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Abstract  24 

The interplay of stochastic and ecological processes that govern the establishment and 25 

persistence of host-associated microbial communities is not well understood. Here we illustrate 26 

the conceptual and practical advantages of fitting stochastic population dynamics models to 27 

multi-species bacterial time series data. We show how the stability properties, fluctuation 28 

regimes and persistence probabilities of human vaginal microbial communities can be better 29 

understood by explicitly accommodating three sources of variability in ecological stochastic 30 

models of multi-species abundances: 1) stochastic biotic and abiotic forces, 2) ecological 31 

feedback and 3) sampling error. Rooting our modeling tool in stochastic population dynamics 32 

modeling theory was key to apply standardized measures of a community’s reaction to 33 

environmental variation that ultimately depends on the nature and intensity of the intra-specific 34 

and inter-specific interaction strengths. Using estimates of model parameters, we developed a 35 

Risk Prediction Monitoring (RPM) tool that estimates temporal changes in persistence 36 

probabilities for any bacterial group of interest. This method mirrors approaches that are often 37 

used in conservation biology in which a measure of extinction risks is periodically updated with 38 

any change in a population or community. Additionally, we show how to use estimates of 39 

interaction strengths and persistence probabilities to formulate hypotheses regarding the 40 

molecular mechanisms and genetic composition that underpin different types of interactions. 41 

Instead of seeking a definition of “dysbiosis” we propose to translate concepts of theoretical 42 

ecology and conservation biology methods into practical approaches for the management of 43 

human-associated bacterial communities.  44 

  45 
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INTRODUCTION 46 

For decades now, inferring the interplay between stochastic processes and the ecological and 47 

evolutionary conditions that permit the establishment and persistence of host-associated 48 

microbial communities has remained a topic laden with controversies and unresolved conceptual 49 

and practical issues (Zaoli and Grilli 2021; Grilli 2020; Zhou and Ning 2017; Ferguson and 50 

Ponciano 2014; Gudelj et al. 2010; Robinson, Bohannan, and Young 2010; Ponciano et al. 51 

2007). The paucity of studies connecting extensive time-series data with population dynamics 52 

models rooted in ecological principles has been at the center of the problems faced when 53 

inferring processes from patterns in this area of research (Zhou and Ning 2017). This knowledge 54 

gap is exemplified here for the human vaginal microbiome. Work done to characterize these 55 

bacterial communities using experimental and quantitative analytical approaches (Ravel et al. 56 

2011) has shown that idiosyncratic changes in species composition and wide temporal 57 

fluctuations in the relative abundances of the different species are undeniably associated with 58 

specific environmental variables like pH. However, even a basic understanding of the 59 

mechanisms leading to these fluctuations remains elusive. Given that the structure and 60 

composition of an ecological community often alternates between distinct, widely different states 61 

(Shade et al. 2012; Gonze et al. 2017; 2018; Bardgett and Caruso 2020), the chances of dramatic 62 

community shifts are better predicted using mechanistic, stochastic population dynamics models 63 

(Schooler et al. 2011; Ives et al. 2003; Ponciano 2018; Ponciano, Taper, and Dennis 2018; 64 

Auger‐Méthé et al. 2021). Illustrating the conceptual and practical advantages of fitting 65 

stochastic population dynamics models to multi-species bacterial time series data is the focus of 66 

this paper.  67 
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Here we developed and tested a multi-species stochastic population modeling approach 68 

(Ludwig 1976; Nisbet and Gurney 2003; Cushing et al. 2003; L. J. Allen 2010; Dennis et al. 69 

2006; Ovaskainen and Meerson 2010; Dennis and Ponciano 2014; Ponciano 2018; Ponciano, 70 

Taper, and Dennis 2018) to better understand how fluctuations in the environment ultimately 71 

contribute to changes in species composition and abundances as well as to the overall community 72 

stability. Our central hypothesis is that stability properties, diversity and fluctuation regimes of 73 

human vaginal microbial communities can be better understood by explicitly accommodating the 74 

following three sources of variability in time series models of multi-species abundances: 1) 75 

stochastic biotic and abiotic forces, 2) ecological feedbacks and 3) sampling error. This modeling 76 

framework translates tentative explanations of the sources of the temporal variation in bacterial 77 

abundances into testable hypotheses that describe the interplay between ecological processes and 78 

the dynamics of abiotic factors while taking sampling variability into account. This translation 79 

was achieved by combining time series data of bacterial species composition with stochastic 80 

models derived from basic ecological principles. This probabilistic approach results in a practical 81 

statistical connection between biological hypotheses and time series data (Ponciano, Taper, and 82 

Dennis 2018). Here we exemplify this process using 135 time series of human vaginal microbial 83 

communities (Ravel et al. 2011). 84 

In recent years considerable efforts have been made to characterize the composition of 85 

vaginal bacterial communities found in healthy reproductive age women and to understand 86 

interruptions to the homeostasis of this microbiome. Community compositions that widely differ 87 

from these “normal” states are thought to be in a state of ‘dysbiosis’. Indigenous bacterial 88 

populations that reside in and on the human body constitute the first line of defense against 89 

infection by preventing non-indigenous organisms from causing disease. In the context of the 90 
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vaginal microbiome, dysbiosis can reflect changes in the absolute numbers of microbes, the 91 

species composition, or changes in the relative abundances of bacterial taxa or some combination 92 

thereof.  The bacterial communities of reproductive age women often vary over time in a 93 

seemingly haphazard way, and investigators assert that certain community states reflect an 94 

‘imbalance’ in the vaginal microbiome, and these are ‘unhealthy' states. Some of these states, 95 

like those depleted of Lactobacillus species are said to reflect ‘dysbiosis’ despite persisting for 96 

extended periods of time in women who are asymptomatic and otherwise healthy.  97 

The concept of biological community stability has motivated significant theoretical 98 

advances and large empirical research efforts in ecology (McCann 2000; Loreau et al. 2001; May 99 

2019; Ives and Carpenter 2007; Little et al. 2008; Loreau 2010). The disparity between the 100 

theoretical predictions and empirical evidence concerning diversity-stability relationships has 101 

generated historical controversies that remain unresolved (Loreau 2010). These can in part be 102 

attributed to the multiple definitions of stability that have been used (Ives and Carpenter 2007), 103 

and partly because diversity per se is rarely a primary driver of stability. Rather than being 104 

immediately linked to stability, diversity commonly acts as a secondary driver, itself being 105 

subject to the same anthropogenic and environmental drivers that affect stability via a variety of 106 

mechanisms (Ives et al. 2008; Altizer et al. 2006). Studies are needed that reveal the ecological 107 

processes and abiotic factors that link diversity to stability, particularly in microbial communities 108 

(Arumugam et al. 2011; Faith et al. 2011; 2013; Gajer et al. 2012).  109 

Combining mathematical, statistical and stochastic process tools to explicitly model the 110 

mechanisms that underlie community dynamics on a temporal scale has long proved to be a 111 

fruitful approach to fill knowledge gaps regarding the functioning of ecological communities 112 

(Cushing et al. 2003; Ives et al. 2003). This approach has also been shown to reliably reproduce 113 
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the regular waxing and waning of natural population densities in single and multi-species 114 

systems (Zeng et al. 1998; Ponciano et al. 2005; E. J. Allen, Allen, and Schurz 2005; Dennis et 115 

al. 2006; Barger and Bunge 2008; Taper and Ponciano 2016; Ponciano 2018; Ponciano, Taper, 116 

and Dennis 2018; Dennis et al. 2019). Here we approached the problem of estimating bacterial 117 

community stability by explicitly modeling this property as resulting from the interaction of 118 

ecological feedback and stochastic (randomly fluctuating) abiotic factors (Ives et al. 2003). 119 

