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ABSTRACT

The emergence of genomic language models (gLMs) offers an unsupervised approach to learning a wide diversity of cis-
regulatory patterns in the non-coding genome without requiring labels of functional activity generated by wet-lab experiments.
Previous evaluations have shown that pre-trained gLMs can be leveraged to improve predictive performance across a broad
range of regulatory genomics tasks, albeit using relatively simple benchmark datasets and baseline models. Since the
gLMs in these studies were tested upon fine-tuning their weights for each downstream task, determining whether gLM
representations embody a foundational understanding of cis-regulatory biology remains an open question. Here we evaluate
the representational power of pre-trained gLMs to predict and interpret cell-type-specific functional genomics data that span
DNA and RNA regulation. Our findings suggest that probing the representations of pre-trained gLMs do not offer substantial
advantages over conventional machine learning approaches that use one-hot encoded sequences. This work highlights a
major gap with current gLMs, raising potential issues in conventional pre-training strategies for the non-coding genome.

Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing1–4 and protein
sequence analysis5–8. These LLMs, often termed “foundation models”, are trained through self-supervised learning to encode
input data as contextual embeddings (also known as representations). The strength of pre-trained LLMs lies in the versatility of
their embeddings, which can be leveraged for a broad spectrum of downstream predictive tasks. For instance, representations
from pre-trained protein language models have been used to predict protein structures9–11, predict non-synonymous variant
effects12, 13, design novel protein sequences14–16, and study protein evolution17, 18.

LLMs pre-trained on genomic DNA sequences offer a promising paradigm to accelerate our understanding of functional
elements in the non-coding genome19. Genomic language models (gLMs) could, in principle, help to understand the complex
coordination of transcription factors (TFs) to control the activity of cis-regulatory elements (CREs). They might also enable
more accurate predictions of the functional consequences of non-coding mutations, which can help to prioritize disease-
associated variants. Additionally, gLMs capable of learning cis-regulatory rules could become instrumental in designing novel
regulatory sequences with desirable functional properties. They might also facilitate functional comparisons of non-coding
sequences across different species, a task currently complicated due to substantial evolutionary drift in non-coding regions.

Recently, there has been a surge of pre-trained gLMs20–49. gLMs take as input DNA sequences that have undergone
tokenization, an encoding scheme applied to either a single nucleotide or k-mer of nucleotides. Through self-supervised
pre-training, the gLM learns a vector representation for each token in the DNA sequence via masked language modeling (MLM)1

or causal language modeling (CLM)50. In masked language modeling (MLM), a subset of input tokens undergo masking: most
are replaced by a special [MASK] token, some by random tokens, and others left unchanged. The model learns to predict
the original [MASK] tokens leveraging context from other unmasked positions, with random replacements introducing noise.
Various masking strategies explore different granularities (words, phrases, entities) and approaches (permutations, sampling,
importance-based selection) to enhance the self-supervised pre-training task’s effectiveness51–55. On the other hand, CLM is
an autoregressive pre-training task with the goal of predicting the next token in a sequence given the previous tokens. Both
language modeling objectives result in learning self-supervised representations of input sequences that capture information
about individual tokens and the complex interrelationships with other tokens. The burden of learning biologically meaningful
features is paid upfront during the pre-training. Afterward, the gLM’s representations can be leveraged for a broad spectrum
of downstream prediction tasks as inputs to simpler models, bypassing the need to learn essential features for each task from
scratch. In contrast, the conventional one-hot representation of DNA sequences treats each element independently, assigning an
identical representation for the same nucleotide character irrespective of their position in the sequence or what context is nearby.
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Consequently, the responsibility of learning important patterns and their dependencies falls solely on the machine learning
model being employed.

Current gLMs are composed of different choices for the tokenization, base architecture, language modeling objective,
and pre-training data (Supplementary Table 1). Tokenization of DNA sequences is employed for either single nucleotide20–22

or k-mer of fixed size23–25 or a k-mer of variable sizes via byte-pair tokenization?, 27, 33, 56, which aims to aggregate DNA
in a manner that reduces the k-mer bias in the genome, a problem known as rare token imbalance. The base architecture
is typically a stack of transformer layers57, with a vanilla multi-head self-attention23–25, 27–31 or an efficient variant (e.g.,
flash attention26, 58) or an exotic attention variant (e.g., sparse attention32, 33). Alternatively, the base architecture has also
been constructed with a stack of residual-connected dilated convolutional layers20 or selective state-space models, such as
a Hyena21, 22, 59 or Mamba43, 46. The pre-training data can vary significantly, encompassing the whole genome of a single
species20, 24, 32 or the whole genomes across multiple species23, 25, 26, 28, 33 or focused only within specific regions of the genomes,
such as the untranslated regions (UTRs)29, pre-mRNA30, non-coding RNA60, promoters22, coding regions35, 36, 45, non-coding
RNA39, 60, or conserved sites34.

Notably, Nucleotide-Transformer23 is a collection of BERT1-style models that consider non-overlapping k-mer tokenization
and is pre-trained via MLM on either a single human genome, a collection of 3,202 human genomes from the 1000 Genomes
Project61 alone or in combination with 850 genomes across diverse species. DNABERT226 is also a BERT-style architecture
but uses flash attention, considers byte-pair tokenization, and is trained via MLM on the genomes of 850 species. Genomic
Pre-trained Network (GPN) is a convolution-based model with a stack of residual-connected dilated convolutions, uses
single-nucleotide tokenization, and is trained via MLM on Arabidopsis thaliana genome and seven related species within the
Brassicales order20. Similarly, HyenaDNA21 is a state-space model using Hyena layers and single-nucleotide tokenization and
is trained via CLM on the human reference genome.

The utility of gLMs pre-trained on whole genomes for studying the non-coding genome has been limited. Previous
benchmarks have largely considered gLMs that have been fine-tuned on each downstream task23, 24, 26, 30, 39. gLM fine-tuning
involves adjusting the weights of all layers or through parameter efficient fine-tuning methods, such as LoRA (Low-Rank
Adaptation)26, 62, 63, (hard or soft) prompt tuning21, 64, and (IA)323, 65. In each benchmark, a fine-tuned gLM has demonstrated
improved predictions on a host of downstream prediction tasks, often based on the classification of functional elements, such
as histone marks or promoter annotations. However, the chosen benchmarks do not reflect the complexity of cis-regulatory
mechanisms observed in gene regulation, and the baseline models used in the comparisons often do not represent the state-
of-the-art. Hence, the capabilities of gLMs in understanding the regulatory genome have yet to be demonstrated in a fair
assessment.

However, fine-tuning makes it challenging to assess the contribution of the prior knowledge gained via pre-training on each
downstream task. Moreover, benchmarks that do not fine-tune gLMs are limited in their downstream tasks66–68, relying on
either binary classification of functional activity, which does not reflect the complexity of cis-regulatory biology69, 70 or lack
a more comprehensive set of benchmarking tasks. Thus, the extent to which existing gLMs pre-trained on whole genomes
can genuinely serve as foundation models that can transfer their knowledge to predict and interpret functional genomics data
without necessitating additional fine-tuning of the gLM weights.
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Figure 1. Experimental overview. Comparison of gLM embeddings versus one-hot representations for various functional
genomics prediction tasks.
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Here we perform a focused evaluation to assess the informativeness of learned representations of various gLMs pre-trained
on whole genomes (without fine-tuning any existing layers) for six major functional genomics prediction tasks, which encompass
different levels of cis-regulation complexity at DNA and RNA levels (see Fig. 1). In particular, we compared the predictive
power via probing representations from pre-trained gLMs – namely Nucleotide-Transformer, DNABERT2, HyenaDNA, and a
custom GPN pre-trained on the human reference genome – versus one-hot encoded DNA and representations acquired from
a supervised “foundation model” pre-trained on a large corpus of functional genomics data. Our results suggest that current
gLMs pre-trained on whole genomes do not provide noticeable advantages over conventional approaches to analyzing human
functional genomics with deep learning using one-hot sequences. By contrast, supervised foundation models pre-trained on
functional genomics data appear to encapsulate more relevant information and transfer better to other functional genomics data,
albeit when the source pre-training tasks and the target tasks are closely aligned. Nevertheless, highly tuned supervised models
trained from scratch using one-hot encoded sequences can achieve performance competitive with or better than pre-trained
models across the datasets explored in this study. Our results suggest that current gLMs struggle to understand cell-type specific
functional elements during pre-training and, therefore, fall short of recognition as a foundation model for the regulatory regions
of the human genome.

