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Abstract

Motivation: Long read sequencing technology is becoming an increasingly indispensable tool in genomic and transcriptomic
analysis. In transcriptomics in particular, long reads offer the possibility of sequencing full-length isoforms, which can vastly simplify
the identification of novel transcripts and transcript quantification. However, despite this promise, the focus of much long read
method development to date has been on transcript identification, with comparatively little attention paid to quantification. Yet,
due to differences in the underlying protocols and technologies, lower throughput (i.e. fewer reads sequenced per sample compared
to short read technologies), as well as technical artifacts, long read quantification remains a challenge, motivating the continued
development and assessment of quantification methods tailored to this increasingly prevalent type of data.
Results: We introduce a new method and software tool for long read transcript quantification called oarfish. Our model
incorporates a novel and innovative coverage score, which affects the conditional probability of fragment assignment in the underlying
probabilistic model. We demonstrate that by accounting for this coverage information, oarfish is able to produce more accurate
quantification estimates than existing long read quantification methods, particularly when one considers the primary isoforms
present in a particular cell line or tissue type.
Availability and Implementation: Oarfish is implemented in the Rust programming language, and is made available as free
and open-source software under the BSD 3-clause license. The source code is available at https://www.github.com/COMBINE-lab/
oarfish.
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Introduction

Since the introduction of high-throughput RNA-sequencing [5, 28,

30, 31], the bioinformatics community has invested tremendous

effort in the development of methods and software to tackle various

challenges related to the analysis of this data. One of the first, and

therefore one of the most fundamental challenges, is the accurate

quantification of transcript and gene expression from this sequencing

data — which has spurred the development of many methods for

transcript quantification (e.g. [35, 24, 44, 16, 32, 38, 18, 7, 37] among

many others).

The majority of these tools have been focused on increasing

the accuracy or efficiency (or both) of quantification from high-

throughput, short read data. Short reads have developed to have high

base-level accuracy, small error rate, high reproducibility and immense

throughput. Yet, they also have fundamental drawbacks that arise

due to the relatively short read lengths used in sequencing (usually

<350bp). This is considerably smaller than the average length of e.g.

most spliced mRNA human transcripts (⇠2Kbp [23]) that needed to

be analyzed. A primary consequence of this mismatch between the

length of sequenced reads and the length of the underlying transcripts

that these reads are being used to measure is that the locus of origin

of many of these reads remains fundamentally ambiguous. This

problem is commonly called fragment ambiguity or read to transcript

ambiguity [6], and it results in inferential uncertainty [39, 52] in the

underlying transcript abundance estimates. That is, uncertainty in

the transcript from which the sequenced reads originated leads to

uncertainty in the estimated abundances of the transcripts being

quantified, which, in turn, complicates and hampers downstream

analyses. These uncertainties are somewhat reduced using common

techniques such as paired-end sequencing [29, 6], but the problem

remains, and is fundamental to such sequencing technologies.

While new computational methodologies have continued to advance

and improve transcript quantification accuracy, they cannot overcome

fundamental limitations inherent in the underlying measurements (i.e.

sequenced data). However, the advent of the long read sequencing

technologies, and their continued development in terms of reduced

error rates and improved throughput, promises to mitigate or

eliminate this fundamental limitation, and potentially revolutionized

transcriptome analysis, as it has done with e.g. genome assembly [36].

Specifically, long reads have the ability to capture the whole length

of the transcripts being sequenced within a single read, eliminating

the potential ambiguity about the transcript from which the read has
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arisen. This reduction in (or elimination of) ambiguity has striking

implications for both transcript discovery — that is, transcript

assembly or identification — and transcript quantification. However,

while the long reads can have increased specificity and overcome

the ambiguity-related drawbacks of short read, they bring their own

challenges, such as lower accuracy and higher error rate in comparison

to short reads, and lower sequencing depth (even when sequencing

a similar number of total nucleotides as a short-read sample, long

reads comprise more nucleotides per-read, and so typically result in

fewer independent measurements).

Currently, there are two major long read sequencing technologies;

Oxford Nanopore Technologies (ONT) [1, 46, 48] and Pacific

Biosciences (PacBio) [2, 40, 47], each technology with its own benefits

and drawbacks. While the PacBio long reads have high accuracy and

low error rate (especially HiFi reads), it typically has lower throughput

and higher cost than ONT sequencing, though throughput can be

improved substantially using techniques such as MAS-ISO-seq [3].

ONT sequencing typically provides higher throughput, and can

therefore be more cost-efficient, but the generated reads typically

have lower accuracy and higher error rate. Other differences in

capabilities arise from the actual mechanisms by which sequencing is

performed — for example, ONT sequencing is capable of sequencing

either cDNA (as is traditionally used in RNA-seq) or performing

direct RNA sequencing without first requiring reverse transcription,

which also permits direct detection of base-level modifications of the

underlying RNA molecule.