Biological communities are continuously buffeted by changing environments and abiotic 120 

factors that induce temporal fluctuations in the growth rates of each species in the system 121 

(Dennis 1989; Dennis and Taper 1994; Grenfell, Bjørnstad, and Kappey 2001; Ives et al. 2003). 122 

Environmental changes are likely to affect the availability of resources and hence the rate at 123 

which bacteria replicate. Furthermore, changes in the availability of limiting resources are 124 

expected to be concomitant with changes in the nature and intensities of intra-specific and inter-125 

specific competition processes. Ultimately, these environmental changes are expected to be 126 

translated into changes in population sizes. In the face of unpredictable environmental changes, 127 

equilibrial states of ecological communities are better characterized by means, variances and 128 

other statistical quantities instead of point equilibria derived from deterministic, Lotka-Volterra 129 

like models (Ives et al. 2003; Grilli 2020).  130 

Mathematical characterizations of how the mean and variance of population sizes change 131 

over time can be obtained by formulating multi-species population growth as stochastic 132 

processes (L. J. Allen 2010; Ferguson and Ponciano 2014; Ponciano 2018; 2018). These 133 

mathematical expressions reveal the links between the patterns of population variation, 134 

environmental variation and key ecological quantities like intrinsic growth rates and inter-135 

specific and intra-specific competition coefficients. In this work, we bring these mathematical 136 
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characterizations to life by fitting stochastic ecological population models to a large data set 137 

consisting of 135 time series data sets that each spanned 70 days with daily samples. From the 138 

abundance time series, we explicitly estimate the strength of intra- and inter-specific competition 139 

and use these estimates to compute dynamic stability metrics that describe the system’s behavior. 140 

Furthermore, we show that it is possible to link changes in the persistence (or extinction) 141 

probabilities of any given bacterial type of interest with changes in intra-specific and inter-142 

specific competition coefficients. By understanding the relationship between these coefficients 143 

and the population fluctuations of vaginal bacteria of clinical interest, our analysis constitutes the 144 

first step towards assessing the risk to diseases linked to either the fast growth, invasion, or 145 

extinction of different species in vaginal bacterial communities. Our approach makes 146 

fundamental restoration principles and modeling techniques accessible to applied research 147 

programs that focus on predicting the tendencies of microbial communities. 148 

 149 

STOCHASTIC MODELS OF POPULATION ABUNDANCE 150 

Past decades have seen the theory and practice of statistical ecology merge into a unified, 151 

coherent, and robust framework for scientific inquiry using time series of animal abundances 152 

(Newman et al. 2014, Murray and Sandercock 2020). Stochastic models of the temporal 153 

fluctuations of species’ abundances aim to translate fundamental concepts in ecology and 154 

evolution into testable hypotheses and predictions that can be confronted with abundance time 155 

series datasets. These models decompose the changes in abundances of one, two or more species 156 

over time into four main components (Lewontin and Cohen 1969; Athreya and Karlin 1971; 157 

Ludwig 1976; Tier and Hanson 1981; Dennis and Taper 1994; Engen, Bakke, and Islam 1998; 158 

Ives et al. 2003; Dennis and Ponciano 2014; Ferguson and Ponciano 2014; 2015; Ponciano 2018; 159 
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Ponciano, Taper, and Dennis 2018). These four components are: 1) basic demographic processes 160 

of the study organisms (here bacteria) like reproduction and the effects of density dependence 161 

and inter-specific interactions, all of which may depend on current and past abundances of the 162 

species in the system; 2) chance variation and individual heterogeneities affecting births and 163 

deaths, known as “demographic stochasticity” effects; 3) environmental stochasticity or temporal 164 

variation in vital rates (e.g., birth and death rates) that reflect variation in environmental 165 

conditions; and 4) observation error and sampling noise. If sampling error is not accounted for 166 

then dynamics and processes may be grossly misrepresented. This caveat is particularly relevant 167 

in microbial systems (Kareiva, Parker, and Pascual 1996; Dennis et al. 2006; Ferguson and 168 

Ponciano 2014; Grilli 2020).  169 

One of the most widespread applications of these stochastic population dynamics models is 170 

the characterization of extinction processes and persistence dynamics of species of interest 171 

(Lande and Orzack 1988; Dennis, Munholland, and Scott 1991; Boyce 1992; Lande 1993; Foley 172 

1994; Staples, Taper, and Shepard 2005; Chaudhary and Oli 2020). Of particular interest for 173 

studies of bacterial population dynamics are recent efforts that explicitly incorporate the effects 174 

of interspecific interactions on extinction or persistence processes in experimental microcosms 175 

(Ferguson and Ponciano 2014). By including the interactions between species, these models can 176 

quickly become intractable. However, if the effects of environmental stochasticity are included, 177 

simple models that forego some of the biological complexities can still provide accurate 178 

characterizations of the fates of species in a community (Ferguson and Ponciano 2014).  179 

The interaction between environmental stochasticity and intra-specific and inter-specific 180 

competition coefficients determine how much population sizes will fluctuate over time (Ives et 181 

al. 2003). Changes in the quality of the environment have historically been cast as agents that 182 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2024.03.02.581600doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.02.581600
http://creativecommons.org/licenses/by-nd/4.0/


change population growth rates in mathematical models of population dynamics. These are 183 

directly expressed as increases in the mean of the progeny distribution in a population of interest, 184 

with a concomitant improvement in the maximum growth rate. Simultaneously, temporal 185 

fluctuations in the environment are modeled as a time dependent random variable that will 186 

randomly improve or reduce the growth rates of a population (Lewontin and Cohen 1969; 187 

Ludwig 1976). However, stochastic contributions to the quality of an environment and overall 188 

population dynamics have been found to interact in important ways with ecological processes, 189 

such as density-dependence and inter-specific competition (Tier and Hanson 1981; Engen, 190 

Bakke, and Islam 1998). Ives et al (2003) showed that the overall effect of environmental 191 

fluctuations in the growth of a population is modulated by ecological processes. These authors 192 

showed that the growth rate of a population characterized by weak density-dependence was 193 

easily affected by fluctuations in the quality of the environment whereas those populations 194 

characterized by strong density-dependence were not. When presented with the same temporal 195 

regime of environmental variation a population with strong density-dependence will fluctuate 196 

much less than a population with weak density-dependence (see Figure 1). Ives et al (2003) went 197 

on to show that for a single population, stability could be measured and conceptualized as the 198 

ratio of the magnitude of environmental variation to the strength of density dependence. This 199 

finding allows for a direct comparison of the reactions of two different populations to the same 200 

environmental noise regime. This insight that was brought about by Ives et al. (2003) in the 201 

context of community ecology, made it possible to compare different populations and 202 

communities on the same level playing field.  203 

In an ecological community, the influence of environmental noise variance is modulated by 204 

the density dependence and the inter-specific interaction coefficients (Ives et al. 2003; Ferguson 205 
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and Ponciano 2015). This is illustrated in Figure 2. Here we show four different scenarios in 206 

which the strength of intra-specific and inter-specific interactions varied while environmental 207 

noise remained constant. In each of these scenarios, three species (1, 2 and 3) interact in the 208 

following ways: species 1 and 2 and 2 and 3 are competitors and thus have a negative effect on 209 

each other. Species 1 and 3 are mutualists and hence have a positive effect on each other (Figure 210 

1). Finally, all the species show negative density dependence. In the first scenario, all the 211 

interactions including intraspecific density dependence are weak. In the second scenario only 212 

species 3 had strong density dependence while the rest of the interactions were weak. In the third 213 

scenario species 2 has a strong negative effect over 1 and 3 but the rest of the interactions were 214 

kept weak. Finally, in the fourth scenario we made intraspecific interactions strong while 215 

keeping interspecific interactions weak. The coefficients used for each scenario are shown in 216 