Results

Task 1: Predicting cell-type specific regulatory activity from lentiMPRA data
Understanding the mechanisms that drive CRE activity is a major goal in functional genomics; it is challenging due to complex
rules of cell-type-specific TF binding71, 72. In the first task, we compared the performance of various machine learning models
that consider different input representations of DNA sequences at predicting experimentally measured enhancer activity via
lentiMPRA (lentiviral Massively Parallel Reporter Assay)73. Specifically, this task involves taking a 230 nucleotide (nt) DNA
sequence as input, represented either as a gLM embedding or one-hot sequence, and predicting a scalar value that represents
the CRE’s functional activity measured in a given cellular context via lentiMPRA (see Methods). This task enables a direct
comparison in performance across matched downstream models for each sequence encoding scheme. By considering two
cell types, namely HepG2 and K562, we can assess whether pre-trained gLM representations capture cell-type-specific CRE
activity. While the original lentiMPRA study included the WCT11 cell type, we excluded it from our analysis due to the lack of
correspondence with the cell types used in Task 3’s zero-shot single-nucleotide variant effect generalization.

For each gLM, we probed the embeddings from the penultimate layer using a linear model or multi-layer perceptron
(MLP) based on the classification token (CLS) or the mean embedding, which is standard practice for harnessing sequence
summarization of LLM embeddings. We also employed a baseline convolutional neural network (CNN) that analyzed the
full embeddings of the penultimate layer as well as one-hot sequences for comparison (see Methods). We also considered
embeddings from the penultimate layer of Sei74, a supervised foundation model pre-trained on 21,907 chromatin profiling
datasets across over 1,300 cell lines and tissues. To assess the performance against a more sophisticated supervised model,
we trained a ResidualBind75-like model (ResNet) using one-hot sequences. These choices provide a fair benchmark to assess
whether embeddings from foundation models, acquired via unsupervised gLMs or supervised CNNs, are more informative for
downstream models than naive one-hot sequences.

We found that a CNN trained on the whole sequence embedding led to improved performance over the linear or MLP
models that analyzed CLS or mean embeddings (Fig. 2a). This suggests that summarized gLM representations lack sufficient
information to predict cell-type-specific regulatory activity. In contrast, CNNs can build upon the full embeddings to better
discriminate cell-type specific features. Moreover, the performance gap between MLPs and linear models suggests that the
mapping between the pre-trained representations and the functional readouts of lentiMPRA data is highly non-linear. While a
small-scale hyperparameter grid search showed comparable performance across different model capacity sizes (Supplementary
Fig. 1), a more comprehensive architecture and hyperparameter search could potentially identify model settings that lead to
further performance gains. However, for the scope of this study, we focused on simpler models, as is standard practice, to
primarily assess the out-of-the-box utility of the learned gLM representations.

In a broader comparison, we also observed that CNNs trained using sequence embeddings from gLMs generally under-
performed standard one-hot sequences, except our custom-trained GPN (Fig. 2b). Notably, the performance of all gLM-based
representations was significantly lower than the supervised representations given by Sei and a LASSO regression baseline using
features based on Enformer’s76 predictions, similar to Ref.73 (Supplementary Table 2). Due to differences in the data splits for
Sei and Enformer, it is unclear to what extent data leakage might lead to performance inflation. Nevertheless, the ResNet model,
which was trained from scratch using one-hot sequences from the LentiMPRA dataset, achieved the best performance (Fig.
2b). Although fine-tuning improved the predictive performance of the gLMs, achieving comparable performance as ResNet
(Supplementary Table 2), these results suggest that pre-trained gLM embeddings may not provide beneficial context for CREs
that cannot already be learned from one-hot sequences for the lentiMPRA dataset.
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Figure 2. Performance comparison on cell-type-specific regulatory activity prediction tasks from lentiMPRA data. a,
Comparison of predictive performance across various downstream machine learning models, including ridge regression and
MLP using either the gLM’s CLS token or mean embedding, and a CNN trained using the full embedding of the penultimate
layer of gLMs. b, Predictive performance using a baseline CNN trained using different gLM embedding inputs, one-hot
sequences, or supervised embeddings from Sei. MPRAnn and ResNet represent the performance of more sophisticated models
that are trained using one-hot sequences.

To control for the possibility that gLM embeddings from the penultimate layer may not be optimal, we performed the same
analysis using embeddings from other layers of Nucleotide-Transformer. While some layers yielded modest improvements,
particularly layer 10, the overall trends held and thus did not change the conclusions (Supplementary Fig. 2).

Task 2: Predicting TF binding sites from ChIP-seq data
Since TF binding is a cell-type-specific phenomenon, but standard language modeling objectives are not cell-type aware, we
surmised that the low performance of gLMs on the lentiMPRA prediction task may be due to losing information about key
motifs during the pre-training. To test this hypothesis, we evaluated whether the gLM embeddings can predict TF binding sites
measured via ChIP-seq (Chromatin Immuno-Precipitation sequencing77). Briefly, this task is framed as a binary classification
where a model takes a 200 nt DNA sequence, either as a gLM embedding or a one-hot sequence, as input and predicts whether
the sequence corresponds to a ChIP-seq peak. We consider ten ChIP-seq datasets spanning different TFs in GM12878 cells; a
separate single-task model was trained for each TF (see Methods).

Evidently, CNNs trained using one-hot sequences modestly outperformed the whole embeddings from DNABERT2,
HyenaDNA, and Nucleotide-Transformer. On the other hand, the custom GPN occasionally led to improved performance
(Fig. 3). Since the TF binding tasks were included in the original pre-training of Sei, data leakage might lead to Sei’s inflated
performance. Nevertheless, the modest performance differences across sequence encoding schemes, including the similar or
better performance of one-hot encoding compared to gLM embeddings, suggest that the gLM embeddings are likely not actively
encoding explicit information about transcription factor (TF) motifs. Rather, the embeddings appear to retain the essential
sequence information necessary for downstream components like convolutional neural networks (CNNs) to learn TF binding
patterns, akin to how CNNs can learn from one-hot encoded sequences that do not contain any inherent TF-related information.
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Figure 3. Performance comparison on TF binding prediction tasks from ChIP-seq data. Comparisons of CNNs trained using
different gLM embeddings versus CNNs trained using one-hot sequences for 10 TF ChIP-seq datasets. Performance is
measured by the average area-under the receiver-operating characteristic curve (AUROC) and error bars represent the standard
deviation of the mean across 5 different random initializations. Average AUROC represents the average performance across all
ChIP-seq datasets.

As a control experiment, we trained MLP or linear models using the CLS token of Nucleotide-Transformer. In this way,
any information about motifs must be fully encoded in these summarized embeddings. We observed that CNNs trained on
the whole embedding yielded substantially higher performance than an MLP trained using the CLS token (Supplementary
Fig. 3a). However, the MLP still demonstrated proficiency in predicting TF binding overall. To further validate our findings
and rule out the possibility of dataset biases creating a trivial prediction task, we also trained an MLP model on bag-of-
dinucleotide frequencies. Indeed, the MLP based on dinucleotide frequencies yielded comparable performance to the CLS
token (Supplementary Fig. 3a), except for CTCF, a protein that plays an important role in chromatin structure for all cell
types. Together, these results suggest that gLMs do not appear to lose TF-related information in their embeddings, albeit
only a slight information boost is gained regarding TF binding compared to low-level dinucleotide statistics. Nevertheless,
downstream models that analyze conventional one-hot sequences can easily rectify any information deficiencies, leading to
higher performances.