Long-read RNA sequencing is not without a growing collection

of associated quantification methods. In response to the limitations

of traditional tools, methods like TALON [49], FLAIR [42], and

Mandalorion [9] have emerged, and while these tools support

quantification, they primarily focus on novel transcript identification.

For quantification, some tools initially developed for short-read data,

like salmon [37] have since been augmented to support long-read

data by adjusting the sequencing error models appropriately and

removing the length dependence in the underlying graphical model,

and recent benchmarks have shown that this approach works well for

long read quantification [11]. At the same time, many tools have been

developed specifically for use with long-read data, such as Bambu [11],

ESPRESSO [15], LIQA [21], and NanoCount [17] among others. These

tools also differ in the details of how they perform probabilstic

read allocation. For example Bambu’s model applies an EM, but

also categorizes reads into equivalence classes not just based on the

transcripts to which they map, but on their category with respect

to the target transcripts [11]. ESPRESSO’s latent variable model is

dependent on the read-isoform compatibility matrix [15], and LIQA’s

latent variable is influenced by the read quality score and the read

length distribution [21] based on a survival model. The read allocation

in NanoCount is connected to the number of alignments per read [17],

and the method also applies several heuristic, but data driven, filters

to remove alignemnts that are more likely than not do detract from

quantification accuracy. Though these later long-read centric methods

add interesting aspects to the quantification approach, they, too still

tend to have a substantial focus on novel transcript discovery. While

transcript discovery from long reads is an exciting and challenging

problem, we argue here that even quantification with these data

remain an unsolved challenge, and it deserves its own dedicated

methods and approaches.

In this work, we focus primarily on quantification of ONT long

reads, due to their higher throughput, lower cost, and the greater

availability of publicly-available benchmarking datasets, all of which

enable a broad range of usability of this technology. However, the

models we develop and implement are likely largely technology

agnostic, and therefore are likely to also improve the quantification

accuracy for both major long read technologies. Likewise, reduced

sequencing error and more accurate reads — if obtained at the same

sequencing depth — are certainly key factors that we expect to

contribute to more accurate quantification results and subsequently,

more accurate and precise transcriptome analysis.

Methods and Materials

In this section, we first review the popular quantification model [25,

44] used in previous short read quantification methods, and slightly

adapted for long read quantification, then propose a novel addition to

this model that can be used to improve quantification based on long

read data (with the focus and evaluation here being on ONT data).

Previous quantification framework
In [25], the authors propose a generative model for RNA-seq

sequencing. A plate diagram of this generative model (which we

do not reproduce here for lack of space) is provided in shown in

Figure 1 of [25], and an extended model is presented in Figure 4

of [24]. The corresponding likelihood of a given collection of data (i.e.

sequenced fragments and their corresponding alignments) is given

as the following:

L(r,✓)/P(r |✓)=
NY

n=1

MX

i=0

✓iP(rn |Gn=i). (1)

The likelihood defined in eq. (1) can be maximized (locally) using

an Expectation-Maximization (EM) [13] algorithm, which the authors

derive for this particular likelihood in [25, 24]. This algorithm is then

used to obtain a maximum likelihood estimate (MLE) of the model’s

parameters ✓ = [✓0,✓1,...,✓M ], which correspond to the relative

abundances of the isoforms, given the observed data r=[r1,r2,...,rN ].

Here M is the number of isoforms and N is the number of fragments.

In eq. (1), M0 represents a “noise” isoform, and ✓i,rn,Gn parameters

denote the relative abundance of ith isoform, the nth fragment, and

the (latent) random variable assigning the nth fragment to the ith

isoform. Therefore, P(rn |Gn=i) is the conditional probability of

observing the fragment rn given that it arises from the ith isoform.

In [25, 24], an EM algorithm is applied to obtain a MLE estimate

⇥, and this quantification model, or variants of it, have been used in

many different methods designed for isoform expression quantification

using short read RNA-seq data [24, 33, 34, 41] (and many others).

It is also worth highlighting that, shortly after Li et al. introduced

RSEM [25], Turro et al. [44] introduced MMSeq. The latter tool is

particularly notable because it introduced a related but distinct model

in which likelihood was no longer evaluated (and parameters no longer

optimized) at the level of individual fragments, but rather at the level

of equivalence classes of fragments, where two fragments fi and fj
are considered equivalent if and only if they map or align to the same