Table S1. 217 

We show how the same amount of environmental variance may result in either large or 218 

small growth rate variation, depending on the maximum growth rates and those specified 219 

interaction strengths (Figure 2). In a community, the strength of the inter-specific and intra-220 

specific interactions and the overall architecture of its assembly is what ultimately modulates the 221 

response to environmental variation. Just as in single species population dynamics, the same 222 

level of observed variation in the growth rate can result from the populations in a community 223 

over-reacting to mild exogenous fluctuations, or alternatively, from a community dampening 224 

considerably unusually large environmental variability. Ives et al. (2003) showed that it was 225 

possible, through the analysis of multi-species time series, to estimate four different statistics or 226 

“stability metrics” (called VP, MR, VR and R in Figure 2 (and as explained below) that would 227 

allow the comparison of multiple communities in the face of the same magnitude of 228 
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environmental noise.  In essence, and without entering into mathematical details, these authors 229 

showed that it was possible through these metrics to obtain a standardized measure of the 230 

reaction of a community to such noise. These findings also imply that deeming a particular set of 231 

time series as representative of “stable” or “unstable” dynamics just by its overall variability 232 

might be misleading and conflate the fundamental processes governing the dynamics of an 233 

ensemble of interacting populations. 234 

 235 

THE “MAR” MULTI-SPECIES STOCHASTIC POPULATION DYNAMICS MODEL 236 

Twenty years have elapsed since Ives et al. proposed their modeling approach (the “MAR” 237 

model) yet its use in microbiology has seldom been considered. We believe that the MAR model 238 

provides benefits in terms of understanding, classifying, and predicting the dynamics of bacterial 239 

abundances that have seldom been clearly presented in the context of microbial communities.  240 

What follows is an effort to explain these benefits.  241 

The MAR model is a discrete-time Markov process that is deeply rooted in stochastic 242 

population dynamics modeling theory (Ives et al. 2003). It jointly models three processes that 243 

determine the variation in abundance of the species in a community through time: 1) a 244 

deterministic density-dependent population growth for every species in the system on a log-245 

scale, 2) the effect of every species on the growth rate of any other species and 3) the effects of 246 

environmental variation on the growth rate (see Ives et al 2003 for a full model description).  247 

This stochastic model has as its deterministic counterpart, the multispecies Gompertz density-248 

dependent model, which has been widely applied to estimate bacterial growth (see Dennis and 249 

Ponciano 2014 and citations therein). The MAR model is amenable to simulations via recursion 250 

because the total abundance of any species in one time step only depends on the abundance of all 251 
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the species in the previous time step. Thus, the time series data can be modeled using its linear, 252 

multivariate recursion and representation 253 

𝑿𝑡 = 𝑨 + 𝑩𝑿𝑡−1 + 𝑬𝑡 . 254 

𝑿𝑡 is a vector of the log-population abundances at time 𝑡 , 𝑨 is a vector whose elements give 255 

the intrinsic rate of increase for each species in the system, 𝑩 is a squared matrix, whose 256 

elements 𝑏𝑖𝑗 denote the effect of the abundance of species 𝑗 on the growth rate of species 𝑖.  257 

Finally, 𝑬𝑡 represents a vector of stochastic, environmental factors varying independently from 258 

one time step to the next.  These factors are modeled with a multivariate normal distribution with 259 

mean 0 and variance-covariance matrix 𝚺. Through this variance-covariance matrix 𝚺 the 260 

modeler can specify whether the response to environmental variation is independent from one 261 

species to the next or not, and if not, any covariance structure could be added.  In macro-262 

ecological communities for instance the response to the environment from one species to the next 263 

might be phylogenetically constrained. In bacterial communities, these phylogenetic constraints 264 

likely directly translate into explicit functional constraints, since any given strain might be better 265 

at doing something the others cannot do (Ma et al 2020).  The MAR model can be viewed as a 266 

linear, first approximation to a complex, multi-species population dynamics process of the form 267 

𝒏𝑡 = ℎ(𝒏𝑡−1), where the species population abundances 𝒏𝑡 at time 𝑡 are given by some 268 

transformation ℎ(𝒏𝑡−1) of the abundances on the previous time step.  Specifically, it can be 269 

shown that the community matrix of such a complex process has eigenvalues that are identical to 270 

the matrix 𝑩 of the MAR model. The diagonal elements of 𝑩, 𝑏𝑖𝑖, which represent the intra-271 

specific, density-dependent effects also satisfy the three existing theoretical definitions of the 272 

strength of density dependence (see Ponciano, Taper, and Dennis 2018): the marginal effect on 273 

the per capita growth rate of an increase in density (Holt 1985; Holt and Barfield 2012), the 274 
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derivative of the recruitment map at equilibrium (Holt and Barfield 2012) and the negative 275 

elasticity at equilibrium of the per capita population growth rate with respect to change in the 276 

population (Lande et al. 2002).  The latter measure is readily extendable to scenarios dealing 277 

with more complex life histories (Lande et al. 2002). 278 

Jointly, the model matrices 𝑩 and 𝚺 hold the key to formulate standardized measures of how 279 

a community reacts to environmental variation. These measures ultimately depend on the nature 280 

and intensity of the intra- and inter-specific interaction coefficients (Ives et al. 2003; Dennis et 281 

al. 2006; Ferguson and Ponciano 2015; Ponciano, Taper, and Dennis 2018).  Ives et al. (2003) 282 

derived four standardized metrics based on the 𝑩 and 𝚺 matrices and their eigenvalues. Variance 283 

Proportion (VP) quantifies how the long-run variance of the population compares to the variance 284 

of the environmental noise process. It is a summary of how the environmental noise distribution 285 

in blue in Figure 1 compares to the population size distribution in gray in Figure 1. As Figure 2 286 

shows, differences in variability in the multi-species time series can be directly attributed to 287 

species interactions.  In a stable system the interactions among species that modulate changes in 288 

population sizes in a community from one generation to the next will be such that they cause the 289 

variance of the population abundances to be only slightly larger than the variance of the 290 

environmental noise (see Figure 1 for an example with a one-species system).  On the other 291 

hand, in a less stable system the species interactions greatly amplify the environmental 292 

variability thereby generating large population fluctuations (Ives et al. 2003). This amplification 293 

can be directly measured by the eigenvalues of the matrix 𝑩, namely, by det(𝑩)(2/𝑝) =294 

(λ1λ2 … λ𝑝)
2/𝑝

 where 𝑝 is the number of species in the system (see Ives et al. 2003 eq. 24 and 295 

subsequent paragraph). In the face of environmental variation, the growth rate of a population 296 
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will react.  This reaction is modulated, or filtered, by the intra-specific and inter-specific 297 

competition coefficients (Ives et al. 2003). 298 

The Mean Return time (MR) and the Variance Return time (VR) refer to the amount of time 299 

that it takes the system to return to its stationary distribution. It’s the stochastic equivalent of the 300 

deterministic return time (Ives et al 2003). Specifically, it refers to the rate at which the transition 301 

distribution of the system converges to its stationary distribution. The shorter the time, the more 302 

stable the community is.  Finally, Reactivity (R) is a measurement of how far the system pushes 303 

away from its equilibrium after it is perturbed and as Ives et al. argue, can be computed in two 304 

different ways, giving a total of four metrics of stochastic stability. 305 

 306 

METHODS 307 

Fitting the MAR model to extensive time series of microbial abundances presents at least 308 

three major methodological challenges:  The first is determining whether there exists enough 309 

information in the data to estimate the MAR model parameters. This question boils down to 310 

determining which time series length is sufficient to provide statistically sound parameter 311 

estimates. The second methodological task is separating the environmental process variability 312 

from sampling noise. The third one is dealing with missing data points: incomplete time series 313 

are commonplace in these ecological studies.  In what follows, we detail our approach to these 314 

three problems. 315 

Minimal sample size to fit a MAR model 316 

The quality of the statistical fit of the MAR model depends on the amount of information 317 

present in the multi-species data set.  This information can be measured through the statistical 318 

properties and diagnostics related to the model parameter estimates.  The statistical quality of the 319 
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parameter estimates is in turn related to how many data points per parameter, or “degrees of 320 

freedom” one has available to do model fitting. Another way to think about quantifying this 321 

information is by computing the ratio of data to the number of unknown parameters.  Ives et al. 322 

