection to excite the vectors (for both623

dSPNs and iSPNs) in population activity space corresponding to that action. To demonstrate this,624

we conducted a simulation with N = 1000 dSPNs and iSPNs each, S = 10 input cues (one-hot625

input vectors), and A = 10 actions, with one correct action for each input state. Feedforward SPN626

activity is given by627

ydSPNi = ϕ

 M∑
j=1

wdSPN
ij xj

 (25)

yiSPNi = ϕ

 M∑
j=1

wiSPN
ij xj

 (26)

The log-likelihood of an action a being performed is proportional to628

ℓa =
N∑
i=1

ζdSPNai ydSPNi − ζ iSPNai yiSPNi (27)
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where ζdSPNai and ζ iSPNai are randomly sampled uniformly in the interval [0, 1] and then normalized629

so that each vector ζdSPNa and ζ iSPNa has norm 1. Thus, the contribution of each dSPN/iSPN to630

the promotion/suppression of each action is randomly distributed.631

In the efference model, following selection of an action a∗, activity of the SPNs associated with action632

a∗ is updated as follows, so that efference activity excites the modes ζdSPNa∗ and ζ iSPNa∗ associated633

with the selected action:634

ydSPNi ← ϕ

cefference · ζdSPNa∗i +
M∑
j=1

wdSPN
ij xj

 (28)

yiSPNi ← ϕ

cefference · ζ iSPNa∗i +
M∑
j=1

wiSPN
ij xj

 (29)

(30)

We also experiment with a generalization of the canonical action selection model to this distributed635

action tuning architecture, in which following action selection, SPN activity is set to636

ydSPNi ← ζdSPNa∗i (31)

yiSPNi ←
(
max
i′

ζ iSPNa∗i′

)
− ζ iSPNa∗i (32)

(33)

In this model, dSPNs are excited in proportion to their contribution to the currently selected action637

and iSPNs are suppressed in proportion to their degree of inhibition of the currently selected action.638

The plasticity rules used are the same as in the main text.639

We find that the results of the main text – that the canonical action selection model fails to learn640

from negative rewards, while the efference model successully learns from both reward protocols –641

is replicated (Supp. Fig. 2).642
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Supplemental Fig. 2: Performance of striatal RL models with a distributed code for actions on a task with 10
cortical input states, 10 available actions, and one correct action for each input state.

Photometry analysis with reversed indicators643
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Supplemental Fig. 3: Same as Fig. 5C, but performing the analysis on subjects with reversed assignment of
indicators to SPN types.
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Comparison of selectivity of dSPNs and iSPNs644
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Supplemental Fig. 4: Comparison of dSPN and iSPN tuning selectivity. Violin plots indicate the distribution of
selectivity values across all neurons computed using Eq. 34, using either unsigned (left) or rectified (right) z-scored
activity as the raw measure of a neuron’s tuning to a behavioral syllable. Horizontal lines indicate the 0, 25, 50, 75, 100
percentile values of the distribution.

To test whether dSPNs or iSPNs exhibit greater or less specificity in their tuning to behaviors,645

we computed the selectivity of each neuron in the imaging data of Fig. 6. For each neuron, we646

computed its average z-scored activity ai in response to each of the behavioral syllables i ∈ {1, ..., A}647

in the dataset. Common measures of selectivity require a nonnegative measurement of a neuron’s648

tuning to a given condition. Thus, we conducted the analysis in two ways, using either the unsigned649

activity |ai| or the rectified activity max(ai, 0) as the measure of the neuron’s tuning ti to syllable i.650

The selectivity was then computed using the following expression introduced in prior work (Treves651

and Rolls, 1991; Willmore and Tolhurst, 2001):652

(
1
A

∑
i ti

)2
1
A

∑
i t

2
i

(34)

This value ranges from 0 to 1, and higher value indicates that fluctuations in a neuron’s activity are653

driven primaril by one or a few behavioral syllables. The results are shown in Supp. Fig. 4. The654

selectivity values are fairly modest (consistent with a distributed code for actions) and comparable655

between dSPNs andn iSPNs.656
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Alternative model with shared plasticity rule among all SPNs657
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Supplemental Fig. 5: Comparison to counterfactual model in which iSPNs use the same plasticity rule as dSPNs.
A. Left: performance of simulated striatal RL system using efference model with the opponent dSPN/iSPN plasticity
rules used elsewhere in the paper (black, same as Fig. 3E), and a system using the canonical action selection model
and identical dSPN and iSPN plasticity rules (green). Right: same as left panel, but in an off-policy setting in which
another pathway controls behavior during and always chooses the correct action, and the performance of the striatal
RL system is evaluated over time. Here the Q-learning model of dopamine activity is used. B. In the counterfactual
model in which iSPNs use the same plasticity rule as dSPNs, activity in the difference mode (dSPN - iSPN) influences
(via plasticity) changes in future difference mode activity that affect decision-making.