set of transcript targets. By working with such equivalence classes, and

retaining their multiplicity (i.e. the number of fragments belonging to

each such class), MMSeq defined a similar but simplified likelihood

which is much faster to optimize, as the E step of the EM algorithm

scales with the number of distinct equivalence classes rather than

with the number of distinct fragments. This alternative formulation

of the problem represents an approximate factorization of the

likelihood function, and has also since been used in several transcript

quantification tools [44, 38, 51, 7, 37]. Between the extremes of

the fragment-level model of Li et al. and the compatibility-based

model of Turro et al. there exist a range of potential factorizations

of the likelihood function, in which one can trade off computational

efficiency for model fidelity [50], and factorizations can be derived that

improve quantification accuracy relative to the compatibility-based

model while still retaining rapid quantification speed.
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In this work, we adopt a fragment-level likelihood, rather

than a compatibility-based or alternative approximate likelihood

factorization. Specifically, we take this approach as we will augment

the model with an alignment-level term (a modification to the

conditional fragment probability), which should be applied at the

fragment, rather than equivalence class level. Moreover, given the

typically smaller number of sequenced fragments in long read samples,

the computational cost of adopting the fragment-level likelihood is

relatively modest. Finally, we note that developing an appropriate

approximate factorization that accounts for our modified model (or

extensions of it) should be feasible, but as the current computational

costs remain reasonable, we leave that to future work.

Existing Long Read Quantification Modesl
If the long read RNA-seq data consist of reads that always span the

whole length of isoforms from which they are sequenced, then isoform

expression quantification is a straightforward task, since where will be

no multi-mapped reads. In such a case, the estimate for the relative

abundance of an isoform is just the fraction of the sequenced reads

that map to this isoform. However, although it is expected that the

long reads have the same length as the isoforms sequenced (i.e. that

the reads represent full-length transcripts), most of the these reads

are, in fact, shorter than the isoforms from which they originate

from due to technical artifacts, unexpected errors, fragmentation or

breakage during sequencing, base-calling error, or for other reasons[4].

Additionally, the sequenced reads may constitute the full length of

the sequenced molecule, but may not match the full length of the

annotated isoform, because of well-known biological processes, such

as transcript degredation.

The length distribution model for the long read RNA-seq dataset,

sequenced from the Hct116 cell line (as discussed in Section 3.1), is

presented along with the distribution of aligned lengths of the reads

to the isoform and the distribution of isoform lengths in Figure S1.

Here, we observe that the typical length of isoforms are 1.5 times

longer than the typical length of the aligned segments of the reads

that map to these isoforms. Therefore, we also observe multimapped

reads at a non-trivial rate 70–80% in long read RNA-seq alignment,

and probabilistic models and inference techniques like those applied

to short read data [25] can also be useful for long read RNA-seq

quantification. Although the EM algorithm in [25] can be used

to quantify isoform expression from long read RNA-seq data, the

generative model should, in fact, be modified, since long read RNA-

seq experiments typically follow a protocol that is somewhat different

than that followed in short read RNA-seq.

One such fundamental difference, on which we focus here, is

that long read RNA-seq protocols do not include a systematic

fragmentation step prior to sequencing. Specifically, since the fragment

length of short read protocols is much less than the typical length of

the the transcripts being sequenced, and since we wish to be able to

generate reads from (nearly) any position within a transcript, these

protocols almost universally contain a fragmentation step, in which

the initial full-length transcripts are randomly fragmented, using one

of several different techniques [20, 19].

The fundamental effect of this fragmentation process on the

generative model is that we expect that the number of reads generated

from a particular isoform to be proportional to the product of the

number of copies of that isoform and the isoform’s length. For

example, if two isoforms A and B were present in equal number in

the underlying sample, but isoform A was k times longer than B,

then we would expect, on average, to sequence approximately k times

as many fragments from A as from B. This leads the number of reads

generated from a particular isoform to have a fundamental dependence

on the isoform’s length. However, fragmentation is typically not a step

in long read RNA-seq protocols, so that we instead expect the number

of reads arising from an isoform to be directly proportional to the

number of copies of that isoform in the sample, and not, additionally,

dependent on the isoform’s length. As we explain later, this seeming

simplification to the model also eliminates a useful source of evidence

when trying to determine the likely allocation of a multimapping

read between sequence-similar transcripts of different length.

Several computational tools have been developed to quantify long-

read RNA-seq data, but as discussed in Section 1, they typically

remove the length effect without addressing the subsequent reduction

it entails in the ability of the model to distinguish ambiguous

fragments. Hence, we propose a model that removes the length

effect of the short read model, and also replaces it with a new term

that seeks to increase the uniformity of coverage under the read

assignment probabilities.