Task 3: Zero-shot variant effect prediction with MPRA data
A major use case of highly accurate sequence-function models is their ability to predict the functional consequences of
non-coding mutations76. In previous studies, Nucleotide-Transformer and GPN have demonstrated an ability to predict single-
nucleotide variant effects, albeit as part of a binary classification task20, 23. However, it is not intuitive how gLMs pre-trained
on whole genomes could yield good zero-shot predictions of cell-type-specific variant effects in the non-coding region of
human genomes since they are trained without any cell-type information. Thus, we assessed the ability of gLMs, specifically
Nucleotide-Transformer, GPN, and HyenaDNA, to quantitatively predict single-nucleotide variant effects within CREs using
saturation mutagenesis data measured via MPRAs (Massively Parallel Reporter Assay)78. This task involves calculating the
zero-shot variant effect predictions of gLMs either by the cosine similarity of embedding vectors for the input sequence with
mutant or wild-type allele (e.g., Nucleotide-Transformer and Hyena) or the log2-ratio of predicted variant and wild-type
nucleotide via single-nucleotide masking (e.g., GPN). These variant effect scores are compared with experimentally measured
variant effects according to the Pearson correlation coefficient (see Methods). This analysis includes MPRA measurements for
three CREs in HepG2 cells and one CRE in K562 cells as part of the CAGI5 challenge78, 79.
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Table 1. Zero-shot variant effect generalization on CAGI5 dataset. The values represent the Pearson correlation between the
variant effect predictions with experimental saturation mutagenesis values of a given CRE measured via MPRAs. Values are
reported for a single CRE experiment for K562 and the average of three CRE experiments for HepG2.

TRAINING TASK MODEL VARIANT EFFECT PREDICTION HEPG2 K562

SELF-SUPERVISED

NT (2B51000G) COSINE DISTANCE 0.125 0.007

PRE-TRAINING

NT (2B5SPECIES) COSINE DISTANCE 0.112 0.135
NT (500MHUMAN) COSINE DISTANCE 0.020 0.088
NT (500M1000G) COSINE DISTANCE 0.041 0.068
GPN (HUMAN) LOG2-RATIO 0.002 0.037
HYENADNA COSINE DISTANCE 0.064 0.021

LENTIMPRA-EMBEDDING
CNN-GPN DIFFERENCE FROM WILD TYPE 0.332 0.437
CNN-NT DIFFERENCE FROM WILD TYPE 0.185 0.198
CNN-SEI DIFFERENCE FROM WILD TYPE 0.579 0.701

LENTIMPRA-ONE-HOT

CNN DIFFERENCE FROM WILD TYPE 0.324 0.365
RESIDUALBIND DIFFERENCE FROM WILD TYPE 0.485 0.601
MPRANN DIFFERENCE FROM WILD TYPE 0.381 0.437

SUPERVISED ONE-HOT
SEI COSINE DISTANCE 0.545 0.641
ENFORMER (DNASE) DIFFERENCE FROM WILD TYPE 0.510 0.685

We found that all tested gLMs (without fine-tuning) exhibited poor variant effect predictions in this quantitative zero-shot
single-nucleotide generalization task (Table 1). These results extended to all Nucleotide-Transformer models23, including a 2.5
billion parameter BERT-based gLM trained on 3,202 diverse human genomes and 850 genomes from various species. On the
other hand, CNNs trained using lentiMPRA data based on gLM embeddings yielded substantially better performance relative to
their pre-trained counterparts (Table 1). Moreover, gLMs that were fine-tuned on the lentiMPRA data also yielded improved
performance (Supplementary Table 3). In contrast, sophisticated supervised models trained using one-hot sequences, such as
Enformer76, which is a state-of-the-art model trained with supervised learning on a wide variety of functional genomics data
using one-hot sequences, and Sei yielded better performance than all CNNs trained using gLM representations. However, a
CNN trained using Sei embeddings on the lentiMPRA dataset yielded the best overall performance. Together, these results
highlight a major gap in the zero-shot variant effect performance of gLMs with the state-of-the-art.

Task 4: Predicting alternative splicing from RNA-seq data
Previous studies demonstrated that Nucleotide-Transformer and GPN have learned properties related to gene definition and
splice sites20, 23. Thus, we surmised that gLMs pre-trained on whole genomes might be more beneficial for RNA regulation
tasks. To investigate this, we tested the informativeness of gLM embeddings to predict mRNA alternative splicing quantified
using RNA-seq (RNA-sequencing) from the ASCOT dataset80. Specifically, the prediction task takes as input two sequences –
a sequence with 300 nt upstream of the splice acceptor and 100 nt downstream of the acceptor and a sequence with 100 nt
upstream of the splice donor and 300 nt downstream of the donor – with the goal of predicting the percentage-spliced-in (PSI)
across 56 tissues as a multi-task regression; a task introduced by MTSplice81. Similar to the DNA analysis, a baseline CNN was
trained to take as input the full embeddings from gLMs or the embeddings of a pre-trained supervised model (see Methods).

Our results mirrored those seen for regulatory DNA, with embedding-based models largely under-performing compared
to one-hot-based models (Fig. 4a). In contrast, Sei’s embeddings led to substantially lower performance than most gLM
embeddings for this task. This is likely due to Sei’s pre-training focus on DNA-based functional genomics data, which
leads to learning a set of DNA regulatory features that do not transfer well to RNA regulation. To test whether a more
relevant set of features acquired through supervised learning could transfer better for RNA regulation, we trained a multi-task
ResidualBind-like model to classify RNA-protein binding (RBP) sites from a large trove of eCLIP-seq data (see Methods). The
task is to take 1,000 nt sequences as input and predict binding for 120 RBPs in K562 cells as a multi-task classification. Indeed,
the embeddings from this RBP-trained supervised model led to substantially better performance than the gLM embeddings,
except GPN, which yielded comparable results (Fig. 4a).

Task 5: Predicting RNA pol II elongation potential from INSERT-seq data
Next, we performed a similar analysis for a prediction task that takes 173 nt RNA sequences as input and predicts RNA
pol II elongation potential measured via INSERT-seq (INtegrated Sequences on Expression of RNA and Translation using
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Figure 4. Performance comparison on RNA regulation tasks. a, Box-plots of the average Pearson correlation across tissues on
test data for various models trained with different encoding schemes on an alternative splicing prediction task using MTSplice
data. b, Box-plot of the Pearson correlation for various models trained with different encoding schemes on a RNA poll II
elongation potential prediction task using INSERT-seq data. Box-plots show the first and third quartiles, central line is the
median, and the whiskers show the range of data. Box-plots represent 5 different random initializations for a and 50 different
random initializations for b. Statistical significance represents the Mann-Whitney U test with a p value < 0.05 (∗), < 0.01 (∗∗),
and < 0.001 (∗∗∗).

high-throughput sequencing)82. The INSERT-seq dataset is modest in size, containing only 10,774 sequences. This small
data regime may not provide sufficient examples to learn all relevant patterns using one-hot sequences. Training a large deep
learning model on this dataset can easily lead to over-fitting. Thus, this task can help evaluate a scenario (i.e., the low data
regime) where a baseline CNN that uses gLM embeddings might have an advantage over one-hot sequences.

Similarly, we found that the baseline CNNs trained using gLM embeddings yielded lower performance than one-hot RNA
sequences, except for the custom GPN, which performed slightly better (Fig. 4b). Again, the CNN performance based on
Sei’s supervised embeddings was worse, and the best-performing model was achieved using embeddings from the supervised
multi-task model pre-trained to classify RBPs. These results highlight that generic pre-training strategies are not always
beneficial; when carefully selecting pre-training tasks, one should consider which relevant features are needed to ensure more
positive outcomes on downstream applications.

