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1 Abstract

Figure 1: Graph structured neural network
(GSNN) summary figure. An example path-
way diagram used to describe cellular signaling
knowledge (left). A GSNN model built from
the pathway diagram. Although not visualized,
entity-specific features (e.g., gene mutations,
expression, or other ’omics) can be included as
additional input to each entity (right).

Computational modeling of perturbation biology identifies relation-
ships between molecular elements and cellular response, and an ac-
curate understanding of these systems will support the full realiza-
tion of precision medicine. Traditional deep learning, while often
accurate in predicting response, is unlikely to capture the true se-
quence of involved molecular interactions. Our work is motivated by
two assumptions: 1) Methods that encourage mechanistic prediction
logic are likely to be more trustworthy, and 2) problem-specific al-
gorithms are likely to outperform generic algorithms. We present an
alternative to Graph Neural Networks (GNNs) termed Graph Struc-
tured Neural Networks (GSNN), which uses cell signaling knowl-
edge, encoded as a graph data structure, to add inductive biases to
deep learning. We apply our method to perturbation biology using
the LINCS L1000 dataset and literature-curated molecular interac-
tions. We demonstrate that GSNNs outperform baseline algorithms
in several prediction tasks, including 1) perturbed expression, 2) cell
viability of drug combinations, and 3) disease-specific drug prioriti-
zation. We also present a method called GSNNExplainer to explain
GSNN predictions in a biologically interpretable form. This work
has broad application in basic biological research and pre-clincal
drug repurposing. Further refinement of these methods may pro-
duce trustworthy models of drug response suitable for use as clinical
decision aids.

Availability and implementation: Our implementation of
the GSNN method is available at https://github.com/
nathanieljevans/GSNN. All data used in this work is pub-
licly available.

2 Introduction

The development of new therapies is a complex and multifaceted
task that requires a detailed understanding of disease and the effect
of a potential treatment. To develop cancer therapies, for instance, it
is critical to know the state of a tumor (e.g., cancer driving mecha-
nisms) as well as the impact a therapy will have on malignant cells,
the tumor microenvironment and the host ecosystem. The precision
medicine paradigm adds additional layers of complexity due to the
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need to tailor treatment to disease characteristics. Computational
modeling is ubiquitous in this research and can be used to accelerate the discovery of new drug candidates, to under-
stand complex disease mechanisms, and for use as clinical decision aids. Consequently, the accuracy and usefulness
of modeling strategies is crucial for effective research.

The field of cancer drug response has developed numerous models for the prediction of simple phenotypic readouts
such as cell viability, and these models have been used widely for drug prioritization and basic research. Cell viability,
however, can be mediated by a multitude of biological processes and can vary significantly depending on the celluar
context or disease. Due to these aspects, cell viability is unlikely to provide the information necessary to characterize
the underlying mechanism of response. The systems biology perspective, on the other hand, focuses on modeling
the complex and high-dimensional behavior of a disease or process and can be used to understand both outcome and
mechanism. Accurate computational models of systems biology have broad application in research and translational
medicine.

Perturbation biology is a discipline within systems biology that studies how minor alterations, such as the introduction
of a ligand, drug, or genetic lesion, can lead to significant functional changes in an organism [43, 64, 51]. This
field investigates the broad effects of such perturbations, often by comparing molecular features before and after
a change in a biological system. The emergence of high-throughput sequencing technologies has been pivotal in
this area, enabling the extensive measurement of various ’omics’ levels, such as proteomics, transcriptomics, and
genomics. Key technologies in this domain include RNA sequencing [48], the L1000 assay [85], and reverse-phase
protein array (RPPA) [19]. These tools are crucial for exploring the systemic response of an organism to perturbations,
providing a comprehensive view of the intricate network of biological interactions and the response to a perturbation.
The molecular changes caused by a perturbation may be post-translational (e.g., phosphorylation or ubiquitation of
a protein), epigenetic (e.g., methylation changes or chromatin remodeling) or expression changes (RNA or protein).
System responses begin in an unperturbed state and develop over time. Typically, measurement assays capture these
responses at a single time-point, but to fully characterize temporal dynamics, multiple assays are needed, often at a
prohibitive cost. This limitation can be addressed by employing computational models, which extrapolate the full
temporal response from limited data. However, the critical factor in this approach is the precise timing of the assay
measurement. Tailoring measurement times to specific biological processes can be challenging due to their varied
rates [81].

In our research, we adopt a premise of drug-target perturbation response. Within this premise, a drug molecule binds
to one or more proteins and causes a conformational change that alters the protein function and leads to a cascade of
physically interacting molecular elements (proteins, RNA, ligands, etc.). These signaling cascades often culminate
in the activation of transcription factors (TFs). TFs regulate gene expression by binding to sequence-specific DNA
genes and increasing or inhibiting transcription. Activation of a TF can also initiate more complex transcriptional
programs via gene regulatory networks (GRN), which comprise a web of interacting transcriptional regulators and
may include microRNAs (miRNA), long non-coding RNA (lncRNA) and transcription factors. Additionally, GRNs
do not necessarily require regulator-regulator interactions and may have intermediary post-translational signaling (e.g.,
regulator→protein-protein signaling→regulator). In summary, our drug-target premise envisions a complex network
of physically interacting molecular entities that characterize the systemic response to a perturbation.

Drug-protein, protein-protein and gene-regulatory interactions have been studied, categorized, and made available
through many public knowledge bases including STRING [88], Reactome [28], Omnipath [90], Targetome [12] and
STITCH [47]. Cellular context, which may depend on cell type, disease, species, or genetic background, will define
the subset of active interactions in a given biological system. Most database resources do not specify in which cel-
lular context an interaction is active, and therefore reported molecular interactions should be considered as a set of
possible interactions across all cellular contexts. The unique activity of molecular interactions within a given context,
sometimes called the "edgotype" [75], can be attributed to many mechanisms. The binding affinity between a drug
and a protein can vary due to gene mutations [30] and the functional effect of a drug will depend on the concentration
of the target protein. Differences in protein expression between cellular contexts can mediate different responses to
a drug. Precision oncology often takes advantage of these differences by developing drugs that preferentially target
proteins that are overexpressed in certain cancers, such as the use of HER2 targeting tyrosine kinase inhibitors (TKI)
in HER2+ breast cancer [79]. The contextual "edgotype" can also be mediated by the expression of key molecular
entities, and gene mutations may result in nonfunctional protein products. Some gene mutations can prevent or en-
courage specific protein-protein interactions (PPI) [75]. Differences in expression and genetic background affect cell
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signaling and can lead to divergent contextual responses to the same drug. The ability of a TF to regulate downstream
genes (referred to as the "regulon" of a TF) depends on the expression and state of the TF and other co-regulatory
proteins. Additionally, chromatin organization, methylation, and gene mutations can affect the ability of a TF to bind
to its DNA targets [34, 52, 75]. Although there has been considerable research characterizing molecular interactions,
many knowledge bases (including those used in this study) are not complete, and many important interactions may be
missing. Drug-target interactions, for example, are notoriously sparse and many bioactive compounds do not have a
known protein target: An estimated 7- 18% of FDA-approved drugs do not have known molecular targets [63].

Machine learning (ML) methods are often evaluated by their ability to accurately predict the outcome variable. Even
accurate models, however, may be insufficient for many use-cases if they are not trustworthy. The National Institute
of Standards and Technology (NIST) defines the characteristics of Trustworthy Artificial Intelligence (AI) as [2]:

• Validity and Reliability

• Safety

• Security and Resilience

• Accountability and Transparency

• Explainability and Interpretability

• Privacy

• Fairness with Mitigation of Harmful Bias

These characteristics are intended to provide guidelines for the development of artificial intelligence models that can
be trusted to perform in a beneficial manner. Complex and powerful modeling strategies, such as deep learning, often
lack many of these aspects of trustworthiness. In particular, most deep learning algorithms are considered a "black
box," which refers to the inability of humans to explain or interpret predictions. Not knowing how a prediction is made
can lead to poor generalization or unexpected behavior in new settings, and making decisions based on "black box"
model predictions may result in harm.

The development of reliable and high-performance perturbation response algorithms will pave the way for highly
impactful applications in translational and research settings. Pre-clinical precision oncology research can use models
of perturbation biology to prioritize therapeutic drug candidates for further study. Basic science can use interpretable
and explainable models to understand the nuanced and complex behavior of biological systems. Future clinicians may
be able to use trustworthy models of drug response to choose optimal patient treatment options based on tumor or
patient characteristics.

2.1 Ideal Modeling Requirements of Perturbation Biology

In this section, we highlight several (but not necessarily all) important aspects of signaling that an effective modeling
strategy should be able to capture.

Molecular state. Many molecular entities, such as proteins, RNA, and DNA, have a contextual state, which describes
its unique behavior and interactions within the system; the contextual state is likely to vary by disease, patient, and
cell type. For example, a protein’s state may include aspects such as expression, post-translational modifications,
mutational status, or complex co-factors. An ideal algorithm should be able to infer molecular entity state from
contextual features (e.g., ’omics) and appropriately mediate the prediction logic to align with true contextual signaling
patterns.

Source awareness. The signaling behavior of molecular entities may vary based on the source of upstream signaling.
For example, G protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK) are known to exhibit ligand
bias, which describes unique signaling patterns dependent on the specific ligand or drug that binds to the receptor
[82, 44]. The behavior of a protein can also depend on the source of the upstream signal and may have stimulatory or
inhibitory regulators that cause distinct downstream behavior. An ideal algorithm should be able to delineate specific
input signals to a molecular entity and simulate different downstream signaling based on the source.

Signal latency. Perturbation response evolves over time, and molecular relationships have different rates at which
they progress. For example, we expect most post-translation modifications to be much faster than transcription and
translation [81]. The rate of PPI signaling is characterized by the association of proteins and is mediated by molecular
diffusion rates and conformational kinetics [80]. The rates of specific molecular interactions are, to our knowledge,
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not available in any resource and therefore an ideal algorithm should be able to infer signal latencies from the training
data.

Nonlinear multivariate input-output relationships. Many molecular interactions in cellular signaling are known to
exhibit amplification, where a small input signal may lead to a large output signal, and are likely to be non-linear based
on computational models [35, 83]. Additionally, protein-protein signaling often exhibits unique behavior dependent
on multiple upstream signals and can be modeled as logic gates. For example, proteins may require two or more
upstream signals (AND gate) to be activated, can be activated by multiple signals (OR gate), or a protein may need the
absence of an inhibitory signal (NOT gate). Temporal attenuation due to feedback loops or autoregulation can lead to
nonlinear temporal relationships in signaling. These characteristics suggest that an ideal model should be able to learn
multivariate and nonlinear relationships between input and output signals.

2.2 Current limitations of traditional Neural Networks applied to cellular signaling

An artificial neural network (NN) [76, 77] is a machine learning algorithm that has been applied to many domains
with great success. NNs have been shown to be universal approximators, meaning that they can learn any continuous
function if given sufficient data and resources [38]. In most applications, however, machine learning has limited
training data and NNs suffer from overfitting, which is the tendency of models to accurately predict within training
data but generalize to new data poorly. There are many ways to address overfitting, such as curating larger datasets,
performing data augmentation [65] or using regularization methods such as weight decay or dropout [84]. Despite
extensive research in this area, overfitting remains a challenge in many prediction tasks. Processes that involve high-
dimensional inputs or outputs, or characterize complex systems, are likely to have an immense hypothesis space1and
finding the appropriate hypothesis 2 can be exceptionally challenging, especially in limited or noisy data settings.