Proposed quantification framework
In this work, we refine the generative model introduced in [25] to

enhance its applicability and accuracy specifically in the context of

long read sequencing. The proposed generative model is illustrated

in Figure 2 which can be useful to improve the likelihood function

for long read RNA-seq quantification. The key insight behind our

modification to the underlying model is that, in the short read

sequencing model, the length dependence of the sequencing rate

parameter provides useful information to help differentiate different

potential origins of a read. For example, all other things being equal,

a shorter transcript is a more likely origin for a read than a longer

transcript, as the probability of selecting the specific fragment that

starts at the position where the read aligns is higher for the shorter

transcript than the longer transcript. Another way of viewing this is

that the length parameter essentially penalizes uncovered stretches of

transcripts where alignments do not occur. However, when we move

to the long read model and remove this length dependence in the

conditional probability of fragment generation, this discriminative

component of the model is lost. This can, in turn, lead to counter-

intuitive situations where the model fails to differentiate between

potential mapping locations where a human observer may have a

clear preference. See Figure 2 an illustrative example of such a case.

At the same time, we do not want to include a length dependence in

the long read quantification model, as we, in general, do not expect

one given the underlying protocol and we expect that the length will

not have a direct effect on the probability of sampling reads from a

transcript — other than the effect that may arise from e.g. secondary

and tertiary molecule structure and other biochemical preferences.

Thus, we propose to incorporate a new term into the model

which directly accounts for the potential coverage signal of the

underlying transcripts. This term works to penalize large deviations in

coverage over the body of a transcript when assessing the conditional

probability of fragment assignment. This affords the model extra

information to differentiate between potential allocations like those

in Figure 2, and to prefer more intuitive explanations for the reads

when they are available.

A plate diagram of our model is provided in Figure 1, whereRn and

CDm are the observed variables representing the long read sequences

and potential coverage pattern for the mth isoform, respectively.

✓ = [✓1,..,✓M ] is the vector of isoform abundances that will be

estimated via maximization of the associated likelihood. Additionally,

Tn, An, and SEn are the latent random variables representing

the isoform, alignment score, and start-end positions of alignments

respectively. The likelihood function for the modified generative model

is given in Equation (2). Also, the explanation of the notations used in

the generative model and likelihood function can be found inTable 1.
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Table 1. Summary of Notation for Likelihood Function

Notation Explanation

✓ Vector of isoform abundance parameters.

M Number of isoforms.

N Number of reads.

Tn Isoform random variable for read n.

An Alignment score random variable for read n.

SEn Start-end position random variable for read n.

CDm Coverage distribution model for isoform m.

A(rn) Set of all isoforms to which read n aligns.

Fig. 1. Graphical model for an improved generative model of RNA-seq long reads.

✓ represents the desired isoform expression level parameter. The latent variables

Tn, An, and SEn correspond to the isoform, alignment score, and start-end

positions, respectively. The observed variables Rn and CVm are associated with

the read and coverage model, where m and n stand for the number of isoforms

and reads, respectively. Green circles represent latent variables, white circles

denote desired parameters, and pink circles indicate observed variables.

Pr(T,A,CD,SE,R |✓)=
NY

n=1

X

j2A(rn)

Pr(Tn=j |✓)Pr(An=anj |Tn=j)

⇥Pr(SEn=sen,j |CDj)

⇥Pr(rn |Tn=j,An=anj,CDj,SEn=senj)

(2)

As seen in Figure 2, the (latent) random variable Tn, denoting the

transcript selected for read generation, only depends on the isoform

expression parameters ✓ = [✓1,..,✓M ]. In other words, if we know

the expression level of all isoforms in the transcriptome, then the

probability that we have selected the jth isoform for sequencing

is equal to its expression level or relative abundance ✓j, so that

Pr(Tn=j |✓)=✓j.

With the model in hand, the first step in the process of long read

quantification is to align the reads to the target transcriptome to be

quantified. For this task, we use minimap2 [26, 27]. Of course, it is

possible to make use of other aligners, or to make use of alignemnts of

the read directly to the genome rather than to the transcriptome, but

these are specific practical details that do not fundamentally affect

the model being considered here. Throughout this work, we have

adopted the minimap2 parameters listed in section B of appendicies.

To obtain a reasonable model for Pr(An =anj |Tn = j), we use

the alignment score computed by minimap2 and encoded in the AS

tag. Specifically, we consider all alignments of nth read, and obtain

the maximum alignment score among them. Let j0 be the alignment

of the nth read having maximum AS, which we denote as ASmax
n .

We then consider this conditional probability as 1, and model the

Transcript 1

Transcript 2

Aligned sequencing  
reads

Fig. 2. A toy example demonstrating how removing length effect from the

probabilistic model can increase fragment assignment ambiguity in situations

where human intuition may be clear. In this case, all of the sequenced reads

align equally well to Transcript 1 and Transcript 2 (since Transcript 2 is, in fact,

a proper prefix of Transcript 1). Given the totality of coverage, it is clear that

these reads likely derive from Transcript 2, as the likelihood of generating this

many reads from Transcript 1, but never sequencing beyond the second exon, is

quite low. The model, however, does not encode this intuition, and does not

convey a preference for Transcript 2 over Transcript 1 as an explanation for

these reads.

probability of other alignments for this read to decrease exponentially

as a function of the alignment score. Specifically, the function used

to obtain Pr(An=anj |Tn=j) is given in Equation (3).