(2003) model is, however, quite data-hungry: Let 𝑝 be the number of species in the data set. The 323 

vector of maximum growth rates 𝐴 has 𝑝 unknown parameters.  The matrix of interactions 𝐵 and 324 

the variance-covariance matrix of the environmental fluctuations Σ have each 𝑝 × 𝑝 unknown 325 

parameters, thus, the total number of model unknowns is 2𝑝2 + 𝑝. With 13 species this number 326 

is 351. This number can be compared to the available number of independent data points in order 327 

to gauge if one has enough “degrees of freedom” for estimation.  328 

Because this model is Markovian, every time-step transition (change in population 329 

abundance) is an independent data point.  The likelihood function of the MAR model, from 330 

where its parameter estimates are derived, is therefore computed as the product of all the 331 

observed transitions (Ives et al. 2003).  This likelihood is maximized to obtain the parameter 332 

estimates. If 𝑛 is the length of the time series (70 in our case, see below), then the number of 333 

transitions that can be used for the maximization of the likelihood function is 𝑛 − 1.  If 𝑚 is the 334 

number of replicated samples per species per time point, then the number of data points available 335 

for parameter estimation is simply (𝑛 − 1)𝑚𝑝.  Consequently, for the estimation to be feasible, 336 

one needs to verify that (𝑛 − 1)𝑚𝑝 > 2𝑝2 + 𝑝.  On the other hand, solving for 𝑛 in this 337 

inequality gives the minimum sample size (time series length and/or number of replicates per 338 

time step) needed to ensure estimability as 
2𝑝+1

𝑚
+ 1, which is equal to 2(𝑝 + 1) in the common 339 

case where 𝑚 = 1.  For example, with 13 species and one replicated time series with no 340 

observation error, 2(𝑝 + 1) = 28 and the ratio of observations to number of parameters is 341 
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(𝑛−1)×1×𝑝

2𝑝2+𝑝
=

897

351
.  Finally, this thinking can be extended by including the parameters needed to 342 

decompose biological (process) variation from sampling error variation.  343 

 344 

Statistical decomposition of the sources of temporal variation 345 

In this study, we decompose the changes in abundances of species over time into three of the 346 

four main components mentioned above (Dennis et al. 2006; Dennis and Ponciano 2014; 347 

Ferguson and Ponciano 2014): 1) Population growth, density dependence and inter-specific 348 

interactions, or predictable changes in births and death due to current and past abundances of the 349 

species in the system 2) environmental stochasticity or (random) temporal variation in vital rates 350 

representing variation in environmental conditions (good/bad times for survival and reproduction 351 

and 3) observation error and/or sampling noise which if left unaccounted can lead to grossly mis-352 

represented dynamics (Kareiva, Parker, and Pascual 1996; Dennis et al. 2006; Dennis and 353 

Ponciano 2014). Demographic stochasticity, the fourth component, although not included in this 354 

first phase of our studies can be accommodated in time series estimation methods (Newman et al. 355 

2014).  356 

State-space models, widely known as statistical hierarchical models, allow decomposing the 357 

biological and sampling sources of variation using a one pass statistical fit (Ponciano 2004, 358 

Dennis et al 2006, Ponciano et al 2009, Newman et al 2014). Stochastic population models with 359 

added observation error are just one example of this wide class of models.  Although these 360 

models are routinely used (Auger‐Méthé et al. 2021), it has long been known that their fitting 361 

isn’t without statistical difficulties due to parameter identifiability problems, among others 362 

(Ponciano et al. 2005, 200; Dennis et al. 2006; Knape 2008; Lele, Nadeem, and Schmuland 363 

2010). Recently, statistical ecologists have extensively documented and demonstrated such 364 
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challenges (Lele 2020; Auger‐Méthé et al. 2021). Further studying the statistical and scientific 365 

merits of different computer intensive approaches to obtain either the maximum likelihood 366 

estimates (via Data Cloning, the Laplace approximation, the Geyer-Thompson likelihood ratio 367 

algorithm, Monte Carlo integration to name a few) or the Bayesian posteriors as well as Bayes 368 

Factors for these state-space models is a task that merits its own, separate efforts and goes well 369 

beyond the conceptual scope of this manuscript.  In any the case, our research group in 370 

collaboration with microbial ecologists and evolutionary biologists has extensively compared 371 

experimentally derived population dynamics parameter estimates with those obtained via 372 

maximum likelihood fitting of multi-species/types models and thus verified experimentally and 373 

theoretically the reliability of this approach (De Gelder et al 2004, 2007, Ponciano et al 2007, 374 

2009, Loftie-Eaton et al 2016, 2017). 375 

 376 

Our present approach to fit a multi-species population model to a bacterial community time 377 

series data set was as follows:  first, we estimated the most likely location of the true, unobserved 378 

abundances with sampling error removed, along with their confidence intervals using the 379 

Kalman estimation methodology developed by Dennis and Ponciano (2014).  This methodology 380 

simultaneously accounts for sampling error and missing data points in the time series of 381 

abundances. The resulting observation-noise filtered time series of abundances were then used to 382 

fit the MAR stochastic population dynamics model for the entire community. While doing this 383 

second fit, the statistical uncertainty resulting from the first observation error step was 384 

propagated via parametric bootstrap (Taper et al. 2021).  Separating the estimation of the 385 

observation error from the biological process error allowed us to be sure at each step that the 386 
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Mean Squared Error (MSE) of the model parameters were adequate via extensive simulations 387 

(github.com/jmponciano/StochasticMicrobiome).  388 

RESULTS 389 

From statistical ecology theory to practice: insights from a case study 390 

In what follows, we applied the theoretical insights described above to an extensive data set 391 

of dynamic vaginal microbial communities. We then contrasted the resulting inference with the 392 

traditional practice of using the presence of a particular bacterial species at certain abundances 393 

from a snapshot of a bacterial community to imply etiology.  We contend that such practice may 394 

in the end obscure, rather than illuminate our understanding the effects of different bacterial 395 

community compositions simply because population abundances can and often do vary widely 396 

over time. Additionally, we show how the concepts explained above contribute to answer 397 

questions of practical interest. For example: under which ecological scenarios (i.e,. set of inter-398 

specific and intra-specific interactions) will the abundances of species in a community quickly 399 

return from their current state to one where variation and composition regimes imply low health 400 

risks. How can the concept and measurement of “stochastic stability” contribute to estimate 401 

persistence probabilities? 402 

The data we analyzed to exemplify the application of statistical ecology concepts were part 403 

of the Human Microbiome Project funded by the National Institutes of Health in which 135 404 

women (see Clinical Study Methods in Supplementary Material). Women enrolled in this study 405 

self-collected daily mid-vaginal swabs for 10 weeks. We examined temporal changes in the 406 

composition of vaginal communities established using 16S rRNA gene sequencing. Every day 407 

after swab collection each participant also measured vaginal pH (see Ravel et al. 2011 for pH 408 

measurement methods). A simple examination of the temporal variation of pH in these samples 409 
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(Figure 3) clearly illustrate the fact that ample temporal variation in the dynamics of bacterial 410 

populations and their metabolic activities were the rule, rather than the exception. Important 411 

feedback loops between pH levels and bacterial metabolic activity are expected (Ravel et al. 412 