The no free lunch theorem (NFL) states that the performance of all optimization algorithms, when averaged over all
possible problems, will be equivalent and suggests that developing unique optimization algorithms tailored to specific
problems is key to improving performance [97]. A strategy to create algorithms tailored to specific problems involves
integrating inductive biases. This approach enables the model to favor certain solutions over others, regardless of
the data presented. [8]. For example, when working with image data, a rational assumption is that nearby pixels
are more relevant to each other, and convolutional neural networks (CNN) [3] incorporate this inductive bias by
applying a shared function3 to local regions of the image, which can reduce the number of trainable parameters and
improve performance. Similarly, in natural language processing (NLP), the Transformer model [92] is designed to
take advantage of a shared dictionary of tokens and sequence order. Both CNNs and Transformers have been shown
to significantly outperform traditional neural networks in their respective problems [92, 3]. Researchers can use these
domain-specific characteristics to incorporate relevant assumptions about the data into learning algorithms, which
markedly narrows the hypothesis space, often leading to improved performance and usefulness.

The scientific community has put great effort into developing well-supported theories of drug response and perturba-
tion biology. Including these assumptions into a perturbation biology learning algorithm is likely to lead to far more
mechanistic, accurate, and useful predictive models; unfortunately, traditional neural networks do not have a conve-
nient means to incorporate this prior knowledge.

2.3 Current limitations of Graph Neural Networks applied to cellular signaling

Graph Neural Networks (GNN) are designed to learn the relationships between graph structures and an outcome
variable. For instance, the CORA citation network characterizes academic manuscripts (nodes) that cite each other
(edges) and GNNs can be used to accurately infer manuscript research domains [45]. Foundational GNNs include
the Graph Convolutional Network (GCN) [45], the Graph Isomorphism Network (GIN) [98] and the Graph Attention
Network (GAT) [93].

Representing a system of entities as a graph is a powerful way to include complex and heterogeneous prior knowledge
into a form amenable to machine learning. Common GNN architectures, however, make nuanced and often unspoken
assumptions about the behavior of their input graphs, which are not valid in some learning tasks. We summarize the
common GNN assumptions as follows:

1The realm of all possible functions
2An accurate or correct function
3Referred to as a kernel
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• Edge Uniformity: Almost all GNNs use a permutation-invariant aggregation scheme to pass information be-
tween nodes (e.g., max, mean, or sum functions), which allows for GNN convolutions to be applied to all nodes
irregardless of number of edges; however, these methods implicitly assume that any two edges (with the same
features if applicable) are equivalent. One notable exception to this assumption is the Graph Attention Network
(GAT), which uses edge-specific attention to weight edges during message aggregation [93].

• Homophily: Like nodes are more likely to be connected [60]. Graphs in which unlike nodes are often connected
are considered heterophilous.

• Locality and Relational Equivalence: The properties of a node are influenced by their K-th local neighborhood
[45], where K is the number of layers in the GNN. A consequence of locality is relational equivalence, which
posits that any two nodes with the same K-th order relations will have equal GNN representations.

These GNN assumptions are valid in many domains, however, some of these assumptions conflict with the perturba-
tion biology premise that we have described above. The molecular relationships described in the scientific literature
are often unannotated and highly contextual in behavior, and therefore the resulting biological graphs are likely to
represent relationships that have markedly different and unknown behaviors (e.g., stimulatory vs. inhibitory edges).
Given this, it is likely that GNNs that make strong assumptions of edge uniformity and relational equivalence will not
be able to learn distinct edge behaviors due to the dearth of molecular interaction annotations. That said, continued
scientific discovery and more detailed categorization of molecular relationships may overcome this limitation in the
future and enable the construction of biological graphs suitable for GNNs. Alternatively, some GNN architectures
with a weaker assumption of edge uniformity and relational equivalence, such as graph attention networks [93], may
be more appropriate for cellular signaling tasks. The development of novel GNN mechanisms, such as joint learning
of edge-specific features during training, may also overcome these limitations.

Recent work has shown that traditional GNN architectures perform poorly on heterophilous graphs [60]. Given our
premise of cellular signaling and, assuming that we are using gene expression as the target variable, then biological
graphs for this learning task are likely to be largely heterophilous. For example, many molecular interactions directly
impact the gene expression (transcription factor regulation, ubiquitation/degredation, miRNA regulation, etc.) while
others will indirectly influence the expression (phosphorylation, protein complexes, etc.) via latent (i.e., unmeasured)
cell signaling. Regions of the biological network describing protein-protein signaling cascades are likely to be largely
heterophilous (signaling cascades), while local regions of gene regulation will be highly homophilous (e.g., transcrip-
tion factors, GRNs). Given these conditions, it is likely that GNN architectures that make strong assumptions of
homophily are likely to perform poorly on cell signaling graphs. While there has been work to develop suitable GNNs
for heterophilous graphs [106, 103, 107], it remains an open challenge.

The depth of the GNN, or the number of layers in the network can also prevent challenges in this domain. A GNN
operates by subsequent layers of message passing between nodes. As a result, the information from any given node
can only propagate within the K-th neighborhood defined by the number of layers (K) in the network4. For example,
a one-layer GNN can only pass information to its immediate neighbors. Deep GNNs (many layers) tend to generate
node representations that are very similar to each other, a phenomenon called oversmoothing, which can significantly
degrade performance [14]. Although many methods have been proposed to address oversmoothing [14, 104], there is
no one-size-fits-all approach and remains a limitation in many prediction tasks. In the context of cellular signaling,
biological pathways often involve deep signaling cascades and complex gene regulatory networks, and this suggests
that deep networks are essential to accurately model the process, and GNNs may therefore suffer from oversmoothing.

3 Related Work

Structural equation models (SEM). A class of methods that focus on modeling processes with known or postulated
dependencies between variables or latent variables. These methods are commonly used in the social sciences to eval-
uate the appropriateness of causual structure between variables [11]. Many SEMs assume simple linear relationships
between variables and struggle to scale to a large number of variables, and this limits their application to many tasks
[22].

BioChemical Reaction Networks (BRN). A mathematical representation of biological systems that comprise interac-

4Note: this gives rise to the assumption of locality
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tions between biochemical species and molecular entities. BRNs can be used to model the behavior of biological sys-
tems at various levels of granularity, and modeling strategies include ordinary differential equations (ODE), Boolean
Networks, Markov processes, Kinetic rate laws, and agent-based systems. Many BRN methods focus on modeling
detailed kinetic systems, and while some of these methods are capable of scaling to a large number of entities, many of
them focus on systems with fewer than a thousand parameters [56]. Some general limitations of mechanistic models,
such as ODEs, are the difficulty of fitting parameters, especially as the system size scales.

Modeling signal transduction is a key goal of systems biology research, and there has been significant work in this
area. An early model, called PARADIGM5, used factor graphs to model cell signaling [91]. More recently, Boolean
networks have been used to create logic models of cellular signaling [89]. Some pathway knowledge bases have
included modeling techniques directly into their platform, such as ReactomeFIViz [13] and the breadth and ubiquity
of cell signaling modeling highlights the integral role that it has in biological research.

In the domain of cancer drug response, several mechanistic models of cell signaling have been proposed to address
the scalability issues of BRNs. In 2018, a mechanistic pan-cancer pathway model was introduced, which could learn
the ODE parameters for a system of ∼100 proteins/genes and <10e4 reactions in approximately a week of training
on a system of 400 CPUs [26]. More recently, a machine learning approach termed CellBox was proposed to model
perturbation biology using an ODE (∼10,000 interactions/wij) and solved with gradient descent optimization. These
methods address a limitation of many machine learning algorithms that lack the interpretability of predictions. ODE
models are both transparent (simple, known mathematical model) and traceable (outcomes can be traced along the
inferred biological network) [102], and are likely to be more trustworthy and actionable than traditional machine
learning methods.

A foundational method that incorporates prior knowledge into deep learning is the Visible Neural Network (VNN).
VNNs use prior knowledge to constrain artificial neuron interactions and encourage the model to mimic the behavior
of true biological systems [59]. The VNN did this by enforcing a parent-child relationship of Gene Ontology latent
states and mapping genotype behavior onto them to predict cellular phenotypes. This work showed that including
prior knowledge constraints could aid in the interpretability and usefulness of a model, while maintaining the pre-
dictive performance of traditional deep learning approaches. More recent work developed DrugCell, which uses a
VNN to predict drug response and synergy [46]. A limitation of current VNN methods is that prior knowledge and
interpretation are restricted to the ontology that is used. Specifically, DrugCell does not provide molecular-level prior
knowledge and assumes hierarchical prior knowledge (i.e., requires directed acyclic graphs).

Another method that aims to incorporate prior knowledge into deep learning is physics-informed neural networks
(PINN). These methods use a unique loss function to enforce a set of prior knowledge constraints encoded as partial
differential equations (PDEs) [72]. To our knowledge, PINNs have not been applied to systems biology or drug
response modeling and tend to focus on domains where the constraints are well known and can be encoded as a system
of PDEs.

Knowledge distillation was proposed to distill the knowledge and high performance of a large model, or an ensemble
of models, into a smaller or single model, thereby reducing inference overhead [36]. A recent paper used a similar
method to distill the knowledge from a slow but highly mechanistic cellular model into neural networks. By doing so,
they were able to obtain an accurate mechanistic-trained deep learning model, which was orders of magnitude faster
at inference than the alternative mechanistic model [94]. This method may represent an alternative means of training
robust mechanistic-like deep learning models while maintaining the fast inference. Importantly, this approach is likely
to suffer from issues of interpretability and explanability because even though the deep learning model is trained on
a data from a mechanistic model it is still a "black box," which inhibits clear understanding of the internal prediction
logic.

3.1 Contributions

This work is inspired by SEMs6 ability to inject causal structure into modeling strategies and by methods such as GNNs
and VNNs that combine heterogeneous prior knowledge with powerful data-driven deep learning methods. To over-
come the limitations that prevent the application of current methods to cellular signaling, we present a method termed
Graph Structured Neural Networks (GSNN), which enables the inclusion of prior knowledge encoded as directed

5PAthway Recognition Algorithm using Data Integration on Genomic Models
6The name Graph Structured Neural Networks is intended to recognize the role that SEMs played in the motivation of this work.
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Table 1: Alternative domains that the GSNN method could applied to.

Description Inputs Outputs Inductive Bias
Fluid flow Initial flow rate Flow at a different location or time Geometric constraints (pipes, landscape)

Heat conduction Initial temp. Temp. at different location or time Material geometries (shapes, contacts)
Electrical circuits Initial voltages Voltage at different point or time Circuit components and connections
Causal modeling Input variables Output variables Latent variable interactions

graphs with allowable cycles (e.g., feed-back loops, auto-regulation, etc.). We also introduce the GSNNExplainer
method, which can be used to inspect GSNN prediction logic in a biologically relevant form. We show that the GSNN
algorithm can be used to effectively predict perturbed expression (LINCS L1000) and cell viability for single (PRISM)
and combination (NCI Almanac) drug perturbations. Finally, we demonstrate how these methods can be used to pri-
oritize drugs that induce a disease-specific response and evaluate using FDA drug indications.