Pr(An=anj |Tn=j)=

8
<

:
exp

ASnj�ASmax
n

10 8j2A(rn)

0 otherwise.
(3)

In Equation 3, ASnj represent the alignment score of the nth read

aligned to jth isoform, and A(rn) represents the set of all transcript

indices to which read rn aligns.

One pivotal insight derived from aligned reads to the transcriptome

pertains to the observation and analysis of read coverage patterns

specific to individual transcripts. As the distribution of transcript

coverage pattern approaches uniformity, the likelihood of accurate

alignments to that transcript appears to increase, consequently

elevating the associated probability. The coverage pattern and

uniformity varies substantially between different transcripts. For

instance, Figure S2 shows the coverage patterns of three transcripts

ENST00000600659, ENST00000417088, and ENST00000449223 derived

from aligning the Hct116 dataset (see Section 3) to the transcriptome.

The coverage patterns in Figure S2 are extracted using IGV tools [43].

Specifically, SAMtools [12] was employed to acquire the depth of

each position within the aforementioned three transcripts. The

resulting data is depicted in Figure 3. It is evident, as observed in

Figures S2 and 3, that ENST00000417088 exhibits a coverage pattern

closer to uniformity. In contrast, transcripts ENST00000600659 and

ENST00000449223 display substantially less uniform patterns.

Overall, our approach will be to attempt to incoporate the coverage

distribution itself into the allocation probability for each fragment

(that is, when attempting to determine the probability of each latent

variable that assigns each alignment as the true origin of the read).

This idea itself is quite general, and we believe that it can be explored

and investigated thoroughly to determine the best way to make use

of the coverage profiles in read allocation. However, here we propose

one, specific, relatively simple model, and demonstrate that it helps

to improve the quantification accuracy obtained by the model.

One approach to enhance the uniformity of these coverage patterns

involves assigning to each alignment, a conditional probability that is

related to the coverage pattern along the transcript being considered.

That is, when the coverage pattern is non-uniform, and we are

considering the alignment of a read to a highly-covered section of the

transcript that would increase that non-uniformity, we would like to

decrease the conditional probability of this alignment (assuming that

there are other locations compatible with the read, where allocating

this read would contribute less to non-uniformity of coverage).

Likewise, when we are considering the alignment of a read to a
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Fig. 3. The coverage distribution model for three transcripts ENST00000600659,

ENST00000417088, and ENST00000449223, as estimated from the BAM file of the

Hct116 cell line dataset sequenced with direct cDNA.

sparsely-covered section of the transcript, we may wish to increase the

conditional probability of alignment, to attempt to bring the coverage

at the position covered by the read into closer concordance with the

coverage of the rest of the transcript. The goal of such modifications

to the conditional probabilities is to promote increased uniformity

of coverage under the final allocations of reads. To accomplish this,

first, we propose a model to compute a term inversely proportion to

the coverage pattern for each transcript, which we elaborate below.

The process for acquiring the coverage distribution model for each

transcript comprises the following six steps:

Alignment: Align the reads to the transcriptome with minimap2.

Segmentation: Segment the transcript into disjoint intervals. The

number of segments is adjustable (default of 10 per transcript).

Count reads: Count the number of reads that partially or

completely cover each segment. The count for each read present

in a segment is computed as the fraction of the segment length that

is covered by that read. Specifically, the count for ith segment is

given by counti =
PN

k=1
len(readk\segmenti)

len(segmenti)
, where N, readk, and

segmenti represent the number of reads overlapping the ith segment,

the kth read overlapping the ith segment, and the ith segment itself,

respectively.

Compute Probability: Compute the modified Binomial

probability for each segment. Binomial probability is typically

applicable to integer values, as the Binomial coefficient in its equation

involves factorials, which inherently operate on integers. Here, we

modify the Binomial probability to apply to real numbers. To achieve

this modification, we use the Gamma function instead of the factorial

function in the Binomial coefficient. The Gamma function serves as

an extension of the factorial function, and can be evaluated on all

complex numbers. The modified Binomial probability within the ith

segment is given in Equation (4), where ki=counti, as computed

above, and n is the summation of ki over all segments of the transcript,

given by n=
PS

i=1ki, where S signifies the total number of segments.

Pi=
�(n+1)

�(ki+1)�(n�ki+1)
.pki

i .(1�pi)
n�ki , pi :

ki

n
(4)

Normalization: Normalize the modified Binomial probabilities

for each segment on the transcript to guarantee that the sum across

all segments in a transcript equals one.