2011) and these processes can be examined with our theoretical approach, as we explain below. 413 

 414 

Minimal sample sizes to fit a MAR model 415 

Using the diagnostic tool presented in the Methods section, we determined which time series 416 

data sets had enough data to be able to estimate the MAR model parameters. Computing the ratio 417 

of available data to the number of parameters to be estimated, we determined that 88 community 418 

time series out of the 135 total available could be reliably used for a full, multi-species 419 

population model-fitting analysis.  The rest of the analyses presented here are based on these 88 420 

community time series data sets.  421 

 422 

STATISTICAL DECOMPOSITION OF THE SOURCES OF TEMPORAL VARIATION 423 

Estimating the interaction coefficients: compositional data vs abundance data 424 

We proceeded to fit the MAR model using the estimated population dynamics time 425 

trajectories without sampling error for all species and all data sets (Fig 4).  While doing this 426 

second fit, the statistical uncertainty from the first step was propagated via parametric bootstrap. 427 

However, for this second step microbiologists usually face a key practical decision: should they 428 

only work with relative abundances of species or work with both, relative and estimated total 429 

abundances. For our case, the total abundance is the number of 16S rRNA gene copies per 430 

sample established using quantitative PCR.  To make an informed decision as to which approach 431 

to undertake, here we simulated time series community abundances under the four scenarios 432 
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shown in Figure 2.  We then verified which interaction strength estimates were less biased 433 

(whether those resulting from using the compositional data or those resulting from using the total 434 

abundances). Although the relative abundances of species in a community (i.e., compositional 435 

time series data) are sometimes the only time series data available, our simulations showed that 436 

using compositional data leads to biased estimates of the interaction strengths specified in the 437 

matrix 𝑩  of the MAR model.  438 

Our simulation approach was as follows:  first, we selected the four community scenarios 439 

described in Figure 2 and simulated for each case 1000 time series of the abundance of the three 440 

taxa A, B and C. We then estimated the interaction coefficients using the MAR model described 441 

above fitted to both the relative abundance time series and the absolute abundance time series.  442 

The absolute abundances were estimated by anchoring the proportions into total abundances at 443 

each time step. Next, we fitted the MAR model to estimate the interaction coefficients using both 444 

the 1000 time series of relative abundances and the 1000 time series of total abundances.  Then, 445 

we calculated the ratio between the estimated and the true interaction strength in each case. 446 

When the interaction coefficients were estimated appropriately, a boxplot centered at 1 with a 447 

small variance resulted. We estimated if each ratio between estimated and true coefficients 448 

departed from an expected value of 1.  The results of this simulation experiment (see Figures S1-449 

S4) clearly show that when the total abundances are used, the relative bias boxplots are centered 450 

around one.  When compositional data is used, those boxplots have a much wider interquartile 451 

range and most of the time, are not even centered around one.  Thus, fitting the MAR model to 452 

compositional data tends to lead to severely biased estimates of the interaction strengths. 453 

Therefore, the best approach to estimate the interaction coefficients is to use total abundance 454 

data. 455 
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In longitudinal studies of microbiomes, the number of 16S rRNA gene copies only provides 456 

estimates of the absolute abundance of taxa and not the true abundance of each bacterial species. 457 

Our simulations demonstrated that estimating the strength of intra-specific and inter-specific 458 

interactions based on relative abundance data results in biased estimates of the interaction 459 

strengths. Hence, we performed a pan-bacterial qPCR assay to quantify the total 16S rRNA gene 460 

copies in each of the samples, which estimates the absolute bacterial abundance in each sample. 461 

Estimates of true abundance were then calculated for each taxon by multiplying relative 462 

abundance by total 16S rRNA gene copies. The qPCR assays were done in triplicate for each of 463 

the 135 women to document the variability in the abundances of species due to observation error. 464 

We fitted the three different multi-species population dynamics assemblies/model variants 465 

using the MAR model of Ives et al. (2003) and the de-noised time series data sets. The first 466 

model variant consisted of using all 13 species mentioned above.  The second model variant 467 

required fitting a three-species model where we grouped all four Lactobacillus species into a 468 

single ecological species, Gardnerella vaginalis as the second species and the other eight species 469 

grouped into a third species.  For the third variant we fitted a simple 2-species model with all 470 

four Lactobacillus species grouped as the first species and the other nine species grouped as the 471 

second taxon.  472 

With the MAR model parameter estimates for each model variant (13 species, 3 species and 473 

2 species models), we computed Ives et al. stochastic stability metrics.  For each one of the three 474 

cases, we then classified the 88 vaginal bacterial communities into four different stability 475 

categories using a Principal Components Analysis (PCA) on their estimated stability metrics.  476 

Using k-means clustering on the resulting PCA scores for these women and the fact that for all 477 

these metrics, lower values indicate higher stability, the 88 bacterial communities were classified 478 
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into four different categories: Highly stable, stable, unstable, highly unstable.  The best 479 

classification scheme out of the three different multi-species models corresponded to the two-480 

species MAR model where we pooled all the 4 Lactobacillus species into the first taxa and the 481 

other 9 species into the second species (the performance criterion to pick a best classification 482 

scheme was the amount of variance explained by the analysis). This classification scheme is 483 

shown in Figure 5.  484 

 485 

Estimation of persistence dynamics from the MAR model parameter MLEs 486 

Alone, our stability classification scheme is an insufficient approach to understand multi-487 

species population dynamics because the “stable” and “unstable” attributes are given here to a 488 

community without regard for the health risks associated with its composition.  Stability, which 489 

is a property of dynamic systems, should not be equated with desirable or undesirable behavior 490 

in terms of health outcomes because one community can have stable population dynamics but 491 

sustain a low relative abundance of a strain, thus bringing high health risk. Thus, considering 492 

overall abundance and composition in addition to stability is needed in order to assess the 493 

desirability of a particular community dynamics.    Indeed, Klatt et al (2017) show that when the 494 

relative abundance of Lactobacillus dwindles down below a 0.5 proportion, the bacterial 495 

community is under a high risk of infection by HIV.  On the other hand, as the relative 496 

abundance of Lactobacillus moves above 0.5, the risk of infection decreases.  Seeking to 497 

elucidate which type and magnitude of ecological interactions would lead to desirable dynamics 498 

(i.e. fluctuations in relative abundance of Lactobacillus above 0.5) is a reachable target under our 499 

analysis using the MAR model. If attaining a sustained high relative abundance of Lactobacillus 500 
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over time is a health-management target as in Klatt et al 2017 (see Figure S5), then we contend 501 

that our approach described next should be used. 502 

We developed a Risk Prediction Monitoring (RPM) tool that estimates the temporal changes 503 

in persistence probabilities. This method mirrors conservation biology approaches for population 504 

monitoring in which a metric measuring extinction risks is periodically updated with any change 505 

in the population called Population Viability Monitoring, or VPM (Staples, Taper, and Shepard 506 

2005).  Before explaining and implementing our RPM tool, we first explain how the well-known 507 

VPM method from Staples et al. works and apply it directly to one of our 88 data sets to 508 

exemplify it.  Immediately afterwards, we fully develop and implement our RPM method.  509 