4 Methods

4.1 Problem Description

In this project, we present a learning problem in which we are given a graph, G, which has E edges and N nodes.
Nodes can be characterized by their in- and out-degree: input nodes have an in-degree of zero and nonzero out-degree,
output nodes have an out-degree of zero and an in-degree of one, and function nodes have a non-zero in- and out-
degree. Respectively, edges can be characterized similarly, where input egdes are edges from an input node, function
edges are edges from a function node and output edges are edges to an output node and have precedence over function
edges. The training data, D, has node inputs x and outputs y. Only the input nodes will have nonzero x values, while
only the output nodes will have nonzero y values. Each observation i will have unique values for xi, yi. We propose
that the graph learning task is to predict yi using xi based on the constraints provided by G.

Like GNNs, this problem assumes locality, that is, the properties of a node should be influenced by its neighborhood;
however, there are several key distinctions from the common GNN inspired tasks, specifically:

• This problem requires a single fixed graph, where different observations will have different input/output node
features. This can be viewed as a transductive learning task, and does not need to generalize to unseen nodes or
novel graph structures.

• The graph structure does not necessarily connect like nodes, and edges can represent a variety of behaviors (no
assumption of homophily or relational equivalence).

• Relations (edges) will have different behaviors and must be inferred from the data (no assumption of edge
uniformity).

In this work, we focus on graphs that represent cellular signaling networks; however, this problem description is
applicable to model a number of other real-world scenarios, which may benefit from the inclusion of heterogeneous
forms of inductive bias. Table 1 describes several alternative domains in which the GSNN method could be applied.

4.2 Graph Structured Neural Network

We present a deep learning method called Graph Structured Neural Networks (GSNN), suitable for modeling biolog-
ical signaling networks. The GSNN method is initialized using a structural graph (G) that describes the molecular
entities (nodes) and the interactions between them (edges); G defines a set of constraints in the GSNN algorithm by
indicating the allowable interactions and expected latent variables (i.e., molecular entities). Function nodes (fn) are
parameterized by a neural network, where the number of inputs is equal to the in-degree of node n in G and the number
of outputs of the neural network is equal to the out-degree of node n in G. The number of hidden channels and network
layers7 of fn are user-defined hyperparameters, which allow for variable model capacity. We rationalize that proteins
with fewer inputs or outputs can be better described by more simple functions and therefore we provide the option to

7To avoid ambiguity: there are two "layer" parameters we reference. The function node number of layers (k ∼ 1, 2), which describe the number
of layers in a function node neural network, and the GSNN’s number of layers (L ∼ [10 − 20]) that represent the number of sequential masked
linear layers that are used in a GSNN model.
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scale the number of hidden channels in fn based on the in- or out-degree of node n .

GSNN layer updates can be performed by masked linear operations, an example of which is shown in panel A of figure
2. Parameters are not shared between function nodes, therefore, each function node will learn distinct relationships
between input and output edges. The GSNN method operates by evolving the edge latent representation via sequential
GSNN layers8. Each layer will update the latent edge values so that the output edges of a function node are predicted
from the input edge values of the previous layer. Iterative edge updates allow the information to propagate through the
structural graph a path length of L, where L is the number of layers in the GSNN. The latent features are representative
of edge state. Note that this aspect is divergent from GNNs where latent representations typically characterize the
state of a node. This allows the GSNN method to learn nonlinear multivariate relationships between input edges
and output edges. As we noted in the Introduction, there is a temporal aspect to cellular signaling such that many
molecular entities will have a latency between input and output signals. As a means of modeling this edge latency,
we include residual connections at each consecutive layer, which allows for an "accumulation" of signal and provides
a mechanism to learn edge latency. Residual connections have also been shown to mitigate gradient vanishing issues
that are common in deep networks [32].

To efficiently implement the GSNN method, we conceptualize the edge-updates as a series of masked linear layers.
The weight matrices have dimensions (E,N ∗ C), where E is the number of edges in G, N is the number of function
nodes in G, and C is the number of hidden channels in each function node. Implementing dense matrix multiplications
of these linear layers would require undesirable memory and compute resources, making this method applicable only
to relatively small graphs. Fortunately, we can use sparse matrices, which massively reduces the required memory.

Figure 2: A toy example demonstrating how any given graph structure can be formulated as a feed forward neural
network with masked weight matrices. Each yellow node in the left graph represents a fully-connected 1-layer neural
network with two hidden channels (Note: function node neural networks can optionally be multi-layer). Panel A
describes the structural graph (G) which imposes constraints on the GSNN model. Panel B depicts how the edge latent
values (ei) can be updated in a single forward pass. Note that panel B shows sparse weight matrices, where the missing
edge connections are equal to zero. The plus sign in panel B indicates a skip connection from the previous layer.

The GSNN method can be considered a residual network [32], such that xl+1 = F (xl)+xl with the added constraints
imposed by the structural graph G. Function node parameters may be optionally shared across layers, which prevents
the model parameters from scaling with depth; however, in practice we find that the GSNN model performs better
when parameters are not shared across layers. We also optionally add self-edges to all function nodes to allow them
to incorporate self-information from the previous layer. Taking lessons learned from traditional residual networks,
we also include normalization layers. The ResNet model uses batch normalization [32], however, due to the memory
requirements of the GSNN method, we are required to use small batch sizes for training, and therefore batch normal-
ization is unlikely to perform well. Instead, we use layer normalization [5] within each function node to prevent data

8Layer here refers to the number of edge-updates, not the number of layers in a function node
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leak between function-nodes.

We include options to use Kaiming/He or Xavier/Glorot weight initialization [33, 49]; however, since the function
nodes can only access a subset of inputs and outputs, we use the in-degree (Din

i ) of node i in the input graph G as the
"fan in" value and out-degree (Dout

i ) as the "fan out" value. With this modification, our weight initialization methods
are described by:

wkaiming
i ∼ N (0,

2

Din
i

) wxavier
i ∼ N (0,

2

Din
i +Dout

i

)

We implement the GSNN model in Pytorch [68] and, at the time of writing this, Pytorch’s native sparse matrix multi-
plication is not well optimized for batched operations. To improve on this, we use the Pytorch Geometric package [24]
to perform mini-batching and formulate our sparse matrix multiplication as a Pytorch Geometric graph convolution.
This approach is markedly faster, particularly when operating on a GPU, than using Pytorch’s native sparse matrix
multiplication.

4.3 Model Evaluation

Figure 3: The data partitioning scheme
used to train and evaluate the GSNN
algorithm.

To evaluate performance, we use Monte Carlo Cross-Validation (MCCV)
[100] to randomly subsample train (60%), validation (20%) and test (20%)
data subsets. We run multiple folds (n ≥ 3) and choose the best performing
model within each fold using the validation set. We report performance as
the average Pearson correlation (ρ̄) evaluated in the test set across all folds.
Each data partition is a disjoint set of (drug, cell-line) pairs (e.g., Imatinib,
A549). This evaluation approach allows the model to train on all drugs and
cell lines while evaluating on unseen drugs and cell line pairs. Note that
this partitioning scheme evaluates the performance of the model within the
measured drugs and cell lines, but generalization to unseen cell lines is not
evaluated. A model evaluated with this approach can be effectively used to
impute missing drug and cell line combinations.

To measure the performance of the model, we use the mean Pearson corre-
lation (ρ̄) [25] across all predicted LINCS gene outputs (yi), where N is the
number of LINCS gene outputs.

ρ̄ =
1

N

N∑
i=0

pearson(ŷi, yi)

To determine significant performance differences between models, we perform two-sided paired t-test, adjusted for
the number of tests (n=3) with the Bonferroni correction [31].

4.4 GSNN performance on random networks

As we have discussed, the no free lunch theorem suggests that including prior knowledge in deep learning algorithms
has the potential to improve prediction performance compared to models without prior knowledge. We have developed
the GSNN method to do precisely this, and expect that if the GSNN algorithm outperforms the baseline, then the
prediction advantage is due to inclusion of prior knowledge; however, it is possible (albeit unlikely) that the GSNN
performance could be independent of the prior knowledge (i.e., due to a different aspect of the GSNN algorithm). To
test this assumption, we compare the performance of matched hyperparameter GSNN models that are initialized using
either 1) a randomized biological network or 2) the true biological network. If the GSNN performance is due to the
inclusion of accurate prior knowledge, then we should see significant performance differences between models trained
on true and random prior knowledge.

Randomization of the biological network is performed by sampling new edges of the input graph (G). This approach
maintains the total number of edges, but not the in- or out-degree of function nodes. Input edges, function edges and
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output edges are randomized independently to maintain the same number of input and output edges. For all input
edges, only the destination of each edge is randomized, and similarly for output edges only the source of each edge is
randomized.

4.5 Biological Graph Construction

Figure 4: Network construction diagram. Given a full biological network relating drugs, proteins and RNA (mRNA
+ miRNA) we construct a subnetwork focused on user-provided pathways. Each panel describes a sequential step
in the construction. First, we use a user-provided set of pathways to define a protein-space that includes all proteins
from the full network that have membership in at least one input pathway. The second step defines the RNA-space
as all RNAs that are regulated by at least one protein in the protein-space; entities from multi-step regulation (e.g.,
TF->miRNA->mRNA) are also included. The third step is to define the drug-space as all drugs that target at least one
included protein. Finally, there is a pruning step that removes any nodes that do not regulate a given proportion of
downstream RNA outputs (user-defined; typically ∼ 25%). The output of this process is a biological subnetwork that
comprise the molecular entities and relationships that describe the input pathways.

To create a biological network suitable for modeling cellular signal transduction, we used the resources listed in Table
2. In our biological network, allowable input nodes include: DRUG, EXPR (rna expression), CNV (copy number
variation), MUT (mutation) and METHYL (methylation input). We may refer to EXPR, CNV, MUT or METHYL
as OMIC nodes and these input represent cellular context (e.g., cell line encoding). All the PROTEIN and RNA
nodes will be function nodes. In this project, all output nodes refer to a LINCS L1000 gene and will have a single
edge connection from the respective RNA node (e.g., RNA__P53 → LINCS__P53). Note that we do not include
DNA molecules as separate entities; rather, we collapse this representation within the RNA nodes. For example, a
transcription factor that targets a DNA gene will be encoded as targeting the respective RNA gene. In the current
formulation, including DNA nodes offers little advantage and would increase the computational complexity of the
model during training and inference.

The resources listed in Table 2 span many pathways and processes, of which many are likely to be irrelevant to gene
regulation or common chemical perturbation pathways. Furthermore, the number of trainable parameters in the GSNN
model scales with the input graph size. For these two reasons, we developed a process to select a subset of proteins
that are likely to be predictive of chemical perturbation signaling processes. This graph construction process relies on
a set of user-defined Reactome pathways. We then define the intersection of pathway proteins as the protein-space of
G. Next, we define the rna-space as all RNAs that are targeted by a member of the protein-space; Optionally, the user
can provide a depth to which RNA descendents will be included, which allows for inclusion of more complex gene
regulation networks (e.g., protein->miRNA->mRNA). Any drugs that have a reported protein target in the protein-
space are then added to the drug-space. The LINCS-space is the intersection of available LINCS genes and rna-space.
We then include all edges from the resources listed in 2 if both source and destination are in one of the node-spaces
(the user can optionally choose a subset of resources to include). Next, there is a drug pruning step based on how
many LINCS nodes are descendants (the default is 25% of the number of LINCS nodes). This pruning step is used to
remove drugs that are overconstrained by the available prior knowledge and therefore cannot impact the prediction of
most outputs. PROTEIN and RNA nodes are also pruned if they do not have downstream LINCS genes. OMICS nodes
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are added based on the intersection of available ’omic features’ and protein-space or rna-space. In this construction
process, an OMIC node (e.g., EXPR__P53) can have edges to a PROTEIN, RNA, or both (example: see prot1 and
rna2 in Figure 2). For instance, we rationalize that RNA expression is relevant to both RNA and protein behavior, and
therefore we make the respective OMICS easily accessible to both.