Discrete-Probability: Obtain the probability at each point on

the transcript length. If we denote Pi as the computed probability

for segment i, the probability assigned to each position within the

Fig. 4. Modified binomial distribution for three transcripts ENST00000600659,

ENST00000417088, and ENST00000449223 from the Hct116 dataset BAM file.

segment i is determined by dividing the probability of the entire

segment i by its corresponding length, as illustrated in Equation (5).

Ppointi =
Pi

segmenti
(5)

To explore what this obtained probability looks like across

transcripts in informative examples, we plot the modified Binomial

probability across the transcript length for three transcripts

ENST00000600659, ENST00000417088, and ENST00000449223 derived

from Hct116 BAM file, as it is shown in Figure 4. As expected

the probability evaluated across each of the mentioned transcripts

is roughly inversely proportional to the coverage density shown in

Figure S2 and Figure 3.

Finally, with these modified coverage probabilities in hand,

we can compute the probability Pr(SEn = senj | Tn = j) the

coverage probabilities computed across the corresponding transcript.

This involves performing a summation over the modified Binomial

probability across the positions ranging from the start to the end of

the alignment on the transcript. The resulting probability is defined

as Pr(SEn =senj |Tn = j)=
PE

i=SPpointij 8j2A(rn). where S

and E denote the start and end positions of the alignments across

the transcript length, and Ppointij denotes the modified binomial

probability at position i along the length of transcript j.

Given this definition of the relevant probabilities and conditional

probabilities, we apply the Expectation-Maximization (EM) algorithm

to derive the isoform expression level with the highest likelihood.

Results

In this section, we conduct a detailed evaluation of our methodology

using three distinct datasets, as listed in Section 3.1. Our

analysis includes a comparison against alternative long read-

centric quantification methodologies, namely Bambu [11], LIQA [21],

NanoCount [17], and ESPRESSO [15]. To facilitate a rigorous

comparison, we employ identical datasets and annotations as inputs

for each methodology, and subsequently compute the Spearman

correlation and Root Mean Square Error (RMSE) metrics for both

the synthetic spike-in and sequin datasets and experimental datasets,

obtained through ONT (and PacBio) sequencing technologies.

Dataset
We employ three distinct datasets to assess and compare our model

with other relevant methods. These datasets originate from three
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different cell lines including Hct116, H1975, and SH-SY5Y which are

introduced in the Singapore Nanopore Expression Project [10], Long

and short-read transcriptome profiling of human lung cancer cell

lines [14], and the work of Wang et al.[45] introducing TEQUILA-seq,

respectively. The reason behind selecting each of the mentioned

dataset are discussed in section A of the appendices. Subsequently,

all datasets are aligned to the genome and transcriptome as discussed

in the Section B of the appendices.

Linear Correlation Analysis
In order to assess the comparative performance of our proposed

methodology against existing methods, we first evaluated the strength

and direction of the linear relationship between isoform expression

levels derived from long-read RNA-seq and short-read RNA-seq

measurements of matched samples. This involved the generation of a

scatter plot and determination of a best-fit regression line, providing

a visual representation of the overall trend within the scatter plot.

Additionally, the Pearson correlation coefficient is computed to

quantitatively measure the strength of the linear relationship between

isoform expression levels obtained from long-read RNA-seq and

short-read RNA-seq measurements.

Figure 5, Figure S3 and Figure S4 display these results on the

Hct116 cell line dataset [10] across the various quantification methods.

Across all methods, the Pearson correlation p-values consistently

approach zero, underscoring the statistical significance and robustness

of the identified correlations. In Figure 5, the scatter plot captures the

linear correlation pattern across all transcripts in the Hct116 cell line

dataset. Our proposed method, with and without the coverage

model (oarfish_binomial and oarfish_NoCoverage, respectively),

along with comparative methods Bambu [11], NanoCount [17], and

ESPRESSO [15], exhibit quite similar linear correlation patterns.

Notably, LIQA [21] exhibits a markedly lower Pearson correlation

(0.32), indicative of a weaker linear association. Moreover, our

proposed method with coverage demonstrates an improvement (albeit

slight) in Pearson correlation compared to the next best model,

ESPRESSO.

For further investigation, we generated two distinct scatter plots

focusing on specific, previously identified subsets of important

transcripts within the Hct116 cell line dataset, provided in [10].

Figure S3 provides an analogous scatter plot, but focusing exclusively

on major transcripts. The observed pattern mirrors that of the

plot featuring all transcripts in Figure 5, with a notable difference

being the prevalence of a linear correlation among major transcripts,

especially those with high abundance, across all methods except

LIQA. Our proposed method with the binomial coverage model still

exhibits a slight improvement (approximately 2%) compared to the

next best model, which, in this case, is NanoCount. Additionally,

the scatter plot focusing solely on sequin transcripts in the Hct116

cell line, as depicted in Figure S4, demonstrates a strong linear

correlation between short and long read counts. This finding suggests

that synthetic data, such as sequin transcripts, remains relatively

unaffected by coverage models or other factors introduced in our

proposed method or comparative models. It also suggests that such

transcripts appear generally easier to accurately quantify compared

to more complex and naturally occuring “biological” transcripts.