While the custom GPN was the only embedding that demonstrated improved performance over one-hot sequences, we
hypothesized that further down-sampling of the training data could lead to situations where gLM embeddings become more
beneficial than one-hot sequences. We systematically down-sampled both the alternative splicing and INSERT-seq datasets and
retrained the same baseline CNNs using different input encoding schemes. Interestingly, the GPN embeddings consistently
outperformed other embeddings (Supplementary Fig. 4). The improved performance by GPN suggests that gLMs may
specialize more effectively in specific genomic regions. Specifically in this dataset, capturing 5’ splice sites is a critical feature82.
Thus, understanding what features gLMs learn well can help to identify suitable downstream tasks for which they can thrive.

Task 6: Predicting RNA-binding protein binding with eCLIP-seq data
RBPs are essential for various RNA processing stages, so next, we examined the ability of gLMs to predict RBP binding sites
using eCLIP-seq (enhanced chromatin immunoprecipitation sequencing) datasets83. Briefly, the task involves taking 200 nt
DNA sequences as input and predicting binary labels of whether the sequence corresponds to an eCLIP-seq peak or not (see
Methods). Ten eCLIP-seq datasets spanning different RBPs were used in the evaluation. We trained a baseline CNN model
using different sequence encoding schemes similar to previous tasks.

We found that CNNs trained using gLM embeddings performed slightly worse on average compared to the one-hot
sequences (Fig. 5a), in agreement with the ChIP-seq results of Task 2. The narrow performance difference between models
using gLM embeddings and one-hot sequences also indicates that RBP motif information is not lost in the gLM embeddings.
In a similar control, we found that an MLP based on Nucleotide-Transformer’s CLS token led to slightly better performance
than an MLP based on dinucleotide frequencies (Supplementary Fig. 3b). This supports that gLM embeddings encode beyond
low-level sequence statistics in regulatory regions of RNA. Again, we found that Sei embeddings lead to a substantial decline in
performance, further highlighting the importance of selecting appropriate pre-training tasks.
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Figure 5. Performance comparison on RBP binding prediction tasks from eCLIP-seq data. Comparisons of CNNs trained
using different gLM embeddings versus CNNs trained using one-hot sequences for 10 RBP eCLIP-seq datasets. Performance is
measured by the average area-under the receiver-operating characteristic curve (AUROC) and error bars represent the standard
deviation of the mean across 5 different random initializations. Average AUROC represents the average performance across all
eCLIP-seq datasets.

Uncovering cell-type-specific motifs learned by gLMs is challenging
As a follow-up, we performed an attribution analysis to identify motifs captured by gLMs. Attribution maps were generated for
a given sequence by systematically masking one input token (i.e., a single nucleotide position for GPN and a non-overlapping
k-mer for Nucleotide-Transformer) at a time and calculating the entropy over the predicted distribution of the masked token;
∆Entropy, which is the difference between the maximum entropy value across the whole sequence and the entropy values at
each position, was used to identify positions that yielded informative nucleotides (see Methods). For comparison, we generated
gradient-corrected Saliency Maps84 for a CNN trained using one-hot sequences. The analysis focused on lentiMPRA and
CTCF ChIP-seq data to cover tasks from different systems with varying levels of complexity.

As expected, the attribution maps for pre-trained gLMs alone (i.e., not considering the downstream task) were difficult to
interpret for both lentiMPRA (Fig. 6a) and ChIP-seq data (Supplementary Fig. 5a). The attribution maps did not reflect any
known motifs, nor did they match any of the patterns captured in the CNN’s Saliency Maps. This disparity can arise if the
probed locus is used across different cell types for multiple purposes. If cell-type-specific cis-regulatory patterns are projected
onto a single DNA sequence, the overlapping set of motifs can lead to complex attribution maps that may not resemble distinct
cell-type-specific motifs. Alternatively, the complex patterns that seem to span the length of the sequence could also reflect
low-level sequence statistics that are memorized. Without ground truth, interpreting attribution maps remains challenging.

Next, we evaluated attribution maps generated by the downstream CNN that used gLM embeddings as input. Specifically,
we scaled the gLM’s entropy-based attribution map with the maximum gradients at each position based on the downstream
CNN (see Methods). Through a qualitative comparison, we noticed that the attribution maps generated by GPN appear to be
visually aligned with Saliency Maps generated by the one-hot-trained CNN compared to Nucleotide-Transformer (Fig. 6a),
even after accounting for the block-like structure which arises due to the k-mer tokenization. This trend was also observed for
other loci (Supplementary Fig. 6).

To validate the importance of the putative binding sites identified via Saliency Maps for the one-hot-trained CNN, we
employed global importance analysis (GIA)75. Specifically, we embedded the three annotated patterns into different dinucleotide-
shuffled sequences, which serve as background sequences with low CRE activities, and measured the effect of including the
patterns on model predictions. Indeed, GIA shows that the motif patterns identified by Saliency Maps for the one-hot-trained
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CNN are more or less sufficient to explain model predictions (Fig. 6b).
We then quantified the correlation between the attribution maps generated by the one-hot-trained CNN and the gLM-based

attribution maps. We found that attribution maps generated by pre-trained gLM are not well-aligned with each other, nor are
the attribution maps generated by the one-hot-trained CNN (Fig. 6c, Supplementary Fig. 5b). By contrast, attribution maps
generated by CNNs trained with gLM embeddings led to improved alignment between their attribution maps and with one-
hot-trained CNNs. These results suggest that the gLMs learn non-overlapping features during pre-training, but a downstream
model can still use them to build cell-type-specific motifs (that are better aligned with motifs learned by one-hot-trained
CNNs). Together, the attribution maps given by pre-trained gLMs seem to visually capture a more diffuse set of patterns,
which speculatively reflect low-level statistics of genomic sequences. Downstream models, like CNNs, use these seemingly

Figure 6. Attribution analysis comparison for sequences from the lentiMPRA dataset. a, Representative example of attribution
maps for a regulatory sequence. Attribution maps include (top to bottom): the gradient-times-input of a one-hot-trained CNN;
the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained GPN; the delta entropy of predicted
nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer; the gradient of a CNN-trained using
GPN embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained
GPN; and the gradient of a CNN-trained using Nucleotide-Transformer embeddings multiplied by the delta entropy of
predicted nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer. b, Box-plot of the predicted
activity for 300 dinucleotide-shuffled sequences from a, dinuc-shuffled sequences with the annotated patterns from the Saliency
Map of the one-hot-trained CNN, and dinuc-shuffled sequences with the annotated patterns from the CNN trained using GPN
embeddings (GPN-CNN). Green triangle represents the global importance analysis value. Red dashed line represents the
prediction of the wild type sequence according to the one-hot-trained CNN. Box-plots show the first and third quartiles, central
line is the median, and the whiskers show the range of data. c, Scatter plot comparison of the attribution map correlations for
different pre-trained gLMs (left) and CNNs trained using gLM embeddings (right). Attribution map correlations reflect the
Pearson correlation coefficient between the attribution map generated by the gLM-based attribution method with the Saliency
Map generated by a one-hot-trained CNN. Each dot represents a different sequence in the lentiMPRA dataset (N=500).
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uninformative gLM embeddings (especially from GPN) to build cell-type-specific regulatory features relevant for downstream
prediction tasks.

Discussion
To assess the transferability of knowledge acquired during pre-training for current genome language models, we evaluated
the predictive power of pre-trained representations from four gLMs on whole genomes (without fine-tuning) across six
functional genomics prediction tasks with appropriate baselines for comparison. We found that within cis-regulatory elements,
representations from pre-trained gLM provide little to no advantage compared to standard one-hot sequences. On a relative
basis, we found that GPN, a convolution-based LLM, yielded slightly more informative representations in the non-coding
genome compared to highly parameterized BERT-style LLMs. This suggests that stronger inductive biases toward learning
relevant features in the model architecture might improve gLMs, albeit modestly.

Notably, we elected not to fine-tune weights of the gLM on each downstream task, which is how gLMs have been previously
benchmarked23, 24, 26, 30, 39. While gLM performance undoubtedly improves with fine-tuning, the scope of this study was to
gauge the knowledge of cis-regulatory biology learned by gLMs during pre-training. The poor performance observed in this
study suggests that cell-type-specific cis-regulatory mechanisms are predominantly learned during fine-tuning. Our results
suggest that the benefit of pre-training gLMs appears to be initializations that are pre-loaded with just a little more information
than low-level statistical properties for non-coding genomic sequences. Further research is needed to understand how biological
knowledge is refined from pre-training to fine-tuning.