Table 2: Literature curated resources documenting molecular interactions.

Resource Type Resource Expert reviewed Source Node Target Node Refs
Drug-Target The Cancer Targetome Some Drug Protein [12]
Drug-Target CLUE Repurposing No Drug Protein [20]
Drug-Target STITCH No Drug Protein [47]
Protein-protein interaction Omnipath Some Protein Protein [90]
Transcription Factor Gene Regulation Omnipath (Dorothea) Some Protein RNA [90, 27]
miRNA Gene Regulation Omnipath (MiRNA) Some RNA RNA [90]
Translation NA NA RNA Protein NA

Figure 5: A toy example demonstrating how a bi-
ological network for perturbation modeling can be
created. Input nodes include both drug and ’omics
features (blue), output nodes represent LINCS mea-
surements of a respective RNA molecule (green), and
proteins and RNA molecules are function nodes (yel-
low). Note that while we have added edge labels in
order to demonstrate what a biological network can
represent, we do not include edge-specific features in
the GSNN modeling.

Protein inclusion based on pathways makes the assumption
that all output nodes (LINCS expression) in the graph can be
well predicted via the entities we include; however, this as-
sumption is likely violated in many cases, especially for small
pathways. Including larger or multiple pathways could miti-
gate this issue, allowing for cross-talk between pathways. The
exclusion of a drug’s targets is likely to prevent the GSNN
method from effectively predicting the response to that drug.
Similarly, exclusion of critical transcriptional regulators of an
RNA molecule may lead to worse performance on the respec-
tive LINCS output. Therefore, we manually select pathways to
balance the graph size (so that the GSNN method is memory-
and compute-efficient), while including molecular entities rel-
evant to drug-response.

4.6 Baseline Models

We compare the performance of the GSNN algorithm against
several baseline algorithms: Artificial neural network (NN)
[62], Graph Convolutional Network (GCN) [45], Graph At-
tention Network (GAT) [93] and Graph Isomorphism Network
(GIN) [98]. We also compare performance against a "cell-
agnostic" Neural Network, in which all cell-context specific
features are removed (e.g., expression, mutation, methylation,
and copy-number variation features are removed from the in-
put). This provides a baseline that characterizes the prediction
of the average response of each drug, across all cell lines.

We implement the NN baseline using two layers with the Ex-
ponential Linear Unit (ELU) activation function [18] and batch
normalization [41]. All Graph Neural Networks (GCN, GAT,
GIN) are implemented with batch normalization layers, jump-
ing knowledge [99], and use the ELU activation function.

4.7 Hyper-parameter Tuning

For all three models, we perform a limited hyperparameter tuning within each MCCV fold, and the tested parameters
are reported in Table 3.
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Hyper-Param. GSNN NN GIN GAT GCN
Channels 10, 20 100, 500, 1000 64, 128 64, 128 64,128
Layers 10, 20 2 5, 10 5, 10 5,10
Dropout 0, 0.25 0, 0.25, 0.5 0 0 0
Learning Rate 1e-2, 1e-3 1e-2, 1e-3 1e-2, 1e-3 1e-2, 1e-3 1e-2, 1e-3
Other add_self_edges, scale_channels_by_degree

Table 3: Hyper-parameter grid search performed in each experiment for the five tested algorithms. The "Other" line
indicates additional Boolean flags that describe specific algorithm behavior.

4.8 Drug Dose Transformation

To encode the presence of a drug, each drug node is assigned a scalar value that represents the concentration of that
drug in an observation. We transform the drug concentration (µM ) using the following function:

xdose = −
log10(µM + ϵ)− log10(ϵ)

log10(ϵ)

This transformation ensures that the drug effect is log-linear in the relevant therapeutic concentration range, and which
can be shifted by choice of ϵ. It also maintains that a concentration of 0µM (i.e., no drug) will still be equal to zero
after transformation and a concentration of 1µM (a typically large dose) is equal to one after transformation. Most of
the LINCS L1000 observations were measured with concentrations between -2.5 and 2.5 (log10(µM)), and choosing
an epsilon of 1e− 6 ensures a logarithmic linear relationship in the concentration range relevant to the LINCS L1000
dataset.

4.9 GSNN Explanation: Edge Importance Scores

An advantage of the GSNN algorithm is that we can use the network structure to explain predictions in a form amenable
to biological interpretation. Previous work has presented a method for explaining GNN predictions, termed GNNEx-
plainer, which identifies a subset of nodes and features that are most involved in the prediction of a given observation
[101]. We implement a similar method to explain a given observation predicted by the GSNN network; however,
rather than identifying a subset of nodes or features, we identify a subset of edges. Given an observation (x), baseline
observation (xb), and a trained model (fGSNN ), we initialize an edge mask (M ) and use gradient descent to identify a
subset of edges that result in comparable model predictions. Further details are available in Algorithm 1. The output
of the GSNNExplainer method is a subgraph, which includes the most critical or involved edges to predict a given
observation compared to a baseline prediction. A key distinction between the GSNNExplainer and the GNNExplainer
is our use of a baseline prediction. GNNs traditionally use a permutation invariant aggregation scheme such as mean,
max or sum, and as such, removing edges or nodes in the GNN setting is analogous to setting the respective latent
state to zero; however, in the GSNN algorithm, edges may have some level of endogenous latent activations (perhaps
related to ’omic inputs), even in the absence of drug inputs, and this means that setting an edge latent state to zero is not
necessarily representative of "removing" an edge. In the GSNN algorithm, setting an edge latent value to zero is likely
to be more analogous to setting the edge to the "average" signaling behavior of the training dataset, which is unlikely to
represent any specific observation. To mitigate this challenge, we use a baseline observation to characterize the base-
line latent edge values. For example, to explain the prediction of a given drug Drug = A, concentration Conc = c in
a cell line Line = l, we can use a baseline observation without any drug (Drug = A,Conc = 0, Line = l). Using
such a baseline allows the GSNNExplainer to ignore any endogenous latent activation that may be due to cell type and
instead focuses on the edges involved in drug response prediction. Alternatively, one could ask the question What are
the key edges involved in the prediction differences between two different cell lines? To do this, we can use one cell
line as the baseline observation and the other as the input observation, while keeping the drug concentrations the same
for both cell lines.
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Algorithm 1 GSNNExplainer

1: INPUT: A trained GSNN model fGSNN , an observation to explain x, an observation xb to use as baseline, number
of optimization iterations N , mask size penalty coefficient β, weight decay term γ, number of "free" edges E,
learning rate α, and initialization prior P .

2: OUTPUT: Edge importance scores that characterize which edges are critically involved in the prediction of a
given observation compared to a baseline (xb).

3: θ ← init(P )*
4: target = fGSNN (x)− fGSNN (xb)
5: ab ← layerwise activations of fGSNN (xb)
6: gGSNN (X,Xb,M,A)← masked forward operation**
7: for i = 1 to N do
8: mij ← GumbelSoftmax(θ)
9: outputij ← gGSNN (X = x,Xb = xb,M = mij , A = ab)− fGSNN (xb)

10: Lij = MSE(target, outputij) + β((
∑

M)− E) + γ||θ||2
11: Li ← 1

B

∑B
j=0 Lij

12: θ ← θ − α∇Li

13: end for
14: *The prior P sets the initial probability of a given edge. In practice, setting a high probability of edge inclusion

(i.e., the subgraph ∼ full graph) paired with a large β term leads to robust subgraphs.
15: **The masked forward operation (gGSNN ) modifies the GSNN forward operation such that edges not included

in the mask (M = 0) will be set to the baseline latent activation values. The edges included in the mask (M = 1)
will be unchanged.

There are a few additional divergences from the methods presented in GNNExplainer: First, to induce discrete sam-
pling of edges, we use the softmax-gumbel distribution and anneal the temperature parameter during optimization
[61, 42]. Second, we use the mean-squared error (MSE) loss function, which is convenient for multi-output regres-
sion. In practice, we initialize the weight mask parameters such that each edge is likely to be selected, thus the
optimization starts with almost all edges included in the mask. A strong mask penalty term (β) encourages the re-
moval of uninvolved edges during optimization. We also include an optional weight decay coefficient (γ), intended
to encourage exploration by preventing large (confident) edge parameters. In summary, GSNNExplainer produces a
biologically relevant explanation of an observation. Using this method, we can interrogate which molecular entities
and entity interactions are important for the prediction of an observation.

4.10 Drug Prioritization

One of our primary research goals is to use the GSNN method for effective and interpretable prioritization of drugs
for nuanced research goals. We base our prioritization procedure on the premise that drugs which induce the same
response in all cell lines are unlikely to be good therapeutic candidates due to the detrimental effects on normal cell
types. Rather, we seek to identify drugs that induce a selective response in a subset of user-designated cell lines
representative of their research goals. For example, researchers may seek a selective response in cell lines derived
from a certain primary disease (e.g., breast cancer), or cell lines with shared mutations (e.g., TP53) or an expression
pattern (e.g., HER2+).

First, a user must define the contextual response of an ideal drug candidate. This can be done by designating in which
cell lines a candidate drug should cause a desirable response, termed the "target" lines (T ), and the cell lines that
should have a less desirable response, termed the "background" lines (B). For example, to prioritize drugs that have
a selectively desirable response in breast cancer cell lines, we can assign all breast cancer derived cell lines to the
"target" set and all other cell lines to the "background" set:

T = {SKBR3, BT20,MCF7, etc., }

B = {all other lines}

Next, we must choose a metric to quantify the desirable response. A desirable response is often measured in terms of
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cell viability9(the proportion of cells alive after the treatment of a drug), where a low cell viability indicates a desirable
response. Although cell viability is a convenient measurement for cancer drug response, there are alternative metrics
that can be tailored to more specific research questions. For instance, metrics derived from gene expression signatures
or single gene expression values may be more appropriate for certain research goals, such as quantifying DNA damage
or the activation of apoptotic pathways. For simplicity, however, we chose to quantify the "sensitivity" of a response
using cell viability such that low cell viability indicates sensitivity to a drug. We train a probabilistic cell viability
predictor network (fviab) using the output of a trained GSNN, such that:

p(ŷviab) = fviab(fgsnn(x))

The GSNN parameters are frozen so that they do not change during the optimization of fviab. We use deep ensembles
as described by Blundell et al. [50] to quantify the uncertainty in the outcome variable and assume that cell viability
is generated from a Beta distribution. Cell viability values are clipped between 0 and 1. Individual viability networks
predict two concentration parameters (a, b), which characterize the predicted cell viability probability distribution:
P (ŷ) = Beta(a, b). We parameterize fviab by a 1-layer neural network and optimize the parameters using the
negative log-likelihood and the PRISM dataset [21], which characterizes cell viability after drug treatment in a range
of doses. We include all (drug, cell) PRISM observations for which the drug is included in the GSNN model and the
cell is included in our GSNN training data. We maintain the same validation and test partitions as used for GSNN
training.