For extended analysis, we present scatter plots comparing short

reads and long reads sequenced from H1975 [14] and SH-SY5Y [45] cell

lines. Due to the substantial dataset sizes for H1975 (approximately

14 and 38 GB, respectively), the ESPRESSO and LIQA methods are

excluded from the analysis due to their extended runtime, exceeding

48 hours. Figure S6 and Figure S8 illustrate that our proposed

binomial coverage-based model again exhibits an improvement

(approximately 3%) in Pearson correlation between short and long

reads compared to the next best model. Notably, in the scatter

plot for synthetic spike-in sequin transcripts in the H1975 cell line

(Figure S6), a strong linear correlation between short and long read

counts is observed. This finding aligns with our earlier observation

of sequin transcripts abundance correlations in the Hct116 cell line.

Non-linear Correlation and RMSE Analysis
In the previous section, we examined methods primarily based on

the strength of linear correlation between short read and long read

counts. To provide a more comprehensive evaluation, this section

assesses the results in terms of the Spearman correlation and Root

Mean Square Error (RMSE) as complementary metrics of accuracy.

First, we ananlyze the result for the synthetic spike-in sequin

transcripts with known concentrations in the Hct116 cell line. As

depicted in Figure S5, all methods exhibit nearly identical Spearman

correlation values for sequin long reads sequenced with the direct

cDNA protocol, except for LIQA. However, under the RMSE, our

proposed method with the binomial coverage model oarfish_binomial

demonstrates a slightly smaller value than other methods, indicating

a reduced RMSE (i.e. better performance). Conversely, the Spearman

correlation for reads sequenced with directRNA is considerably lower

compared to direct cDNA sequenced reads. The Spearman correlation

for directRNA sequenced reads remains consistent across all methods,

except for Bambu and LIQA, while the RMSE largely shows uniformity

across all methods. Given that the synthetic spike-in sequin dataset

has a known concentration, the results in Figure S5 underscore

the commendable performance of our proposed method in terms of

Spearman Correlation and RMSE. Furthermore, the slight changes in

Spearman correlation and RMSE among different methods support

the idea discussed in Section 3.2. These results further reiterates that

coverage models, and other model adjustments like those adopted

across other methods, seem to have little impact on performance on

synthetic transcripts like sequins.

Next, we compared Spearman correlation and RMSE across

methods for both all transcripts and for major transcripts in the

Hct116 cell line. The Spearman correlation results indicate that our

proposed method with the binomial coverage model oarfish_binomial

performs well, along with NanoCount. Interestingly, NanoCount

slightly outperforms others models for direct cDNA sequenced long

reads. However, the scenario changes for major transcripts, where our

proposed oarfish_binomial model shows a substantial 9% increase

in Spearman correlation compared to the next best model. In terms

of RMSE, the oarfish_binomial model consistently demonstrates

superior performance, particularly when considering only major

transcripts in the Hct116 cell line. Across all transcripts in the

Hct116 cell line, our proposed model achieves the lowest RMSE for

direct cDNA-sequenced long reads. For direct RNA-sequenced long

reads, the RMSE remains similar across different methods. These

results highlight the effectiveness of our proposed model, especially

when focusing on the major transcripts in the cell line.

We performed the same analyses for the H1975 and SH-SY5Y cell

lines. Notably, ESPRESSO and LIQA were excluded from the H1975

datasets due to their extended run times (exceeding 48 hours) in

these samples. In Figure S9 and Figure S10, the ONT data produce

consistently more concordant measurements with short read RNA-

seq data than do PacBio reads, across all methods, for H1975

datasets. Our proposed model, oarfish_binomial, exhibited superior

performance in Spearman correlation and RMSE for both the ONT

and PacBio reads.

In Figure S11, our proposed method oarfish_binomial

outperformed other methods in terms of Spearman correlation and

RMSE, excluding LIQA [21] and ESPRESSO [15] due to their

extended run times. Additionally, the SH-SY5Y dataset sequenced
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Fig. 5. Scatter plot for Illumina short read counts and ONT long read counts for all the transcripts within the Hct116 cell line. The ONT long read RNA-seq dataset

sequenced with direct cDNA protocol. The Illumina short read RNA-seq is quantified by Salmon. In all of these methods, the p-value for the Pearson correlation is

almost zero (P-value '0.0). In this figure, the oarfish_NoCoverage and oarfish_binomial labels denote our proposed method without and with the binomial coverage

model, respectively.

with 1DcDNA and directRNA protocols demonstrated higher accuracy

than those sequenced with TEQUILA-seq. Moreover, an increase

in sequencing time in TEQUILA-seq led to enhanced accuracy, as

depicted in Figure S11, where the dataset with 8-hour sequencing

outperformed the 4-hour dataset. Overall, the H1975 and SH-SY5Y

datasets accord with the evaluations in the Hct116 dataset, and

support the generally superior performance of our proposed method,

oarfish_binomial, compared to the other methods in terms of

Spearman correlation and RMSE.