In previous studies, pre-trained gLMs have found some success by focusing on specific regions of the genome during
pre-training or working with simpler organisms with compact genomes28, 34, 85. For instance, a BERT-based LLM trained
strictly in the coding genome can provide more context than only considering amino-acids with protein language modeling (e.g.,
codon usage)35, 36, 45. However, our evaluation shows that extending the pre-training task across the whole genome struggles to
capture meaningful representations in the non-coding genome.

The performance gap may be due to differences in the structure of the coding regions versus the non-coding regions. To
elaborate, protein sequences have a clear start and end with low-level grammars (i.e., secondary structures) and high-level
grammars (i.e., protein domains) shared throughout most globular proteins, with structures conserved across species. On the
other hand, the non-coding genome contains a variety of short sequence motifs that vary broadly in binding affinities and are
sparsely located in seemingly random DNA, with usage and rules that vary across loci and cell types. Few non-coding elements
exhibit deep conservation that is typical in proteins. The differing selection pressures in the non-coding regions lead to loss of
synteny, which makes it difficult to study sequence and functional conservation. Thus, treating each nucleotide position equally,
whether informative or uninformative, makes this a challenging language modeling task. In the non-coding genome, this is
tantamount to expecting the LLM to predict predominantly random nucleotides, which, by definition, can only be achieved via
memorization. Hence, this may explain why gLMs have also found greater utility in learning cis-regulatory features in simpler
organisms with compact genomes, such as bacteria40, 85, 86, arabidopsis20, or yeast28, which have substantially reduced junk
DNA87–89.

We note that recent supervised foundation models, such as Enformer90 and Borzoi91, may serve as better examples of
supervised foundation models but their scale makes it difficult to probe their transferrability to the small-scale sequences
utilized in this study. Their large inputs, which are hundreds of kilobases long, require either substantial zero-padding, which
introduces a substantial covariate shift, or sequence context marginalization tricks69, 75, 92, which is computationally expensive.
Moreover, the non-uniformity in data splits makes any direct comparison challenging due to potential inflated performance
from data leakage. In future evaluations, we plan to include more foundation models, including Enformer, Borzoi, and new
gLMs that emerge, focusing on a broader set of chromatin-based functional genomics prediction tasks.

A major benefit of gLMs is their lack of reliance on labels generated from wet-lab experiments during training, allowing
them to learn a broader set of patterns. However, our results suggest that gLMs have yet to learn a foundational set of
cis-regulatory features in the non-coding genome of humans that can be harnessed via probing in prediction tasks across cell
types. By contrast, supervised deep learning models trained on large troves of functional genomics data in a multitask setting
can learn discriminative features related to cis-regulatory mechanisms in the non-coding genome70, 90, 91, 93–96. However, the
representations learned by these models are biased towards the experiments they are trained on, which are predominantly
generated within a few cell lines. Hence, their generalization capabilities to other cell types remain limited.

Current gLMs require fine-tuning to achieve comparable performance as an optimized supervised model trained using
one-hot sequences. While this highlights a weakness of the foundational knowledge learned during pre-training, it can still
be considered beneficial. This is because gLMs can be conveniently fine-tuned on a wide variety of downstream tasks and
achieve competitive performance without the challenge of optimizing sensitive hyperparameters of a supervised model on each
downstream task.
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Evaluating what gLMs have learned through predictive modeling remains an endless endeavor. A more efficient approach
can be achieved through model interpretation of the gLMs, which should help to understand the alignment between gLMs
and prior biological knowledge. Our preliminary analysis of attribution maps was inconclusive, highlighting the need for a
more in-depth understanding of what gLMs are learning from pre-training. Further development can build upon the initial
progress97–99 towards more meaningful domain-inspired model interpretation tools to bridge this gap.

Looking forward, it remains an open question whether LLMs will bring the same revolution in human genomics as in
other fields. The current trends in scaling gLMs (via larger models and considering broader sequence contexts21, 32) might
only produce incremental gains, albeit achieved inefficiently according to scaling laws100, as the availability of diverse and
informative genomics data is a major limiting factor. It remains unclear whether continued scaling of the gLMs pre-trained
with standard language modeling objectives (i.e., MLM or CLM) will eventually lead to realizing emergent capabilities, such
as learning cell-type-specific cis-regulatory biology in the non-coding genome. The amount of genetic variation required to
capture the full complexity of the human genome may be simply too great, as a single genome encodes for the spatio-temporal
regulation of all cell types. Additional information, such as functional genomics data, is likely needed during the pre-training
for gLMs to become proficient in characterizing cell-type specific functional elements. Even protein language models trained
solely on amino-acid sequences can learn conservation and protein structure elements and yet struggle to generalize well to a
wide diversity of functional tasks101. At the least, a separate language modeling objective for different regions in the genome to
account for the high entropy in the non-coding regions is needed. Due to the high upfront costs to train gLMs with the lack of
reciprocal performance gains on downstream tasks, gLMs will likely require a more focused, domain-inspired revelation in
pre-training objectives to achieve the esteemed “foundation” status for the non-coding genome.
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Methods
Pre-trained language models
Nucleotide-Transformer. Nucleotide-Transformer consists of multiple BERT-based language models with 2 different model
sizes (i.e., 500 million and 2.5 billion parameters) and trained on various sets of genome sequences: human reference genome,
1000 genomes project, and 850 genomes from several species. Details of the tokenizer, model structure, and training procedure
can be found in the original paper23. We acquired weights for each Nucleotide-Transformer model from the official GitHub
repository. In this analysis we mostly used representations from NT2.5B-1000G, except for the zero-shot variant effect
generalization analysis, which considered all Nucleotide-Transformer models. Since Nucleotide-Transformer models allow
flexible input sizes, no padding was necessary for any evaluation tasks.

Custom GPN. The GPN model is a convolutional neural network that was originally trained on Arabidopsis genome sequences
via masked language modeling with an input size of 512 nucleotides20. It consists of 25 convolutional blocks, where each
convolutional block includes a dilated convolutional layer followed by a feed-forward layer, connected by intermediate residual
connections and layer normalization. The dilation rate for each convolutional layer cycles with increasing exponentially by
factors of 2, from 1 to 32. The embedding dimension was kept fixed at 512 throughout the layers. For our custom GPN
(human) model, we created training datasets using the human reference genome (hg38102). The genome was split into contigs
and filtered for a minimum length of 512 nucleotides, with chromosome 8 held out as test set. During training, 15% of the
nucleotide positions were masked and the model is tasked to predict the nucleotide probabilities for each masked location. The
model was trained for 2 million steps with a constant learning rate of 0.001 using ADAM103.

HyenaDNA. The HyenaDNA model is a gLM pre-trained on the human reference genome, with context lengths up to 1 million
tokens at the single nucleotide-resolution21. Architecturally, it adopts a decoder-only, sequence-to-sequence configuration,
organized into a succession of blocks each encompassing a Hyena operator59, followed by a feed-forward neural network. The
model weights and representation extraction code was acquired through the Hugging Face repository104. For all experiments in
this study, we used the “hyenadna-tiny-1k-seqlen-d256” model due to the sequence length limitation of the functional genomics
datasets.

DNABERT2. DNABERT2, a second generation version of the original DNABERT model24, is constructed on the BERT
architecture, comprising 12 Transformer blocks. In this new iteration, the authors improved the model by replacing learned
positional embeddings with Attention with Linear Biases (ALiBi) and utilizing Flash Attention to increase computation and
memory efficiency26. In the context of this study, analyses were done with the representations generated by the last Transformer
block. The model was acquired through the Hugging Face repository, using the “DNABERT-2-117M” model.