To prioritize drugs that create a selective cytotoxic response, we compute the probability that sensitive lines have lower
cell viability than resistant lines. To do this, we define the "target" cell viability probability (PT (ŷviab)) as a mixture
over the "target" lines. Respectively, the cell viability probability of the "background" cell lines is defined as a mixture
over all members within the background set (PB(ŷviab)). We then compute the difference in cell viability between
the "target" and "background" lines. Finally, we compute the probability that the target cell lines have an average cell
viability lower than the average cell viability of the resistant lines (psens).

PT (ŷviab) =
1

|T |
∑
i∈T

pi(ŷviab)

PB(ŷviab) =
1

|B|
∑
j∈B

pj(ŷviab)

psens = P (ȳT < ȳB |drug = d) =

∫ 0

−∞
(PT (ŷviab)− PB(ŷviab))dy

The drugs are then ranked by psens to produce a prioritized list such that the top candidates are the most likely to
be selectively responsive as defined by the "target" and "background" cell lines. Recognizably, an analytical solution
for a mixture of Beta distributions is not convenient, so instead we use Monte Carlo simulations [74] to approximate
psens.

To evaluate the effectiveness of our drug prioritization method, we use disease indications provided by the Drug
Repurposing Hub dataset [20]. This dataset provides limited drug annotations that specify the disease(s) for which
a drug has FDA approval. To evaluate the rationality of our prioritization algorithm, we generate drug rankings (as
described above) where the "target" set includes all cell lines derived from a certain primary disease, termed target
disease, and the "background" is a set of all cell lines derived from background disease. Our expectation is that drugs
with FDA indications for the target disease will be prioritized over drugs with indication background disease. Drugs
with indication for multiple disease are not considered. We then quantify the prioritization results using the area under
the receiver operator curve (AUROC) such that drugs with an indication for target disease are assigned a label of 1
and drugs with an indication for background disease are assigned a label of 0. A perfect ranking (AUROC = 1) would
be achieved if all drugs with indication for target disease are ranked higher than drugs with indication for background
disease.

9or metrics derived from cell viability measured over a range of concentrations such as the area under the dose response curve (AUC) or the half
maximal inhibitory concentration (IC50)
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5 Results

We apply our method to model cellular signal transduction using literature-curated prior knowledge to create a biolog-
ical network and optimize model parameters using the LINCS L1000 dataset. The LINCS dataset characterizes cell
line RNA expression changes in response to chemical perturbations. The L1000 assay measures 978 genes directly
and then uses these landmark genes to infer the RNA expression of approximately 12 thousand more genes (the "best
inferred" and "inferred" features spaces) [85]. We construct a biological network relating proteins, drugs and RNA
using the Omnipath resource [90], CLUE compound information [20], the Cancer Targetome [12] and the STITCH
database [47].

To limit memory requirements and focus on relevant signaling entities, we generate biological subgraphs that pertain to
specific biological pathways. These subgraphs allow us to evaluate the performance of our method on several distinct
pathways and data subsets. We define an "experiment" as a choice of biological pathway and network construction
hyperparameters. The experiment parameter choices will define which biological entities are included in the biological
network, as well as the cell lines, drugs, and observations that are applicable to the respective experiment. In addition,
each experiment will randomly assign train, test, and validation partitions. To mitigate the variance in performance
due to partition sampling, we run each experiment in replicate (n = 3), such that each replicate will share all hyperpa-
rameters, but will have unique data splits and weight initialization. Within each replicated experiment, the validation
set is used to select the best performing model from a hyperparameter grid search, and we report the average test
performance in Table 4b. Table 4a describes the experiment hyperparameters and lists the "primary pathways" that
were used in network construction; for further details regarding the experiment construction parameters, see Supple-
mental section 9.1. Table 4c reports the results of a paired t-test comparing the performance of GSNN and NN (the
two algorithms with the highest performance). The GSNN algorithm obtains the highest mean Pearson correlation in
all three experiments and significantly outperforms (Family-wise error rate (FWER) < 0.05) the NN in experiment 1.
Of the GNN algorithms, the GIN obtains the highest mean Pearson correlation but still underperforms compared to
the NN and GSNN algorithms.

Table 4: Algorithm performance on LINCS L1000 perturbation data.

EXP. Primary Pathway(s) LINCS Feature-space time Nodes (in, func, out) # Edges # drugs # cell lines # obs
1 Signaling by EGFR, Signaling by ERBB2 landmark 24H 5369 (3505, 1411, 453) 16203 516 80 40527
2 Death Receptor Signaling landmark 24H 6466 (4210, 1789, 467) 21830 554 80 41768
3 Signaling by ALK landmark 24H 5871 (3816, 1581, 474) 18897 569 80 43682

(a) Experiment input network characteristics and hyper-parameters.

EXP. GSNN GSNN (randomized) NN NN (cell agnostic) GIN GAT GCN
1 0.54 (0.51,0.56) 0.44 (0.39,0.47) 0.52 (0.48,0.53) 0.39 (0.38,0.4) 0.26 (0.16,0.36) 0.1 (0.07,0.12) 0.12 (0.06,0.19)
2 0.52 (0.45,0.6) 0.41 (0.3,0.5) 0.5 (0.41,0.58) 0.38 (0.36,0.4) 0.26 (0.07,0.45) 0.11 (0.04,0.22) 0.11 (0.04,0.18)
3 0.51 (0.49,0.52) 0.38 (0.35,0.41) 0.47 (0.44,0.48) 0.36 (0.34,0.38) 0.1 (0.08,0.13) 0.06 (0.04,0.07) 0.06 (0.04,0.08)

(b) The mean (95% confidence interval) Pearson correlation of the best performing models of experiments 1-3 measured on a hold-
out test set, aggregated over all MCCV folds (n=3). Bold font indicates the greatest average Pearson correlation, italics indicates
second best performance.

EXP. H0 p-value [adj.] GSNN scores [mean] NN scores [mean]
1 NN > GSNN 0.005 [0.014] 0.56,0.51,0.56 [0.54] 0.53,0.48,0.53 [0.52]
2 NN > GSNN 0.034 [0.102] 0.44,0.52,0.61 [0.52] 0.41,0.49,0.59 [0.50]
3 NN > GSNN 0.022 [0.065] 0.51,0.52,0.49 [0.51] 0.48,0.48,0.44 [0.47]

(c) Comparison of GSNN vs NN pearson correlation scores with a two-sided paired t-test.
GSNN and NN scores are ordered by replicate fold (1-3).

5.1 Local Performance Advantages

Perturbation biology requires the prediction of many outputs based on numerous inputs. Primary sources of variance
in response to a perturbation include drug, concentration, and cellular context. In such a complex system, it can be
useful to inspect the local performance of a predictive model, which we define as the performance grouped by attribute
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or performance within a subset of outputs. Local performance can help investigate questions such as: Which drug(s)
perform best? Which genes (outputs) are well predicted? Investigating such model behavior can help highlight where
the GSNN method works well and where it falls short.

The GSNN model is constrained by the biological network (G) constructed from literature-curated datasets. It is
therefore likely that the biological network will have quality biases toward well-studied pathways or relevance to
certain cellular contexts (i.e., the contexts that are most commonly studied). Additionally, the choice of network
construction hyperparameters (particularly the choice of pathways) may benefit the prediction of a subset of drugs or
genes. A plausible outcome is that such biases will translate to local regions of the biological network that are more
useful or accurate in predicting the expression change of particular genes. Alternatively, certain drugs, cell lines, or
observations may be particularly well predicted because of the GSNN inductive bias. To investigate this, we examine
the local performance advantages of the GSNN model compared to the NN (top row of Figure 6) and to the GSNN
model initialized with random prior knowledge ("GSNN-rand"; bottom row of Figure 6). We use the best model
from each fold (N=3) to evaluate performance grouped by various attributes. For example, 6a shows the results of
the observations grouped by drug; all observations with a given non-zero drug concentration are grouped and the
performance is computed as an average across all outputs and experiment replicates. We evaluate group-performance
in the test set and test the statistical significance of each group comparison using a paired two-sided t-test and adjusted
for multiple tests using the Benjamini-Yekutieli or Benjamini-Hochberg10 false discovery rate (FDR) method [10, 9]
and an FDR threshold of 0.1.

The drug targets with the most significant prediction advantage are proteins that are integrally involved in the pathways
chosen for Exp. 1 including EGFR, ERBB2 and CDKs. The two most significant drug-targets with prediction advan-
tage by the NN are CASP3 and ATM. Furthermore, there are many drugs and drug-targets that are poorly predicted by
both the GSNN and NN algorithms (r < 0.2), which may suggest poor data quality (e.g., noisy L1000 measurements)
or low data volume. There are also several drugs that are predicted quite well (r>0.5) by both GSNN and NN, and
this may suggest that these drugs induce a simple response (i.e., "easy" to predict) or have high data volume (many
measurements for the given drug).

10The Benjamini-Hochberg method is used for local performance groupings by cell line, gene, drug and disease where the groups are disjoint
sets and therefore the p-values are independent. The Benjamini-Yekutieli method is used for local performance groups by drug-target where an
observation may be assigned to two or more groups and therefore p-values are not independent
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(a) Drug (b) Gene (c) Drug-target

(d) Drug (e) Gene (f) Drug-target

Figure 6: Test performance comparison between the GSNN model (x-axis) and either the NN (top row; y-axis) or
Randomized-GSNN (bottom row; y-axis) when grouped by several attributes (Drug (left), gene/output (middle) or
drug-target (right)). Performance is reported as the Pearson correlation averaged over predictions from the best model
from each MCCV fold of Exp-1 (EGFR + ERBB2 signaling). The gray dashed line on all plots represents equivalent
average performance across folds; any groups lying under the dashed line are better predicted by the GSNN algorithm
(i.e., "GSNN performance advantage"). Significance was determined using a paired t-test (n=3) and groups with a
p-value less than 0.1 are denoted with an ’x’. Groups with fewer than five observations in each fold (n=3) are not
included. Note that we have limited power to detect significant performance differences because we only ran three
replicates.

5.2 GSNN Performance on random networks

The premise of our research assumes that prior knowledge encoded in the biological graph will be useful for the pre-
diction of the endogenous variable. To test this assumption, we compare the performance of the GSNN algorithm
when using true or randomized biological graphs. We find that GSNN models that use the true biological graph re-
sult in an average performance improvement of 24% (95% CI: 11.4% - 40.1%) compared to hyperparameter-matched
GSNN models that use a randomized biological graph. Figure 7 shows the performance advantage when using the
true biological network. Randomization of the biological network decreases performance in all three experiments. In-
terestingly, the randomized GSNN model outperforms the cell-agnostic NN and all three GNN algorithms, suggesting
that the GSNN model is capable of accurate predictions despite random inductive bias. Of note, the biological graph
prior knowledge that the GSNN utilizes has two forms of inductive bias, 1) the interactions between molecular entities
and 2) the molecular entities themselves. Our randomization scheme can only remove inductive bias from molecular
interactions and there may still be predictive value in the knowledge of molecular entities themselves.
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Figure 7: The performance differences between hyper-parameter and replicate matched GSNN-true (true bio. network)
and GSNN-rand (random bio. network). Performance evaluated with Pearson correlation and differences computed
by ∆r = rGSSN−true − rGSNN−rand. P(T>R) is calculated as the proportion of positive differences (i.e., proportion
of GSNN-true performances that are greater than GSNN-rand performances).
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5.3 Explaining Predictions using Edge Importance Scores

(a) An uninterpretable example of the full GSNN Exp. 1 struc-
tural graph G (black) overlaid with the involved edges (red).