The issues identified in Fig. 2 with the canonical action selection model are a consequence of the658

iSPN plasticity rule. From a normative perspective is interesting to consider why the empirically659

observed iSPN plasticity rule might be advantageous, compared to an alternative model in which660

iSPNs share the same plasticity rule as dSPNs. For instance, this alternative model can solve661

the two-alternative forced choice task of Fig. 2 with both positive and negative reward protocols662

(Supp. Fig. 5A, left). However, the limitations of this alternative model are revealed in the off-663

policy learning setting, where the Q-learning algorithm is required. In this case, SPN activity must664

encode Q-values associated with each action, but in the canonical action selection model, these665

values are disrupted by the updates to SPN activity following action selection. This is because666

the activity updates in the canonical action selection model modify difference mode activity, which667

(when dSPN and iSPN plasticity rules are the same) is needed for learning (Supp. Fig. 5B). As a668

result, the predicted Q-values are inaccurate, and the model has difficulty learning the true value669

of each action. We demonstrate this in the two-alternative forced task in an off-policy learning670

protocol where an oracle chooses the correct action on each trial, and the striatal pathway’s ability671

to solve the task independently is evaluated. The efference activity model has no issue due to the672

orthogonality of the efferent activity and difference modes as described above, but the canonical673

action selection model fails to solve the task (Supp. Fig. 5A, right).674

We note that non-orthogonality of the activity mode used for learning and behavior could cause675

other problems besides impairing the system’s ability to implement off-policy learning algorithms;676

for instance, even in an on-policy setting it could interfere with sequential action selection at rapid677

timescales.678

Models used for dopamine analysis679

We experimented with models that predict transition probabilities P (st−1, st) based on average680

dopamine activity D(st−1, st) associated with each transition.681

682
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Q-learning model : In the Q-learning model, the mouse maintains an internal estimate of the value683

Q(st−1, st) of each transition between syllables. In the absence of explicit rewards, the dopamine684

activity associated with a syllable transition is predicted to be: D(st−1, st) = maxs′ Q(st, s
′) −685

Q(st−1, st). We inferred a set of Q-values by initializing a Q-table with all zero values and running686

gradient descent on the Q-table to minimize the mean squared error between the predicted and687

empirical values of D(st−1, st). These inferred Q-values were used to predict behavioral transition688

probabilities according to: P̂ (st−1, st) =
eβ(st−1)Q(st−1,st)∑
s′ e

β(st−1)Q(st−1,s
′) . We did not fit the value of β(st−1) but689

rather chose it to be the reciprocal of the standard deviation of Q(st−1, s
′) across all s′, to ensure690

a reasonable dynamic range in predicted transition probabilities.691

V (s) TD learning model : In this model, the mouse maintains an internal estimate of the value V (s)692

of each syllable, and the predicted dopamine activity at each transition is D(st−1, st) = V (st) −693

V (st−1). We fit the vector of values V (s) to minimize the mean squared error of predicted and694

empirical D(st−1, st). The predicted transition probabilities in this modl (which are independent695

of the previous syllable st−1) are: P̂ (st−1, st) =
eβV (st)∑
s′ e

βV (s′) with β chosen to normalize the V (s′) to696

have standard deviation 1, as in the previous models.697

Action value model : In this model, we assume that dopamine activity simply reflects the proba-698

bility of each transition rather than encoding a prediction error; that is, we assume P (st−1, st) =699

D(st−1,st)∑
s D(st−1,s)

.700

State value model : In this model, we assume that dopamine activity simply reflects the proba-701

bility of each behavioral syllable being chosen and is independent of the previous syllable. That702

is, we compute the average dopamine activity D(s) associated with each syllable s, and predict703

P (st−1, st) =
D(st)∑
s D(s) .704
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