Pre-trained supervised models
Sei. The Sei model is composed of three sequential modules: (1) a convolutional network with dual linear and nonlinear
paths; (2) residual dilated convolution layers; (3) spatial basis function transformation and output layers. Sei was trained to
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take as input 4 kb length sequences and predict 21,907 TF binding, histone marks and DNA accessibility from peak data of
cis-regulatory profiles. For this study, we extracted our representations after the spline basis function transformation, before
inputting into fully connected layers. The pre-trained Sei model was acquired through zenodo from the original study74.

RBP. Our custom RBP model was trained using eCLIP-seq83 data of 120 RBPs in K562 from ENCODE105. The dataset was
organized into a multi-task binary classification format. The model has a ResidualBind-like structure:

1. 1D convolution (96 filters, size 19, batch-norm, exponential)
dropout (0.1)

2. Dilated residual block106

convolution (96 filters, size 3, batch-norm, ReLU)
dropout (0.1)
convolution (96 filters, size 3, batch-norm, dilation rate 2)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 4)
dropout (0.1)
skip connection to input
ReLU activation
max-pooling (size 10)
dropout(0.1)

3. 1D convolution (192 filters, size 7, batch-norm, ReLU)
dropout (0.1)
global average-pooling

4. flatten
5. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)
6. output layer (120 units, sigmoid)

Enformer. A LASSO regression was fit to the lentiMPRA data based on predictions from Enformer76. Each sequence was
padded to a target length of 196,608 base pairs using zero-padding on both ends. The padded sequences were then passed
through Enformer to generate predictions. We extracted the predictions corresponding to the central bin (bin=448). Lasso
regression was employed using scikit-learn. The training data was split into training (80%) and validation (20%) sets. LassoCV
with 5-fold cross-validation was employed to select the optimal regularization parameter (alpha) from 200 candidates. The
model was trained with a maximum of 20,000 iterations and a tolerance of 1e-2. Performance was evaluated using the Pearson
correlation coefficient on the test set. Unlike previously73, the predictions were based on a single model trained on one fold and
only considering the forward strand.

Data
lentiMPRA. The lentiMPRA dataset for K562 and HepG2 cell lines was acquired from the Supplementary Tables in Ref.73.
The HepG2 library consists of 139,984 sequences, each 230 nucleotides long, and the K562 library contains 226,253 sequences.
Each sequence is paired with a target scalar value that represents the transcriptional activity. Each cell line was treated
independently as a single-task regression. For each dataset, we randomly split the training, validation, and test sets according to
the fractions 0.7, 0.1, 0.2, respectively. Unlike the original study, we treated reverse-complement sequences separately; they
were not aggregated or augmented during test time. The results represent the performance over a single fold.

CAGI dataset. The CAGI5 challenge dataset78 was used to evaluate the performance of the models on zero-shot single-
nucleotide variant effect generalization as following the same procedure as Ref.69. We only considered MPRA experiments in
HepG2 (LDLT, SORT1, F9) and K562 (PKLR). We extracted 230 nucleotide sequences from the reference genome centered on
each regulatory region of interest. Alternative alleles are then substituted correspondingly to construct the CAGI test sequences.
Pearson correlation was calculated between the varient effect scores by the model and experimentally measured effect size per
experiment. For HepG2 performances, we report the average Pearson’s r across the three experiments.

ChIP-seq. Ten transcription factor (TF) chromatin immunoprecipitation sequencing (ChIP-seq) datasets were acquired from
the zenodo repository of Ref.84. The prediction task is a binary classification of whether 200nt input DNA sequences are
associated with a ChIP-seq peak (positive label) versus sequences from DNase I hypersensitive sites from the same cell type
(i.e., GM12878) that do not overlap with any ChIP-seq peaks (negative label). The number of negative sequences were randomly
down-sampled to exactly match the number of positive sequences to ensure balanced classes. The dataset was split randomly
into training, validation, and test set according to the fractions 0.7, 0.1, and 0.2, respectively.
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Alternative splicing data. Data was acquired from direct correspondence with the authors of Ref.81 Briefly, 61,823 cassette
exons from ASCOT was split into a training, validation, and test set. The training set consisted of 38,028 exons from
chromosome 4, 6, 8, 10-23, and the sex chromosomes. The 11,955 exons from chromosome 1, 7, and 9 were used as the
validation set, and the remaining 11,840 exons were used as the test set (chromosomes 2, 3, and 5). Models are evaluated based
on their performance on the test set. The prediction task takes as input two sequences – a sequence with 300 nt upstream of the
acceptor and 100 nt downstream of the acceptor and a sequence with 100 nt upstream of the donor and 300 nt downstream of
the donor – and the goal is to predict PSI across 56 tissues as a multi-task regression.

INSERT-seq. INSERT-seq data was obtained from Ref.82. INSERT-seq measures the impact of transcribed sequences on the
RNA polymerase II elongation potential and expression in mouse embryonic stem cells. 11,417 insert sequences of length
173nt long were used as inputs and the goal is to predict the totalRNA output, which measures the relative abundance in RNA
relative to genomic DNA, as a regression task. Training, validation, and test sets were split according to the fractions 0.8, 0.1,
and 0.1, resulting in 9,131, 1,149, and 1,137 sequences, respectively.

eCLIP datasets. The in vivo eCLIP-based datasets were downloaded from the ENCODE. For each RBP experiment, the
bed narrowPeaks (two replicates) and the bam file for the corresponding mock inputs experiment were downloaded. For each
replicate, we removed peaks with a signal value less than 1 and a log-p-value greater than 3. Using bedtools, the remaining
peaks that share at least one nucleotide across the two replicates were selected as positive peaks. A correlation filter across the
replicates was applied: (2(s1

i − s2
i )/(s

1
i + s2

i ))
2 < 1.0, where s j

i represent the signal value for the ith peak in replicate j. The
median peak size was about 50 nt with a positive tail that exceeded 200 nt in some cases. Positive sequences were generated by
extracting 200 nucleotide sequences about the center position of the peak coordinates. Sequences with undefined nucleotides
were filtered out. Negative peaks were generated by employing Piranha peak caller on the bam file of the mock inputs with
a bin size of 20 and a p-value threshold of 0.01. We then removed negative peaks which overlap with any unfiltered peaks
from each replicate. Negative peaks were generated by extracting 200 nt sequences about the center position of the remaining
negative peak coordinates. Because the negative peaks usually had more entries compared to the positive peaks, we randomly
selected a similar number of negative peaks as positive peaks. All sequences were given a corresponding label 1 for sequences
which contain a positive peak and 0 for sequences which contain a negative peak. All sequences were then randomly split into a
training set, validation set, and test set according to the fractions 0.7, 0.1, and 0.2, respectively.

Models for downstream tasks
Linear models. Linear models with L2 regularization (i.e., Ridge) serve as the baseline, representing a simple downstream
model. The inputs of the model were based on the embeddings of the CLS token or the average embedding across sequences
for Nucleotide-Transformer models. For regression and classification tasks, the linear model was a linear regression or logistic
regression, respectively. The strength of the L2 regularization was set to 1e-3.

MLP. A multi-layer perceptron model was used to train on CLS token embeddings or the average embedding across sequences
for Nucleotide-Transformer models. The model is constructed by two fully connected blocks. The first block includes a
fully-connected layer with 512 units and ReLU ativation, followed by batch-normalization and a dropout rate of 0.5. The
second block consists of a fully-connected layer with 256 units and the same activation, batch-normalization, and dropout
layers. The model was trained on lentiMPRA dataset with Adam optimizer, learning rate of 0.0001, mean-squared error loss
function, learning rate decay with a patience of 5 epochs and a decay factor of 0.2, and early stopping patience of 10 epochs.

MPRAnn for lentiMPRA. MPRAnn is a convolutional based model with a total of 4 convolutional and 3 dense layers trained
on the lentiMPRA dataset. It takes 230 nt one-hot encoded sequences including the adapters as input to predict the mean
log2(RNA/DNA) values from forward and reverse strands. We augmented the batches using the reverse-complement of the 200
nt target sequence, while keeping the two 15 bp adapters fixed. To fit the model, we used a learning rate of 0.001, an early
stopping criterion with patience of 10 on 100 epochs, and the Adam optimizer with a mean square error loss function. Model
structure and training parameters obtained from Github directory of original publication73.