(b) The predicted values when using the subgraph displayed in
(c) versus predicted values with the full graph. (c) The red involved edges from (a) with nodes organized hier-

archically and annotated.

Figure 8: The GSNNExplainer method can be used to identify a subgraph that maintains comparable prediction out-
puts. This can help delineate which edges are involved in the prediction of a given outcome. In this example, we
explain the prediction of gene expression response to a proteasome inhibitor (BRD-K50691590) in the PC3 cell line
(prostate cancer). For this observation, predictions using the subgraph shown in (b) maintains 82% of the variance of
the full-graph prediction.

Significant progress has been made toward the interpretation of traditional neural networks, including attribution
methods [58, 86] and black-box explanation methods [73]; however, applying these methods to cellular signaling
models does not express model prediction logic in a biologically relevant form. This limitation is exacerbated in
traditional neural networks, since the prediction logic is unlikely to accurately capture the sequence of molecular
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Table 5: The Pearson correlation between importance scores generated by subsequent GSNNExplainer replicates
(n=5). Performed on Dabrafenib (BRD-K09951645) in A375 cell line at a 10uM dose. The average pairwise correla-
tion between replicates is 0.92.

repl_0 repl_1 repl_2 repl_3 repl_4
repl_0 1.000000 0.920050 0.922028 0.924731 0.921699
repl_1 1.000000 0.919183 0.920203 0.917493
repl_2 1.000000 0.922614 0.919730
repl_3 1.000000 0.921099
repl_4 1.000000

interactions and, therefore, even accurate explanations of traditional neural network logic are not necessarily useful
to understand the underlying biology. The network-based architecture of the GSNN presents new approaches to
interpret explanations in a way that may be more useful to biologists. To do this, we implement a method termed
GSNNExplainer, inspired by previous work [101], which explains an observation by identifying a subset of edges that
are "important" to the prediction of the model.

Subgraph explanations produced by the GSNNExplainer can be conceptualized as a testable hypothesis of the true
underlying drug response. For instance, the subgraph shown in Figure 8c highlights the key molecular entities that the
Exp. 1 GSNN model uses for the prediction of outcome variables. Subsequent work could validate these explanations
by comparison with the literature or by performing wet-lab bench testing to confirm the involvement of molecular
entities. For example, Figure 8c clearly shows ESR1 (Estrogen Receptor) has an important role in the prediction of the
response to BRD-K50691590 (proteasome inhibitor). To confirm or deny the involvement of this transcription factor,
researchers could use experimental assays, such as chromatin immunoprecipitation sequencing (ChIP-seq) [67], to
investigate the activity of ESR1 (or other implicated transcription factors) in the response to BRD-K50691590. Rep-
resenting drug response explanations as a testable hypothesis can be used to build knowledge (e.g., identify important
molecular entities) or to encourage user trust in the model (through validation of explanations). Although traditional
neural networks can explain predictions using methods such as SHAP [58], explanations can only relate inputs and
outputs and lack a representation of intermediate molecular entities and therefore can be challenging to use as a testable
hypothesis of the underlying biology.

Since the GSNNExplainer utilizes the stochastic softmax-gumbel distribution to induce discrete edge selection, one
concern is the repeatability of the edge importance scores generated by subsequent GSNNExplainer replicates. We
investigate this concern by running replicates (n=5) and computing the Pearson correlation of subsequent replicates;
the results of a representative use case are shown in Table 5. On average, the pairwise correlation between replicates for
this example is greater than 0.9, suggesting repeatable results. The small amount of discordance between replicates
is likely due to a tendency for the GSNNExplainer to focus on outputs with larger prediction values, thus ignoring
low-value predictions (which are more likely to be dominated by measurement noise). Considering the abundance of
predicted outputs, it is likely that there is a stochastic inclusion of low-value predicted outputs. Repeatability between
replicates of the GSNNExplainer can be further improved by averaging the edge importance scores between replicates;
for example, the pairwise averaging of replicates in Table 5 improves the average pairwise correlation to 0.96. This
result suggests that, for applications where repeatability is critical, multiple GSNNExplainer replicates should be
computed and the results averaged.
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5.4 Evaluation of predicted cell viability

Figure 9: Cell viability prediction error (MSE) computed within drug combinations. X-axis characterizes GSNN error
and Y-axis characterizes NN performance; all drug combinations above the diagonal (black dashed line) are better
predicted by the GSNN. Notably, all combinations with Romidepsin (orange) were poorly predicted by the GSNN.
The size of the points indicates the predicted uncertainty of the GSNN (mean variance computed within combination),
which should correlate with GSNN error if the predictions are well calibrated.

Perturbed expression can be useful to characterize the multifaceted response of a biological system; however, it is
sometimes convenient to measure a perturbation’s response by a simple phenotypic outcome. For example, the field
of cancer drug response (CDR) predominantly uses cell viability (or summary metrics) as the outcome variable.
Past research has shown that perturbed expression can be used to identify cell death signatures, and that perturbed
expression can be used to accurately predict cell viability [87, 57]. In this section, we train a deep ensemble of
probabilistic 1-layer neural networks (fviab) to predict cell viability from predicted perturbed expression.

fcdr ∼ fviab(fexpr(x))

Where fexpr is a frozen11 GSNN or NN model from Exp. 1. We optimize fviab using single-agent cell viability data
from the PRISM dataset, and evaluate on a hold-out test dataset (62 cell lines, 305 drugs, ∼115k observations). We
then use the NCI ALMANAC dataset [37] to evaluate the performance when applied to unseen two-drug combinations
(13 cell lines, 24 drugs, 264 combinations, ∼30k observations). The primary purpose of this evaluation is to compare
the relative usefulness of the expression predictions made by the GSNN or NN models. If the GSNN predictions are
more robust and mechanistically grounded, then we expect them to perform better in downstream applications such as
prediction of cell viability (single and combination agents).

11Frozen indicates that the parameters of fexpr are not updated during optimization of fviab
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Table 6: Predicted cell viability performance. Values in bold indicate the best performance. The column acronyms are
Mean Squared Error (MSE), Expected Calibration Error (ECE), Error-Variance Correlation (EVC), Accuracy (Acc),
Area under the receiver operator curve (AUROC). The "Null/Rand." row refers to metrics computed using random
predictions (uniform(0,1)).

fexpr arch. fviab arch. MSE r (pearson) ECE
GSNN NN 0.017 0.87 0.11
NN NN 0.022 0.90 0.11
Null/Rand. Null/Rand. 0.263 -0.02 NA

(a) Performance evaluated on a hold-out test set of single agent
drugs (PRISM dataset).

fexpr arch. fviab arch. MSE r (pearson) ECE EVC Acc. (y,ŷ > 0.5) AUROC (y > 0.5)
GSNN NN 0.16 0.30 0.28 0.22 0.75 0.7
NN NN 0.34 0.22 0.35 -0.24 0.46 0.63
Null/Rand. Null/Rand. 0.27 0.00 NA NA 0.5 0.5

(b) Performance evaluated on unseen two-agent drug combinations (NCI Almanac dataset).

The results of cell viability predictions for single-agent and two-drug combination are shown in Table 6. We find
that single-agent cell viability predictions from a GSNN model perform comparably to predictions made with a NN
model; however, the GSNN model markedly outperforms the NN model when predicting cell viability for two-drug
combinations with a mean squared error (MSE) of less than half the NN model. To evaluate the calibration of cell
viability predictions (i.e., the quality of uncertainty quantification), we use the expected calibration error (ECE) [29]
and the correlation between predicted variance and error (EVC). In Figure 9 we compare the performance GSNN vs
NN predictions when grouped within two-drug combinations (i.e., performance calculated over all doses and cell lines
tested with a given drug combination). The GSNN has lower MSE for almost all tested drug combinations with the
notable exception of combinations involving the prodrug12 Romidepsin, which inhibits histone deacetylases (HDACs)
[96].

It is important to acknowledge that training and evaluating a model on different datasets can introduce several lim-
itations. For example, a seemingly marginal performance of ∼0.3 Pearson correlation should be interpreted in the
context of potential data issues. This consideration is particularly relevant to cell viability measurements, which are
known to suffer from limited reproducibility and measurement noise [66]. Additionally, the datasets used in our study,
namely the single agent data from PRISM [21] and the combination agent data from the NCI Almanac [1, 37], were
generated using different cell viability assays (PRISM and NCI-60 protocol, respectively). This disparity raises the
possibility of covariate shift [71], which may affect our results. To address this concerns, we refined our evaluation
by binarizing cell viability (y > 0.5) and employing classification metrics, specifically accuracy (Acc.) and area under
the receiver operator curve (AUROC). The results in Table 6 show that the GSNN model demonstrated superior per-
formance across all classification metrics when predicting cell viability of two-drug combinations.

5.5 Disease-specific drug prioritization

In this section, we use the GSNN model (same hyperparameters as Exp. 1) to rank drugs by their selective response
in cell lines derived from specific cancer types. We then evaluate the rationality of these prioritizations by compar-
ing them with a limited number of FDA-approved drug indications. We manually select the target and background
diseases in Table 7 by choosing diseases that have cell lines in the GSNN cell-space and indications in the PRISM
drug repurposing dataset [21]. We use Monte Carlo simulations (N=1000) to estimate the probability that target cell
lines have lower average cell viability than background cell lines (psens). We then rank drugs by psens and report the
performance of our ranking in Table 7. The reported p-values are calculated as the proportion of null-AUROC values
(e.g., random drug lists; N=1000) that are greater than our AUROC value. The GSNN prioritization performs well
across disease types with perfect AUROC values in 8/10 disease-specific prioritizations; however, this approach would
benefit from a greater number of drug indications to accurately measure significance. For example, Acute Myeloid
Leukemia (AML) and Prostate Cancer have only a single drug with indication for these diseases, and prioritizations

12a drug that is activated once inside the cell.
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involving these diseases do not have significant p-values (alpha=0.05) even though they achieved a perfect AUROC
score (i.e., all drugs with the target disease indication are prioritized before drugs with the background disease indi-
cation). These results should also be interpreted with caution, as the drug indications in the PRISM drug repurposing
dataset may not be up-to-date or may not capture ongoing research. For instance, when prioritizing drugs that are pref-
erentially cytotoxic in breast cancer compared to non-small cell lung cancer (NSCLC) our algorithm ranks Afatinib
and Gefitinib (EGFR inhibitors with indications for NSCLC) above drugs with breast cancer indications. Although this
initially appears to be an inaccurate ranking, a literature search reveals evidence supporting both Afatinib and Gefitinib
as a potential treatment option for breast cancer [39, 54, 7]. In prioritization for selective response in NSCLC over
Kidney Cancer, Axitinib (with indication for renal cell carcinoma) was ranked above drugs with indication for NSCLC
(alectinib, certitinib), but there is research suggesting that axitinib may also be useful for the treatment of NSCLC [78].
Additionally, a systematic review of ALK inhibitors (including ceritinib, alectinib; indications for NSCLC) has shown
early promising results for use in renal cancer [40]. It may be that similar diseases will have missing or overlapping
disease indications that can confound the evaluation of our drug prioritization.

Table 7: The results of disease-specific drug prioritizations evaluated on FDA approved drug indications. Bold font
indicates the greatest AUROC value. The last two columns characterize the number of drugs with indications for target
or background diseases, respectively. Note that we define the background cell lines as those from a specific disease
rather than all non-target cell lines to ensure distinct cellular contexts and clear prioritization goals.