 The VPM method consists of serially estimating the persistence probabilities with every 510 

data point added to the current length of the time series of population abundances. For annually 511 

reproducing species, with every year that passes a new total abundance is recorded. With it, an 512 

updated estimate of extinction risk is computed. Repeating the same process for multiple years 513 

yields a temporal trend of extinction risks.  Consider the following example from conservation 514 

biology: if population abundances of a threatened species are available for the past 30 years, and 515 

if managers want to check whether as of late (e.g., for the past 10 years), the extinction risk of 516 

the population has been increasing or decreasing, then the following is done (Staples, Taper, and 517 

Shepard 2005):  First, a stochastic population dynamics model is fit using the first 20 years of the 518 

data.  With the model parameter estimates and the data up to year 20, the probability that the 519 

population will crash below a critical threshold within the near future, e.g., during next 5 years, 520 

is computed.  The resulting probability is recorded.  Next, the observed population size for year 521 

21 is added to the time series.  The model parameters are then re-estimated and the probability 522 

that the population will crash sometime during the next 5 years after year 21 is computed. That 523 
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probability is also recorded. Iterating this process for 10 more years yields a time series of the 524 

extinction risks for the last 30 years.    525 

Here we exemplify the conservation biology method with one of our 88 bacterial community 526 

datasets. For our vaginal bacteria data set, our target was to track the probability that the 527 

proportion of all the Lactobacillus species in a vaginal bacterial community drop below 50%. 528 

Our time unit in this case is days, as new swabs were collected daily. The abundances for all 529 

bacterial taxa, as well as for the proportion of Lactobacillus species were available for 70 time-530 

steps. In Figure 6, upper left panel, we first fitted the stochastic multi-species Gompertz model of 531 

Ives et al. (2003) to a single time series of observed abundances and proportions of Lactobacillus 532 

up to day 30 (black empty circles). We did so by placing all Lactobacillus taxa as one type in the 533 

model and all other species were pooled together as a second type.  We then used the model 534 

parameters to project in the next ten days the Lactobacillus abundances and their proportion in 535 

the population 50,000 times (grey lines).  The proportion of such projected trajectories that 536 

dropped below 50%, which was 0.4 in the upper left panel, is an estimate of the Lactobacillus 537 

persistence probability above 50% during those ten days.  With every passing day, this estimate 538 

was updated.  In the next three panels (upper right, lower left and then lower right) we show 539 

these simulations for only days 40, 50 and 60, but daily changes in persistence probabilities for 540 

days 30 to 70 were computed.   541 

The VPM method illustrated above for our data set is essentially retrospective but here we 542 

devised a prospective modified version of it, one that allows comparing the dynamics of multiple 543 

communities in the near future. Furthermore, we switched the estimation focus from tracking the 544 

probabilities of crashing below a population size or proportion threshold to follow their 545 

complement, persistence probabilities. This modified method links our stability metrics with the 546 
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risk assessment task and is what we call the RPM tool. We developed the RPM tool because we 547 

faced the problem of assessing the risk dynamics for all 88 communities and being able to 548 

evaluate these under the same level playing field.  To do such comparisons, we chose to evaluate 549 

the risk dynamics all while answering the question:  How would the risk of Lactobacillus spp. 550 

falling below 45% change over the next 20 days if all communities were started with the same 551 

proportion (50%) and then monitored over the next 20 days? We answered this question by 552 

implementing these steps:  First, we retrieved the MAR model parameter estimates for all 88 553 

communities.  Using these estimates, we computed the MAR model predicted mean abundance 554 

of Lactobacillus at stationarity for every case. We then set these mean abundances as the starting 555 

abundances for a 20-day projection in each case. Additionally, we assumed that the starting total 556 

abundances for the non-Lactobacillus taxa in all these projections were equal to these 557 

abundances. Thus, if in one case the mean abundance at stationarity of Lactobacillus was 558 

predicted to be 3.5x108 16S rRNA gene copies per swab, the starting mean abundance of the 559 

non-Lactobacillus species were assumed to be identical, 3.5x108 16S rRNA gene copies per 560 

swab.  With these starting values, we computed the mean projected abundances for the next 20-561 

day trajectories and used these to numerically estimate via simulations the probability that the 562 

Lactobacillus taxa would remain above 45% on day 𝑡 for 𝑡 = 1,2,3, … ,20.  The resulting trends 563 

in Lactobacillus persistence probabilities are shown in Figure 7.  564 

Our RPM tool was used in conjunction with the estimated matrix 𝑩 to identify which 565 

interaction coefficient drove each persistence trend. We found that a decaying persistence trend 566 

of a bacterial type of interest was explained by whether other bacteria impacted negatively or 567 

positively its growth, which is the information contained in 𝑩.  We illustrated this finding using 568 

the resulting decaying RPM trend for woman 60 (right panel of Figure 7).  The estimated two-569 
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by-two matrix of interactions 𝑩 for woman 60 is as follows: the one-step total effect of non-570 

Lactobacillus species on the per capita growth rate of Lactobacillus species had a negative 571 

coefficient, -0.39.  On the other hand, Lactobacillus species had a small positive effect on non-572 

Lactobacillus, 0.001.  Therefore, while the presence of non-Lactobacillus taxa had a negative 573 

density dependence effect on the growth of Lactobacillus, while Lactobacillus had a positive 574 

effect on the growth rate of non-Lactobacillus.  In the end this asymmetry negatively affected the 575 

growth of Lactobacillus. In both cases, the strength of the intra-specific density dependence was 576 

weak (0.86 for Lactobacillus and 0.76 for non-Lactobacillus species).  To verify whether that 577 

asymmetry in the inter-specific growth rate effects was what drove the decay in persistence 578 

probabilities for the Lactobacillus taxa, we did two numerical experiments: for the first 579 

experiment, we simply switched the sign of the effect of one group on the other, so that non-580 

Lactobacillus had a positive effect of 0.39 in the growth rate of Lactobacillus and in turn, 581 

Lactobacillus had a negative effect of -0.001 on the growth rate of non-Lactobacillus taxa.  Next, 582 

we re-computed the RPM trend in persistence probabilities using this modified 𝑩 matrix of 583 

interactions. The resulting RPM trend of persistence probabilities, plotted in pink in Figure 8, 584 

remained at 1 for the next 20 days.  The second numerical experiment consisted of artificially 585 

increasing the maximum growth rate of the Lactobacillus taxa while leaving the 𝑩 matrix of 586 

interactions unchanged.  Then, a restored trend in persistence probabilities was also obtained 587 

(Figure 8). 588 

 589 

DISCUSSION 590 

This study constitutes an unprecedented integration of ecological, mathematical, statistical, 591 

and conservation biology principles to understand and predict the dynamics of an extensive 592 
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microbial community’s time series data set. In the past few years, the complex nature of 593 

microbiome data has brought together an ever-growing number of multi-disciplinary research 594 

teams (Qian, Lan, and Venturelli 2021). Yet, the fast pace of modern methodological research in 595 

microbiome studies contrasts sharply with the paucity of population dynamics studies seeking to 596 

understand from basic principles the benefits, or perhaps shortcomings, of novel data analysis 597 

techniques. The main motivation of this study was the fact that by and large, variability in 598 

microbial time-series data is still perceived as “statistical noise” rather than as an intrinsic 599 

property of the growth of bacterial communities. Phrasing through the MAR model variability 600 

over time as an intrinsic property of a growing population allows linking concepts like the 601 

strength of intra-specific and inter-specific competition to the qualitative response of a 602 

population in the face of uncertain environments.  Not only can these competition coefficients be 603 

estimated, and the stability of the system assessed by fitting the MAR model, but the chance of 604 

persistence of bacteria taxa can be further assessed.  To our knowledge, this is the first study that 605 

demonstrates how persistence probabilities of bacteria of medical and ecological interest can be 606 

estimated and even manipulated by identifying which interaction coefficient strengths are their 607 

main drivers. We thus demonstrate how the apparently simple stochastic multi-species time 608 

series model of Ives et al. (2003) can be used beyond its original applications to approach some 609 

of the most pressing questions regarding the monitoring of bacterial communities (Bardgett and 610 