Baseline CNN for lentiMPRA. We designed a baseline CNN model with the following structure:
1. batch-norm (optional)
2. 1D convolution (196 filters, size 1) (optional)
3. 1D convolution (196 filters, size 7, batch-norm, exponential)

dropout (0.2)
max-pooling (size 5)

4. 1D convolution (256 filters, size 7, batch-norm, ReLU)
dropout (0.2)
max-pooling (size 4)
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5. flatten
6. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)
7. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)
8. output layer (1 unit, linear)

CNN models were trained with Adam optimizer, mean-squared error loss function, learning rate of 0.0001 with a learning
rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-hot
sequence and language model embedding-based training on the lentiMPRA dataset. For one-hot sequences, batch-norm and the
convolution with kernel 1 were not employed.

ResidualBind for lentiMPRA. We designed the ResidualBind model by adding a dilated residual block after the first
convolutional layer of the baseline CNN model, according to:

1. 1D convolution (196 filters, size 19, batch-norm, Silu)
dropout (0.2)

2. Dilated residual block
convolution (196 filters, size 3, batch-norm, Silu)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, Silu, dilation rate 2)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, Silu, dilation rate 4)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, Silu, dilation rate 8)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, Silu, dilation rate 16)
dropout (0.1)
convolution (196 filters, size 3, batch-norm, dilation rate 32)
skip connection to input
Silu activation
max-pooling (size 5)
dropout(0.2)

3. 1D convolution (256 filters, size 7, batch-norm, Silu)
dropout (0.2)
max-pooling (size 5)

4. fully-connected (256 units, batch-norm, Silu)
dropout (0.5)
average-poolint (size 2)

5. flatten
6. fully-connected (256 units, batch-norm, Silu)

dropout (0.5)
7. output layer (1 unit, linear)

ResidualBind was trained with Adam optimizer, mean-squared error loss function, learning rate of 0.001 with a learning
rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs.

Baseline CNN for ChIP-seq and CLIP-seq. We designed a baseline CNN model with the following structure:
1. batch-norm (optional)
2. 1D convolution (512 filters, size 1) (optional)
3. 1D convolution (64 filters, size 7, batch-norm, ReLU)

max-pooling (size 4)
dropout (0.2)

4. 1D convolution (96 filters, size 5, batch-norm, ReLU)
max-pooling (size 4)
dropout (0.2)

4. 1D convolution (128 filters, size 5, batch-norm, ReLU)
max-pooling (size 2)
dropout (0.2)
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5. flatten
6. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)
8. output layer (1 unit, linear)

CNN models were trained with Adam optimizer, binary cross-entropy loss function, learning rate of 0.001 with a learning
rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-hot
sequence and language model embedding-based training on the lentiMPRA dataset. For one-hot sequences, batch-norm and the
convolution with kernel 1 were not employed.

Insert-seq model. For the RNA pol II elongation potential dataset, we developed a residual convolutional network structure
and used it for all embedding and one-hot-based models. The model was trained using mean square error loss function, Adam
optimizer, learning rate of 0.0001, learning rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping patience
of 10 epochs.

1. convolution(48 filters, size 1) (optional)
2. convolution (96 filters, size 19, batch-norm, exponential)

dropout (0.1)
3. dilated residual block

convolution (96 filters, size 3, batch-norm, ReLU)
dropout (0.1)
convolution (96 filters, size 3, batch-norm, dilation rate 2)
dropout (0.1)
convolution (96 filters, size 3, batch-norm, dilation rate 4)
skip connection to block input
ReLU activation
max-pooling (size 10)
dropout(0.1)

4. convolution (128 filters, size 7, batch-norm, ReLU)
global average-pooling
dropout (0.1)

5. fully-connected layer (128 units, ReLU)
dropout (0.5)

6. output layer (1 unit, linear)
CNN models were trained with Adam optimizer, mean-squared error loss function, learning rate of 0.0001 with a learning

rate decay patience of 5 epochs with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-hot
sequence and language model embedding-based training on the lentiMPRA dataset. For one-hot sequences, the convolution
with kernel 1 was not employed.

Zero-shot variant effect prediction methods
For Nucleotide-Transformer, we derived the zero-shot predictions using cosine similarity as suggested in the original study23.
For each variant, we passed the sequences with the centered reference allele and the alternative allele through the model to
extract embeddings. The cosine similarity between the two complete sequence embeddings was calculated and used as the
zero-shot score. A negative correlation is expected between the score and effect size. Since this distance-based zero-shot score
only reflects the magnitude, not the direction, of function change, we calculated the Pearson correlation using the absolute
value of the effect size.

For GPN, we followed a similar procedure as the original study20. First, we input sequences with the center variant loci
masked and acquired the predicted allele probabilities for the masked loci. Then, we calculate the zero-shot prediction score as
the log-likelihood ratio between the alternate and reference alleles. Again, since the likelihood ratio doesn’t reflect the direction
of function change associated with the variants, we calculated the correlation score using the absolute value of effect size.

Finally, for the embedding-based and one-hot based models, we used the difference in predictions between the alternative
and reference allele sequence as the zero-shot prediction score. For Enformer, we use the cell-type agnostic approach of
averaging the effect size across all DNase-seq tracks. To reduce predictions to scalars, we summed across the profile predictions.

Attribution methods
For CNN models, the attribution analysis was based on grad-times-input with saliency maps. The gradients of the prediction
were calculated with respect to the input sequence to yield an L x A map, where L is the length of the sequence and A is 4
(one for each nucleotide). By subtracting the position-wise average saliency scores from this map and then multiplying by
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the one-hot encoded sequence, the method isolates the sensitivity of each observed nucleotide at every position, enhancing
interpretability by pinpointing nucleotide-specific contributions to predictions.

For gLMs, the analysis involved sequentially masking each token of the input sequence and predicting the probability of
the masked token by the model. The entropy of the probability distribution for each position was computed to quantify the
information content represented by the gLM. Given that lower entropy signifies a higher information level, the saliency score
was derived as the difference between the maximum entropy value and the entropy at each position, ensuring that a higher
saliency score reflects greater information retention.

Sequence logos were visualized using Logomaker107.

Global importance analysis
Global importance analysis was carried out according to Ref.75. A example sequence was selected from the LentiMPRA (K562)
dataset. We sampled 300 dinucletoide shuffled versions of the sequence to be used as background sequences. The shuffling
aims to preserve the dinucleotide frequency while destroying any coherent patterns. The LentiMPRA trained One-Hot-CNN
models’ predictions for the shuffled sequences are considered to be the baseline for predicted CRE activity. The top three
positive motif patters identified separately in the One-hot-CNN and GPN-CNN saliency maps (Fig. 6c) were inserted into the
corresponding position of the shuffled sequences, creating two experiment sequences sets. The One-Hot-CNN model was used
to make predictions for the motif embedded sequences. The difference in prediction for the three sets of sequences reflect the
global importance of these motif patterns to the CNN model.

Model Fine-tuning on lentiMPRA Data
We fine-tuned DNABERT2, HyenaDNA, and Nucleotide Transformer on lentiMPRA data derived from HepG2 and K562 cell
lines. Each model was adapted for sequence regression, predicting a single continuous value corresponding to CRE activity.

Nucleotide Transformer. We used the 500M parameter version pre-trained on 1000 Genomes data. Fine-tuning employed
the LoRA technique, applied to the query and value matrices of the self-attention mechanism. The LoRA rank was set to 1,
with a scaling factor of 32 and dropout rate of 0.1. An AdamW optimizer with a learning rate of 5e-4 was used, training for
1000 steps or 2 epochs (whichever came first) with a batch size of 64.