Target Dis. (# lines) Background Dis. (# lines) GSNN AUROC (FDR) NN AUROC (FDR) # target indications # background indications
NSCLC (8) AML (2) 1.00 (0.17) 0.60 (0.50) 5 1
breast (9) prostate (3) 1.00 (0.20) 1.00 (0.19) 4 1
breast (9) AML (2) 1.00 (0.20) 1.00 (0.20) 4 1
NSCLC (8) prostate (3) 1.00 (0.17) 0.60 (0.47) 5 1
breast (9) NSCLC (8) 0.80 (0.10) 0.75 (0.15) 4 5
melanoma (7) breast (9) 1.00 (0.02) 1.00 (0.02) 4 4
breast (9) kidney (2) 1.00 (0.07) 1.00 (0.07) 4 2
melanoma (7) NSCLC (8) 1.00 (0.01) 1.00 (0.01) 4 5
melanoma (7) kidney (2) 1.00 (0.07) 1.00 (0.06) 4 2
NSCLC (8) kidney (2) 0.70 (0.28) 0.90 (0.10) 5 2

6 Discussion

As suggested by the NFL theorem and further supported by the success of problem-specific models in vision (CNNs)
and NLP (Transformers) tasks, including inductive biases into deep learning algorithms is an effective way to improve
performance. In this work, we have shown that graph structured neural networks can use prior knowledge, encoded
as a graph, to impose useful inductive biases. When applied to a perturbation biology task, the GSNN algorithm
outperforms traditional neural networks, graph neural networks (GCN, GAT, and GIN) and GSNN models operating on
randomized biological networks. We further investigate local performance and show that the GSNN model performs
particularly well in a subset of drugs, genes, doses, and diseases. Variation in local performance may suggest that the
GSNN algorithm is better suited to model certain types of perturbation, biological processes, or cellular contexts. An
in-depth understanding of these advantages or pitfalls could be used to refine the GSNN algorithm or the choice of
prior knowledge to build even more robust perturbation models.

The proposed GSNNExplainer procedure enables biologically relevant explanation of GSNN predictions, which can
be used as a testable hypothesis to build knowledge of cell signaling processes or to develop trust in the GSNN algo-
rithm. Furthermore, the predictions made by GSNNs are both traceable13 and inspectable14. Future work should also
investigate how model-agnostic interpretability methods, such as SHAP [58] , can be used to understand the behavior
of specific function nodes and could be used to identify the specific role a molecular entity plays in signaling. These
aspects are important improvements over traditional deep learning and are a necessary step toward the development of
trustworthy models of perturbation biology. Well-validated GSNN models have the potential for application in basic
research, pre-clinical drug prioritization, and as a clinical decision aid.

We have shown that the GSNN method can be used to effectively predict disease-specific drug prioritizations, and
this suggests that these methods could be used for a wide range of prioritization goals that are uniquely tailored to

13Traceable refers to the ability to trace a prediction to intermediary entities, states or input features.
14Inspectable refers to the ability to inspect the behavior of specific intermediate entities
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specific research goals. Furthermore, we have shown that the GSNN can accurately predict the cell viability of drug
combinations when trained on single agents and outperforms equivalent models that use traditional NNs. These results
suggest that the GSNN algorithm could also be used for prioritization of drug combinations.

6.1 Limitations

6.1.1 Appropriate inclusion of molecular entities and interactions

The introduction of prior knowledge in the GSNN can be both a boon and a curse: choosing the right set of molecular
entities and interactions is liable to create interpretable high-performing models; but choosing the wrong set and we
may over-constrain the model, resulting in poor models and inaccurate prediction logic. Identification of the correct
subset of molecular entities required to model a system is a challenging task. In the methods we presented, we used
Reactome pathways to select molecular entities that we believe are critical to certain processes and which we can tailor
to the type of drug or disease we wish to model. While we believe this is justified as a naive first approach, we do
note that there are many ways this approach is lacking. Many knowledgebases, including Reactome, partition healthy
signaling pathways separate from diseased signaling pathways, and therefore inclusion of relevant healthy pathways
may miss molecular entities critical to disease. In future work, we would like to address this by expert curation
or methodological development of entity and interaction selection algorithms. An attractive research direction is to
perform hyper-optimization of the biological network during model training. For example, reinforcement learning
could be used to select the best set of molecular entities and interactions that maximize the performance of a set of
observations.

In this work, we used the Omnipath resource for construction of our prior knowledge graph. A limitation that may
arise from this is that the Omnipath resource focuses primarily on protein-protein, protein-DNA, and protein-RNA
interactions and does not include some relevant molecular entities, such as ions. Ions, such as calcium or potassium,
are well known to play an important role in many signaling pathways [28]. Further work may wish to explicitly model
ion-like molecular entities; however, due to the role in many different interactions and pathways, encoding them as
a distinct entity (i.e., function node) is likely to result in a high centrality15 that may lead to inappropriate modeling
of pathway cross-talk. For example, two unrelated pathways (e.g., different cellular compartments) that both involve
calcium ions would have an unintended means of signaling. This challenge may suggest the need for additional
learning mechanisms to model ion-like entities, or any entity that is independently involved in many pathways.

The GSNN method cannot learn de-novo molecular entity interactions and a consequence of this is that understudied
pathways are likely to lack appropriate prior knowledge to be appropriate for use with the GSNN. Additionally, the
inability to learn new entity relationships makes the GSNN method critically dependent on user selection of accurate
interactions and, therefore, susceptible to over-constraining. To address these limitations, future work should consider
how to infer new relationships between entities during model training. For example, a simple method would be the
incorporation of a "global" node, to which all entities are connected. This addition would enable inference of new
relationships between entities through the global node. Regularization might be applied to balance exploration of new
interactions and exploitation of high-fidelity known interactions.

6.1.2 The drug-target perturbation premise

As described in section 2, we adopt a drug-target premise of chemical perturbation, which requires knowledge and
presence of the proteins that a drug binds to; however, some drug mechanisms indirectly affect protein signaling. For
instance, some molecular mechanisms change cellular conditions (which we term "condition-response" perturbations),
which then activate protein sensors that measure the changing environment and initiate a response; examples of this
include hypoxia, heat shock response, oxidative stress, osmotive stress, and DNA damage response. Hypoxia-inducible
factors (HIFs) measure oxygen levels and activate transcriptional responses to adapt [95], PARP and DNA-PK proteins
initiate the DNA damage response (DDR) signaling pathway [55]. DNA damaging drugs common in cancer therapies,
such as Cisplatin, bind directly to DNA and cause DNA adducts [4]. As such, Cisplatin does not have any primary
protein targets and yet it is likely to lead to a DDR or apoptotic response. Future work should identify alternative
ways to encode these condition-response perturbations. A simple approach may be to include intermittent process
nodes, for example, include a "DNA damage" node and structure the network so that Drug → DNA damage →
Protein Signaling Cascade; however, this approach will require significant expert knowledge and manual curation.

15centrality is a network science metric characterizing the importance or connectedness to other nodes
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6.1.3 Limitations of the LINCS L1000 dataset

The LINCS L1000 dataset [85] is a large, high-throughput data set that characterizes thousands of drugs in hundreds
of cell lines, however, it has known data quality issues [16, 70, 53, 17, 23]. Future work in this field would benefit
from the application of the GSNN algorithm to alternative datasets such as the Cancer Perturbed Proteomics Atlas
(CPPA) [105]. Ensuring that the GSNN performs well on a range of datasets would provide additional evidence that
this algorithm can be applied effectively to model cellular signaling.

6.1.4 Scalability and re-usability

The current formulation of the GSNN algorithm is an order of magnitude slower than traditional neural networks (see
supp. 9.3), and therefore it can be computationally expensive to apply to large biological networks or datasets. There
are several approaches that could improve GSNN training and inference speeds. In Section 4.9 we describe how the
GSNNExplainer can be used to identify a subset of edges that are required to predict an observation. Using analogous
methods to prune unimportant edges during the training process or at inference time could significantly reduce the
compute requirements. Moreover, each drug perturbation can only affect downstream nodes, and many nodes are
likely to be inaccessible to a given drug. This constraint suggests that we could obtain equivalent performance with
drug-specific forward passes, which operate on a subset of the full biological graph and would markedly reduce the
compute requirements. This concept of drug- or observation- specific forward passes also suggests the premise of
reusuability. For instance, a function node could be trained using one datatype, network, pathway, or drug set, and
then re-used in a new datatype or pathway. This approach could enable efficient localized training of much larger
cellular or microenvironment models.

6.1.5 Appropriate parameter sharing in GSNNs

The GSNN algorithm overcomes many limitations of GNNs by eschewing the parameter-sharing paradigm of GNN
message aggregation. While we have shown that our approach has notable advantages for modeling cell signaling,
there are also limitations to our approach. Foremost, parameter sharing can significantly reduce the number of trainable
weights and, consequently, may improve generalizability in some prediction tasks. This work is likely to benefit from
future research that identifies aspects of cellular signaling where parameter sharing may be appropriate and useful, as
well as to reinforce aspects where it is not. For instance, the relationship between ’omic features and molecular state
of respective entites is likely to be similar across much of the interactome (e.g., deleterious mutations are likely to
prevent the involvement of the respective proteins). Given this consideration, we believe that using parameter sharing
to infer the state of molecular entities (i.e., cellular context) could be particularly useful in reducing the number of
trainable weights and improving the performance of the GSNN algorithm.

6.1.6 Pathway isolation via protein localization

Cell signaling is typically characterized by biological pathways, which can function independently or interact with
each other (pathway cross-talk). For a protein-protein interaction (PPI) to be active, the involved proteins must not
only be structurally compatible but also be co-localized. Proteins from different pathways may be found in separate
sub-cellular compartments, which can prevent interaction and pathway cross-talk. However, interaction between these
isolated pathways can occur by movement of a protein between compartments (e.g., translocation of transcription
factors to the nucleus).

Our current method for constructing biological networks does not consider the specific pathway or sub-cellular location
of proteins. This oversight may lead to inaccuracies in understanding inter-pathway interactions. For instance, if our
model merges two pathways that share a protein but are otherwise isolated, it might incorrectly suggest inter-pathway
interactions that do not actually occur.

The GSNN algorithm was designed to identify and respond to different input signals (i.e., source awareness), sug-
gesting that it could learn specific pathway responses with the appropriate training data. However, given the current
constraints of perturbation biology16, the GSNN algorithm may improve with additional inductive biases that promote
signaling within specific pathways or sub-cellular areas. One way to do this is by using pathway or location annotations
to clarify the role and position of each protein. In this approach, a protein could be represented by several function

16Perturbation biology data is limited in volume and often measured via noisy assays.
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nodes, each modeling the protein’s role in a different pathway or cellular location. Including edges between the same
molecular entity in different compartments would allow for pathway cross-talk via translocation (e.g., NFkB_cytosol
<-> NFkB_nucleus), and inter- vs intra- compartment signaling could be mediated by regularization (e.g., weight de-
cay) on between-compartment edge weights.