Caruso 2020).  611 

 612 

Vaginal communities dominated by species of Lactobacillus have been associated with 613 

health and a reduced risk to diseases such as bacterial vaginosis or sexually transmitted 614 

infections. The notion that dominance of Lactobacillus is associated with health is deeply 615 
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engrained in the field of women’s urogenital health and strongly supported by the findings of 616 

numerous studies (Chee, Chew, and Than 2020; Witkin and Linhares 2022). Regrettably, the 617 

converse — that low proportions or the absence of Lactobacillus is unhealthy — has also 618 

permeated the field’s lexicon. This is a logical fallacy of denying the antecedent (Gaul 2018), 619 

that essentially argues that if healthy women have vaginal communities dominated by 620 

Lactobacillus, then the absence of Lactobacillus in vaginal communities is, of itself, unhealthy. 621 

This claim is refuted by the findings of numerous studies on the species composition of healthy, 622 

asymptomatic women that have shown that a significant proportion of healthy asymptomatic 623 

women have vaginal communities with low proportions of Lactobacillus (Saraf et al. 2021; 624 

Gosmann et al. 2017; Anahtar et al. 2018). Instead, they are dominated by various species of 625 

strictly and facultatively anaerobic bacteria such as Gardnerella vaginalis, Mobiluncus, 626 

Prevotella, Brevibacterium, Peptoniphilus and others (Onderdonk et al 2016). With that said, it 627 

should also be recognized that low proportions of Lactobacillus in vaginal communities are 628 

associated with an increased risk to disease (France et al 2022) though it is not a disease state per 629 

se. Nonetheless, investigators have often referred to these communities as being either abnormal 630 

(Green, Zarek, and Catherino 2015), out of balance (Olesen and Alm 2016), or in a state of 631 

dysbiosis (Hooks and O’Malley 2017) that somehow needs to be corrected. We posit that except 632 

for symptomatic bacterial infections, all other states are ‘healthy’ and in many instances they are 633 

‘normal’ (meaning they are often observed) though they may differ in terms of risk to disease. 634 

Most studies on the species composition of vaginal bacterial communities have employed 635 

cross-sectional designs that yield point estimates of community composition. It seems to be 636 

assumed that the species composition of communities is rather invariant over time in the absence 637 

of some sort of natural or unnatural environmental disturbances such as menstruation or the use 638 
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of lubricants (Gajer et al. 2012; Wilkinson et al. 2019; O’Hanlon et al. 2021; Łaniewski et al. 639 

2021). Contrary to this assumption, longitudinal studies have shown that the vaginal microbiota 640 

of many women is dynamic and often transition through states in which Lactobacillus spp. are 641 

lacking (Gajer et al. 2012; Lewis, Bernstein, and Aral 2017). These states vary in frequency and 642 

duration and are therefore associated with varying levels of risk for urogenital infections and 643 

other maladies. One could reasonably consider these to be windows of elevated risk that can 644 

open and close, sometimes over very short periods of time.  645 

 646 

Our PCA and MAR model-based stability classification scheme (Figure 5) takes a first, 647 

admittedly imperfect step toward process-based management of bacterial community dynamics 648 

and rigorous use of the term “stability”. Although previous community classification schemes 649 

using PCA relied on patterns of abundances, our approach relies on inferred ecological processes 650 

from the time series of abundances. As theory and current practice in conservation biology show 651 

(Murray and Sandercock 2020), the longer the multi-species time series data, the better the 652 

information regarding species interactions in a community can be better teased apart. Here we 653 

went one step further and estimated how these inferred interactions ultimately govern the 654 

community response to environmental variability.  The nature of such response was quantified 655 

with Ives et al.’s (2003) four stability metrics and the PCA in Figure 5 separates bacterial 656 

communities according to these metrics (see Supplementary material). Thus, the position of each 657 

bacterial community in PCA space is determined by the strength of ecological interactions. If 658 

one community is found to be largely unstable, an analyst can peer into the nature and intensity 659 

of those estimated interactions and change them one by one to move the community in PCA 660 

space from an unstable group into another classification group. In other words, an investigator 661 
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can test statistical hypotheses regarding which interactions are responsible for one or another 662 

stability classification result. Identifying interactions that render a community stochastically 663 

stable can be the first step in a research agenda that seeks to understand how to guarantee such 664 

stability by modulating the strengths of interactions. Our RPM approach is a natural extension of 665 

our stochastic stability inferences. It is an easy-to-understand approach to approximate the time-666 

dependent persistence probabilities of the bacterial species of interest. As Olesen and Alm (2016) 667 

have argued, tools like our RPM approach that focus on prediction rather than simply the 668 

detection of differences are needed, and here we deliver on that particular need.  669 

Using this persistence probability methodology in studies of the vaginal microbiome would 670 

mirror an approach called Population Viability Analyses that has been successfully used in 671 

conservation biology for many years (Chaudhary and Oli 2020; Ponciano, Taper, and Dennis 672 

2018). Unlike the majority of cases in conservation biology our model choice (the multivariate, 673 

stochastic Gompertz with environmental stochasticity and added sampling error; Ives et al. 2003; 674 

Dennis et al. 2006; Dennis, Ponciano, and Taper 2010) has been extensively tested in a recent 675 

theoretical-simulation study (Ponciano, Taper, and Dennis 2018). Estimates of the strengths of 676 

interactions can be used to formulate hypotheses regarding the molecular mechanisms and 677 

genetic composition that underpin different types of interactions. By plotting the variability in 678 

the sign (positive or negative) and intensity of interaction coefficients (for example, the effect of 679 

Lactobacillus on the growth rate of Gardnerella or some other species) one can locate and 680 

isolate cases where the sign of species interaction relations flip (say from positive to negative) 681 

and eventually guide the laboratory determination of the genetic composition of strains 682 

associated with interaction relationships in every quadrant (Figure S6).   683 
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Adopting statistical ecology theory and concepts reveals the inconsistencies of using terms 684 

like “dysbiosis” to characterize a microbial community.  Dysbiosis is commonly defined as a 685 

change in the composition and function of a human microbial community that is typically driven 686 

by environmental and host-related factors that exceed a community’s resistance and resilience 687 

(Kriss et al. 2018; Kindinger et al. 2016; Borgdorff et al. 2016; Levy et al. 2017). But this 688 

definition doesn’t seem to fully fit with what theoreticians in ecology understand as resilience 689 

and resistance. Resilience, in one hand, is the rate at which a community returns to a state that 690 

existed prior to a change. Resistance, on the other hand, is the magnitude of a community’s 691 

response to a given disturbance (Begon and Townsend 2021). Both, resilience, and resistance are 692 

built into Ives’ et al stability metrics.  Instead of trying to frame a dysbiosis definition into these 693 

concepts, it seems much more straightforward to use Ives’ stability metrics directly to classify 694 

the stability dynamics of a community, just as we do here.  Additionally, in current practice, 695 

investigators will often state that ‘healthy’ communities are ‘in balance’ (White et al. 2011; 696 

Olesen and Alm 2016; Gupta 2021).  This terminology reflects an erroneous assumption that the 697 

composition of bacterial communities in healthy individuals is essentially invariant and that 698 

changes in the relative abundances of species are necessarily bad and, in some cases, constitute 699 

sufficient evidence to classify these variants as disease states. This classification is often done 700 

based on pairwise comparisons of a microbiome at two points in time. Except for symptomatic 701 

bacterial infections, it seems that all other states are ‘healthy’ and in many instances they are 702 