HyenaDNA. The pre-trained hyenadna-tiny-1k-seqlen model was used for fine-tuning. The model performed a
mean pool of the penultimate representation across sequence length and then used a linear layer to transform the pooled
representation to a single output. We employed a character-level tokenizer for DNA bases (A, C, G, T, N), with a maximum
sequence length of 230 tokens and left-side padding. Training used PyTorch with an AdamW optimizer, learning rate of 6e-4,
and weight decay of 0.1 for 100 epochs with a batch size of 256. The final model checkpoint after 100 epochs was used for
evaluation.

DNABERT2. We utilized the DNABERT-2-117M model, fine-tuning it using the Hugging Face Transformers library. An
AdamW optimizer with a learning rate of 3e−5 was used, training for 5 epochs with batch sizes of 8 and 16 for training and
evaluation, respectively.

For all models, mean squared error was used as the loss function. The lentiMPRA datasets for both cell lines were
preprocessed and stored in HDF5 format. Model performance was evaluated using mean squared error, Pearson correlation
coefficient, and Spearman correlation coefficient. All experiments were conducted using CUDA-enabled GPUs, with the
best-performing model for each combination selected based on the lowest validation loss.

Data Availability
Processed data and model weights can be found at: https://doi.org/10.5281/zenodo.11583224. Datasets
include lentiMPRA (Task 1), ChIP-seq (Task 2), MPRAs for zero-shot single-nucleotide generalization (Task 3), alternative
splicing (Task 4), INSERT-seq (Task 5), and eCLIP-seq (Task 6).

Code Availability
Open-source code to reproduce this study is available on GitHub (https://github.com/amberT15/LLM_eval) as
well as ref.?.
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Supplementary Table 2. Performance comparison on cell-type-specific regulatory activity prediction tasks from lentiMPRA
data. Predictive performance using a baseline CNN trained using different gLM embedding inputs, one-hot sequences, or
supervised embeddings from Sei. MPRAnn and ResNet represent the performance of more sophisticated models that are
trained using one-hot sequences. The performance of NT, Hyena, and DNABERT2 fine-tuned directly on the lentiMPRA data
is also shown. Note that NT fine-tuning is different from the self-supervised embedding due to limited resources for fine-tuning.
Enformer∗ represents a LASSO regression – i.e., linear probing based on Enformer’s predictions, instead of a downstream
CNN trained on the full embeddings like SEI.

Training Task Model HepG2 K562

Self-Supervised Embedding NT (2B51000G) 0.473 0.549
Self-Supervised Embedding GPN 0.637 0.678
Self-Supervised Embedding HyenaDNA 0.556 0.650
Self-Supervised Embedding DNABERT2 0.434 0.568
Self-Supervised Embedding Random 0.335 0.435
Fine-Tuned NT (500M1000G) 0.425 0.337
Fine-Tuned HyenaDNA 0.772 0.777
Fine-Tuned DNABERT2 0.782 0.781
Supervised Embedding SEI 0.735 0.751
Supervised Embedding Enformer∗ 0.728 0.731
One-hot One-hot 0.638 0.691
One-hot ResNet 0.753 0.789
One-hot MPRAnn 0.713 0.742
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Supplementary Table 3. Expanded zero-shot variant effect generalization on CAGI5 dataset. The values represent the
Pearson correlation between the variant effect predictions with experimental saturation mutagenesis values of a given CRE
measured via MPRAs. Values are reported for a single CRE experiment for K562 and the average of three CRE experiments for
HepG2. Notably, this table includes the performance based on NT, HyenaDNA and DNABERT2 when fine-tuned on
lentiMPRA data.

Training Task Model Variant Effect Prediction HepG2 K562

Self-Supervised Pre-Training NT (2B51000G) cosine distance 0.125 0.007
Self-Supervised Pre-Training NT (2B5Species) cosine distance 0.112 0.135
Self-Supervised Pre-Training NT (500MHuman) cosine distance 0.020 0.088
Self-Supervised Pre-Training NT (500M1000G) cosine distance 0.041 0.068
Self-Supervised Pre-Training GPN (Human) log2-ratio 0.002 0.037
Self-Supervised Pre-Training HyenaDNA cosine distance 0.064 0.021
Fine-Tuned NT (500M1000G) difference from wild type 0.155 0.104
Fine-Tuned HyenaDNA difference from wild type 0.286 0.315
Fine-Tuned DNABERT2 difference from wild type 0.357 0.430
LentiMPRA-Embedding CNN-GPN difference from wild type 0.377 0.457
LentiMPRA-Embedding CNN-NT (2B51000G) difference from wild type 0.137 0.240
LentiMPRA-Embedding CNN-SEI difference from wild type 0.559 0.719
LentiMPRA-one-hot CNN difference from wild type 0.313 0.426
LentiMPRA-one-hot Residualbind difference from wild type 0.486 0.551
LentiMPRA-one-hot MPRAnn difference from wild type 0.301 0.369
Supervised one-hot SEI cosine distance 0.545 0.641
Supervised one-hot Enformer (DNase) difference from wild type 0.510 0.685

3/9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.02.29.582810doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582810
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 1. Comparison of performance for various hyperparameter choices for downstream models on
lentiMPRA data. Four types of downstream models, including ridge regression (Ridge), multi-layer perceptron (MLP), and
convolutional neural network (CNN), were trained for each gLM. The numbers after the model names (i.e., 0.5 or 2) represent
the scaling factor for the number of parameters in each hidden layer relative relative to the original model structure. These
results show that, up to a factor of 2, the performance stays roughly similar.
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Supplementary Figure 2. Layer-wise performance of Nucleotide-Transformer on the lentiMPRA dataset. Test performance
of various machine learning models trained using embeddings from different layers of Nucleotide-Transformer. Embeddings
include the CLS token, mean embedding (Mean), and the full embedding (Embedding). Machine learning models include ridge
regression (ridge), multi-layer perceptron (MLP) and a convolutional neural network (CNN).
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Supplementary Figure 3. Control experiments with different embeddings. Performance comparison between a CNN
trained using full embeddings of the penultimate layer from Nucleotide-Transformer, an MLP trained using
Nucleotide-Transformer’s CLS token, and an MLP trained using dinucleotide frequencies of the sequence on (a) ChIP-seq data
and (b) eCLIP-seq data. Performance is measured by the average area-under the receiver-operating characteristic curve
(AUROC) and error bars represent the standard deviation of the mean across 5 different random initializations. Text valeus
represent the average AUROC across all ChIP-seq or CLIP-seq datasets.
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Supplementary Figure 4. Down-sampling performance on RNA regulation tasks. Average performance of machine
learning models on (a) alternative splicing, task 4, and (b) RNA Pol II elongation potential, task 5, down-sampled by various
factors. Shaded region represents standard deviation of the mean across 5 different random initializations.
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Supplementary Figure 5. Attribution analysis comparison for sequences from CTCF ChIP-seq data. a, Representative
example of attribution maps for a CTCF binding sequence. Attribution maps include (top to bottom): the gradient-times-input
of a one-hot-trained CNN; the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained GPN;
the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer; the
gradient of a CNN-trained using GPN embeddings multiplied by the delta entropy of predicted nucleotides via
single-nucleotide masking from a pre-trained GPN; and the gradient of a CNN-trained using Nucleotide-Transformer
embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained
Nucleotide-Transformer. b, Scatter plot comparison of the attribution map correlations for different pre-trained gLMs (left) and
CNNs trained using gLM embeddings (right). Attribution map correlations reflect the Pearson correlation coefficient between
the attribution map generated by the gLM-based attribution method with the Saliency Map generated by a one-hot-trained CNN.
Each dot represents a different sequence in the CTCF ChIP-seq dataset (N=500).
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Supplementary Figure 6. Representative examples of attribution maps for sequences from the lentiMPRA dataset. In each
panel, attribution maps are shown for different sequences in order of (top to bottom): the gradient-times-input of a
one-hot-trained CNN; the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained GPN; the
delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer; the gradient
of a CNN-trained using GPN embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide
masking from a pre-trained GPN; and the gradient of a CNN-trained using Nucleotide-Transformer embeddings multiplied by
the delta entropy of predicted nucleotides via single-nucleotide masking from a pre-trained Nucleotide-Transformer.
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