6.1.7 Modeling time with Graph Structured Neural Ordinary Differential Equations

In its current state, the GSNN algorithm only predicts one time point (24H); however, future work should pursue
methods to include time series prediction, which better aligns with the true behavior of transcriptional response and
would improve model usefulness. Neural Ordinary Differential Equations (ODE) have been proposed to solve ODEs
using neural networks [15, 69], however, parameterizing the neural ODE is likely to fall victim to many of the limi-
tations we discussed for traditional neural networks. The GSNN architecture is well suited to parameterize the neural
ODE, which would allow the inclusion of prior knowledge constraints and could be applied to time-series modeling of
transcriptional response. In practice, the GSNN layers would be replaced by sequential ODE solver steps to compute
the change in state over time.

6.1.8 GSNNs for multi-cellular models

Another attractive future direction is the inclusion of multi-cellular or microenvironment models to study more com-
plex behaviors of an organism. In simplicity, two cells could feasibly be encoded as a single GSNN model, with
known cell-cell interactions connecting the two distinct cellular models. Such an approach could be used to study the
impact of immune cells or tumor microenvironment on drug response. Ignoring the current pragmatic constraints (e.g.,
memory and compute requirements), the GSNN algorithm may one day be used to model drug response at the tissue
or multi-tissue scale; modeling the involvement of hundreds or thousands of cells.

6.1.9 Inclusion of experimental conditions

In-vitro cellular models of drug response require a variety of experimental conditions particular to the assay and cellu-
lar model, and these conditions are liable to introduce complexities and bias to the measured response. For example,
many drug assays including the LINCS L1000 assay use dimethylsulfoxide (DMSO) to solubilize the various drugs
that are tested. There is evidence that DMSO causes statistically significant expression changes in many pathways
and cellular models [6]. Furthermore, the Drugbank database lists three known protein targets for DMSO (Accession
Number: DB01093), including the MYC transcription factor [96]. To adjust for these experimental conditions, LINCS
data processing uses zero-drug DMSO replicates as control when calculating gene perturbations. Even with controls,
the various experimental conditions may introduce unexpected biases. Including experimental conditions as inputs
to the model could better account for these factors and may help improve model performance and reliability. The
presence of DMSO, for instance, could be encoded in the drug-target premise and therefore each observation would
be a combination of DMSO + drug. Including experimental conditions in this way may help delineate the expression
changes induced by DMSO from the changes induced by the drug.

6.1.10 Encoding differential RNA splicing

In it’s current formulation, we chose to construct a simple biological network where DNA and RNA are modeled as a
joint entity. This approach is memory efficient and captures much of the prior knowledge; however, future work may
benefit from the development of biological networks where DNA and RNA are modeled separately. Such an approach
would allow for the inclusion of multiple RNA transcripts from the same DNA and would enable a more detailed
characterization of the molecular landscape. A current limitation of this approach is that most molecular interaction
databases are characterized at the gene level, which prevents a detailed understanding of how these interactions change
with differential splicing.

7 Data and Code Availability

The GSNN project codebase is available in the github repository: https://github.com/nathanieljevans/
GSNN. All datasets used in this project are publicly available; for further documentation and precise sources, see the
"get_data.sh" file.
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9 Supplementary

9.1 Experiment Details

Each experiment is described by a set of hyperparameters that specify the nodes (drugs, proteins, RNA & LINCS
genes), cell lines, and observations that will be included. One of the key parameters is the choice of proteins to be
included in the biological graph on which the GSNN will operate. Ideally, we would select a subset of proteins that are
relevant to a certain drug or set of drugs; however, inferring which proteins are involved in a given drug response is a
challenging task. In lieu of identifying proteins that are relevant to the drug response, we select proteins based on their
involvement with specific biological processes or pathways and manually select the subset of pathways that we believe
are likely to be involved in the drug response. In experiments 1-3, we first select a set primary Reactome pathways
and then manually comb through each primary pathway to identify linked pathways17. To avoid exceptionally large
protein sets, we use our discretion to select linked pathways which we believe are relevant to the primary pathway.
For instance, we generally avoided including pathways that are unlikely to be well modeled by the GSNN premise
of cellular signaling such as DNA damage response18. We also did not include disease pathways, which Reactome
has designated as separate pathways; therefore, all specified pathways should be considered canonical and healthy
signaling processes. The experiment pathway details are shown in Table 8. Although each experiment has a unique set
of primary pathways, there are many included linked pathways which are shared by all three experiments. Additionally,
many proteins have multiple roles in several pathways. This overlap in pathways and protein roles means that even
distinct experiment pathway parameters may result in relatively similar biological networks. Figure 10 shows the
overlapping entities between experiments 1-3. Of note, while most elements have substantial overlap between each
experiment, the protein-space19 is relatively distinct between each experiment.

17Pathways that are not subpathways but are referenced within a pathway, e.g., pathway A -> activates -> pathway B but pathway B is not a
subpathway of A)

18We are concerned that DNA damage drugs will not be well represented by the drug-target premise
19all proteins included in the biological network
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Reactome
ID

Description Size

R-HSA-
177929

Signaling by EGFR 52

R-HSA-
1489509

DAG and IP3 signaling 41

R-HSA-
1257604

PIP3 activates AKT sig-
naling

282

R-HSA-
5673001

RAF/MAP kinase cas-
cade

292

R-HSA-
1227986

Signaling by ERBB2 56

R-HSA-
109606

Intrinsic Pathway for
Apoptosis

55

R-HSA-
6806003

Regulation of TP53 Ex-
pression and Degradation

37

R-HSA-
202131

Metabolism of nitric ox-
ide: NOS3 activation and
regulation

26

R-HSA-
6807070

PTEN Regulation 139

(a) Exp. 1

Reactome
ID

Description Size

R-HSA-
73887

Death Receptor Signal-
ing

161

R-HSA-
75157

FasL/ CD95L signaling 5

R-HSA-
140534

Caspase activation via
Death Receptors in the
presence of ligand

19

R-HSA-
75158

TRAIL signaling 8

R-HSA-
75893

TNF signaling 61

R-HSA-
5218859

Regulated Necrosis 62

R-HSA-
5213460

RIPK1-mediated regu-
lated necrosis

35

R-HSA-
5620971

Pyroptosis 27

R-HSA-
109606

Intrinsic Pathway for
Apoptosis

55

R-HSA-
446652

Interleukin-1 family sig-
naling

155

R-HSA-
5686938

Regulation of TLR by en-
dogenous ligand

21

R-HSA-
193704

p75 NTR receptor-
mediated signalling

99

R-HSA-
187037

Signaling by NTRK1
(TRKA)

117

R-HSA-
5673001

RAF/MAP kinase cas-
cade

292

R-HSA-
1257604

PIP3 activates AKT sig-
naling

282

R-HSA-
9031628

NGF-stimulated tran-
scription

39

R-HSA-
1489509

DAG and IP3 signaling 41

(b) Exp. 2

Reactome
ID

Description Size

R-HSA-
201556

Signaling by ALK 28

R-HSA-
1257604

PIP3 activates AKT sig-
naling

282

R-HSA-
165159

MTOR signalling 41

R-HSA-
380972

Energy dependent regula-
tion of mTOR by LKB1-
AMPK

29

R-HSA-
6807070

PTEN Regulation 139

R-HSA-
109606

Intrinsic Pathway for
Apoptosis

55

R-HSA-
202131

Metabolism of nitric ox-
ide: NOS3 activation and
regulation

14

R-HSA-
6806003

Regulation of TP53 Ex-
pression and Degradation

37

R-HSA-
6804756

Regulation of TP53 Ac-
tivity through Phospho-
rylation

92

R-HSA-
5693606

DNA Double Strand
Break Response

61

R-HSA-
5673001

RAF/MAP kinase cas-
cade

292

R-HSA-
1489509

DAG and IP3 signaling 41

(c) Exp. 3

Table 8: (a-c) The pathways that were used in each experiment to specify the proteins included in the GSNN input
graph. Bold text indicates the initial pathway choice from which all other pathways were "linked." Pathway size refers
to the number of proteins in each reactome pathway and may not reflect the exact number of proteins included in the
resulting biological network.
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Figure 10: The overlapping elements of each experiment. Most of the targets, nodes and drugs are shared across all
three experiments; however, there are distinct protein subsets for each of the three experiments.

9.2 Number of model parameters: GSNN vs. NN

In table 9 we report the number of GSNN and NN parameters in the best-performing models of each experiment.
Across all three experiments, the best GSNN models from each fold had more trainable parameters than the best NN
model from that fold. This may be indicative of the GSNN model being less prone to over-fitting. Another explanation
is that, due to the GSNN biological graph structure, there are likely to be many function nodes that are rarely involved
in prediction logic or impact only a few targets (i.e., only a few LINCS nodes are descendants) and therefore the
functional set of parameters may not be well represented by the total number of trainable parameters. In other words,
prior knowledge may lead to some function nodes being effectively spurious or underutilized, and therefore the direct
parameter comparison should be interpreted with caution.

Table 9: Number of trainable parameters of the GSNN and NN algorithms used in experiments 1-3 (median of best
models from each MCCV fold). Percent change is calculated as Ngsnn−NNN

Nnn
, where N is the median number of

algorithm parameters

EXP. ID Num. GSNN params Num. NN params Percent Change
exp1 6.56e+06 2.23e+06 193.8 %
exp2 7.85e+06 5.68e+06 38.2 %
exp3 6.70e+06 5.3e+06 26.5 %
AVG. 86.2 %

9.3 Computational Complexity of the GSNN method

The GSNN algorithm takes significantly longer to train due to being a particularly deep architecture and due to it’s
use of sparse matrix operations. Table 10 reports the average training times for each algorithm. Specifically, the

Page 35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.582164doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582164
http://creativecommons.org/licenses/by/4.0/


evans et al.

GSNN algorithm requires between 3-15 times as much training time as the alternative algorithms tested (NN, GNN).
Of note, however, are the training curves shown in Figure 11 that compare the validation performance by epoch
for representative GSNN and NN models; The GSNN validation performance increases markedly faster, achieving
approximately the maximum NN performance in the first 20 epochs. This aspect of the training dynamics may suggest
that the GSNN algorithm can be trained with fewer epochs, which would markedly reduce the compute requirements.

Table 10: Average training time of each algorithm (reported in minutes). Note: GSNN and GNN were trained on
GPUs whereas the NNs were trained on CPU only.

EXP. GSNN GNN NN GSNN / NN GSNN / GNN
exp1 419.8 105.0 29.0 14.5 4.0
exp2 493.3 138.4 32.4 15.2 3.6
exp3 460.8 133.9 35.9 12.9 3.4

Figure 11: Representative training curves from experiment 1 (EGFR + ERBB2 signaling). Dark Gray/Blue indicates
the GSNN training curves, light blue are NN training curves.

9.4 Effect of Layer Depth on GSNN performance

The GSNN algorithm passes information during sequential layers allowing information to diffuse through the network
up to the number of layers L in the model. Cell signaling often involves many entities in many sequential interactions
as well as feedback loops that may alter behavior. Due to this trait, deeper networks may be more representative of the
underlying biology and therefore more accurate. To test this, we compare the performance of GSNN algorithms with
different number of layers (L=10,20). Figure 12 shows the results and suggests that 20-layer GSNNs have a small
improvement in performance compared to 10-layer GSNNs. Notably, training deeper neural networks also introduces
more parameters, greater memory complexity, and longer training times. It is critical, therefore, that the choice of
GSNN layers be tailored to the available hardware and training budget. Improvements in time complexity of the
GSNN algorithm may enable deeper and more accurate models.
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Figure 12: The performance of GSNN algorithms in experiments 1-3 compared by the number of layers (L) hyper-
parameter.
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