‘normal’ (meaning they are often observed). These words and phrases are loosely defined and 703 

inconsistently used, and this leads to confusion among non-experts.  The literature is peppered 704 

with examples (White et al. 2011; Olesen and Alm 2016; Gupta 2021).  Instead of seeking a 705 

definition of dysbiosis we assert that it might be better to translate concepts of theoretical 706 
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ecology into practical approaches for the management of human-associated bacterial 707 

communities. This can be accomplished using concepts and methods that have come to be well 708 

known in the fields of population dynamics and conservation biology. 709 

 710 

 711 

 712 

CONCLUSION 713 

Population dynamics as a field in ecology has long touted the theoretical and practical 714 

advantages of jointly modeling demography and the influence of the environment and sampling 715 

error (Cushing et al. 2003; Dennis et al. 2006), while conservation biology has taken advantage 716 

of these ideas and modeling approaches to predict population persistence probabilities (Staples, 717 

Taper, and Shepard 2005; Chaudhary and Oli 2020).  Here we have shown that the same sort of 718 

stochastic population dynamics equations can be used to re-phrase the concept of stability as the 719 

magnitude of the reaction to a variable environment.  Our work represents the first 720 

comprehensive integration of theoretical stochastic population dynamics, unusually long time 721 

series of bacterial community abundances and conservation biology principles. This integrated 722 

approach resulted in two major steps towards a better understanding of human-associated 723 

bacterial communities. First, through the estimation of each bacterial community’s reaction to 724 

exogenous variability we achieved a stability-based ecological community classification. 725 

Second, we provide for the first time, estimates of the short-term persistence probabilities of 726 

bacterial types of medical interest.  This result is important because our estimated temporal trend 727 

in persistence probabilities can be used to construct an evidence-based inference regarding the 728 

fate of a pathogen, for example.  Finally, we conclude that a comprehensive examination of the 729 
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reach of stochastic population dynamics modeling in the field of microbial community ecology is 730 

beginning to take shape as a body of work.  Our efforts provide a theoretical framework that can 731 

very well represent microbial phenomena of interest in a simpler and unified way as effects of a 732 

common cause: an alteration of the growth rate of a population by itself, by another population 733 

or by the environment.734 
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FIGURE CAPTIONS 1037 

Figure 1.  The abundances in stable (a) vs. unstable (b) populations. In both panels the grey lines 1038 

represent the log-population abundances at stationarity were simulated under the stochastic 1039 

Gompertz model of Ponciano et al. (2018) under the same environmental noise regime that are 1040 

shown in blue. The variance of the long run log-population abundances is equal to the ratio of the 1041 

environmental noise variance (here 0.11) to one minus the squared strength of density-1042 

dependence 𝑐. This coefficient is stronger on the left than on the right. On the left 𝑐 = 0.75 and 1043 

so the log-population size variance is 0.11/(1 − 0.752) = 0.2514. On the right panel, density 1044 

dependence is much weaker, with a coefficient equal to 0.93. (Coefficients closer to 1 are close 1045 

to density-independence.) The variance of the population abundances under the same 1046 

environmental noise variance is approximately three times higher: 0.11/(1 − 0.932) = 0.8142. 1047 

The magnitude of the response of a population to environmental noise, in terms of variability, is 1048 

modulated by 𝑐. 1049 

 1050 

Figure 2. This figure extends the simulation shown in Figure 1 to an instance with two or more 1051 

species for 70 days. It shows that changes in the nature and intensity of community interactions 1052 

directly affect the stochastic stability, measured using Ives’ et al. four stability metrics: 1053 

VP,MR,VR and R which are defined and explained in the main text. In this case, the modulation 1054 

of a variable environment depends on the structure, as well as the nature and intensity of the 1055 

intraspecific and interspecific interactions. This figure shows the fluctuation in population sizes 1056 

of four different community structures (a-d) with three species, subject to the same 1057 

environmental noise regime. The upper row represents the four community structure types. The 1058 

intraspecific interactions (looped arrows) and interspecific interactions (straight arrows) change 1059 
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in magnitude with weak interactions shown as thin arrows and strong interactions shown as thick 1060 

arrows.  In the row directly below each of these interaction graphs we show the resulting 1061 

temporal dynamics of the abundances of each species. Since all four simulations were done 1062 

under the exact same environmental noise regime the differences in magnitude and fluctuation of 1063 

population abundances across community types can be directly attributed to differences in 1064 

structure. From left to right, it is shown that weaker interaction strengths lead to larger 1065 

fluctuations in populations under the same environmental variance. Note the different values of 1066 

the Y-axis. 1067 

 1068 

Figure 3.  Boxplots of all the pH measurements taken over 70 days for 88 women in our 1069 

bacterial community time series data which were complete enough to estimate the MAR model 1070 

parameters, as illustrated below. The boxplots here showcase the fact that the vaginal pH of 88 1071 

healthy, asymptomatic women varied widely over 70 days, inside and outside what is considered 1072 

to be a healthy vaginal pH region (shaded pink and region < 4.5). 1073 

 1074 

Figure 4. Observed Lactobacillus species abundances with error (empty circles) vs. estimated 1075 

abundances (black circles) after accounting for sampling error for one time series. The gray area 1076 

shows the 95% confidence interval of the estimated true abundances.  1077 

 1078 

Figure 5. Principal component analysis (PCA) performed on the four stochastic stability metrics 1079 

estimated for the vaginal bacterial community time series data of 88 women. In this analysis the 1080 

samples (rows) correspond to each woman and the four columns (variables in the PCA analysis) 1081 

correspond to the four stability metrics estimated by fitting the MAR model of Ives et al. The 1082 
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arrows’ lengths and direction represent the strength of association of each one of these four 1083 

metrics with the principal component axes: the variance proportion, the mean return time and the 1084 

variance return time are highly associated with the first principal component while the reactivity 1085 

is highly associated with the second principal component. Using k-means clustering, the PCA 1086 

scores of these 88 bacterial communities were classified into four groups. Because lower values 1087 

in these stability metrics indicate higher stochastic stability, an examination of the magnitude of 1088 

these four metrics in each one of these four groups suggested the labeling of highly stable, stable, 1089 

unstable and highly unstable dynamics (see Supplementary material for details).  1090 

 1091 

Figure 6. Population viability monitoring and estimating the temporally varying chances of 1092 

Lactobacillus persistence. Illustrated is an example of Risk Prediction Monitoring (RPM) using 1093 

stochastic population dynamics models.   1094 

 1095 

Figure 7. Projecting the probability of Lactobacillus persisting above 45% for two women, 1096 

starting at 50/50 from their carrying capacities for 20 days.  The black dots are the projected 1097 

probabilities of persisting for woman 3 (on the left) and woman 60 (on the right), for 30 days.  1098 

As a background and in different colors, the same trend for all the other women in the study is 1099 

shown. The wide array of trajectories of all the trends for the other women emphasizes the wide 1100 

variability in predicted community dynamics. 1101 

 1102 

Figure 8. Probability of persisting above 45% of total abundances “t” days into the future. As 1103 

explained in the text, the changes in the estimated coefficients of the interactions matrix results 1104 

in restored dynamics and persistence probabilities. In panel A the effect of Lactobacillus on non-1105 
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Lactobacillus was changed from positive to negative and the effect of non-Lactobacillus on 1106 

Lactobacillus was switched from negative to positive.  In panel B only the maximum growth rate 1107 

of the Lactobacillus species was increased by 25%.   1108 
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