Finally, we note that we performed an additional analysis using a

variant of oarfish to try to ascertain the degree to which the long

read data might reasonably concord with the short read estimates

(i.e. what is a data-dependent upper limit on the similarity of

predictions across these technologies?). These are the results in

the figures annotated with the + shr suffix. Specifically, we first

estimated the transcript abundances from the short read data using

salmon, and then we used the short read transcript quantification

estimates to initialize the EM algorithm in oarfish. Critically, we

allowed initializing transcripts estimated to be absent from the sample

according to the short read data to 0 in the oarfish optimization,

the result of which is forcing a 0 abundance for any transcript

that was estimated to have 0 abundance according to the short

read data. Interestingly, as shown in section (a) of Figure S10, this

resulted in a quite substantial increase (around 20% to 30%) in

Spearman correlation in certain datasets. However, such an increase

in concordance is unlikely obtainable from long reads alone, at least

in the current data, as we noticed a non-trivial number of transcripts

that were estimated to have 0 abundance according to the short read

data (and therefore were estimated to have 0 abundance under this

initialization of oarfish), but which has unique read evidence in

the long read data (and, of course, many zero to non-zero switches

are observed in the other direction as well, though those remain

represented even using this initialization).

Runtime and Memory Usage
We conducted an analysis of the time and memory requirements of

our proposed approach, and compared our tool with other state-of-

the-art approaches, namely Bambu, NanoCount, ESPRESSO, and LIQA,

using benchmarks across the Hct116, H1975, and SH-SY5Y datasets.

The corresponding time and memory benchmarks are depicted in

Figures 7, S12, and S13.

Figure 7b and Figure S13b highlight notable variations in

memory requirements among the tools. Specifically, ESPRESSO stands

out with the highest memory demand (⇠ 120GB to 140GB),

while oarfish and LIQA exhibit the least consumption (only ⇠
1GB) for both Hct116 and H1975 datasets. Regarding elapsed

time, significant distinctions emerge. While oarfish, Bambu, and

NanoCount demonstrate efficient performance, ESPRESSO and LIQA

run considerably slower, requiring several hours (Figure 7a and

Figure S13a). As we have noted above, for the largest datasets,

these methods did not complete within 48 hours, and were therefore

excluded from evaluation.

To gain deeper insights, we excluded ESPRESSO and LIQA from the

assessment, focusing on oarfish, Bambu, and NanoCount. These tools

demonstrated substantially lower elapsed time and memory usage.

Notably, oarfish showcased a marked reduction in both elapsed

time and memory usage compared to the other two models across

all datasets. This improvement becomes particularly pronounced as

dataset sizes increase, as illustrated in Figure S12 for the H1975

dataset, as well as in the specific sequenced datasets, such as direct

cDNA and 1D-cDNA sequenced datasets from Hct116 and H1975 cell

lines (Figure 7c, 7d, S13c, and S13d). In other words, oarfish

improves elapsed time and memory usage about one order of

magnitude for the largest sequenced dataset in each cell line. Moreover,

as illustrated in Figures 7, S12, and S13, it is evident that employing

short read counts in the EM algorithm exerts negligible impact on

both execution time and memory usage, as is expected, since it only

alters the initialization of the algorithm.
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Fig. 6. Spearman correlation and RMSE analysis for all transcripts and also major transcripts within in each gene in the Hct116 cell line: (a) Spearman correlation

between Illumina short read and ONT long read RNA-seq datasets for all transcripts in Hct116 cell line. (b) Spearman correlation between Illumina short read and

ONT long read RNA-seq datasets for only major transcripts in each gene within Hct116 cell line. (c) RMSE analysis for the all transcripts in the Hct116 cell line.

(d) RMSE analysis for the only major transcripts in each gene within the Hct116 cell line. In these figures, direct cDNA and direct RNA represent ONT long reads

sequenced with direct cDNA and direct RNA protocols, respectively. shr stands for short read counts, and direct cDNA + shr and direct RNA + shr indicate the use of

Illumina short read counts for initialization in the oarfish EM algorithm during the quantification of transcripts in Hct116 cell line sequenced with direct cDNA and

direct RNA protocols, respectively, in both proposed and comparative methods.

Conclusion

In this paper we have introduced an enhanced model and tool for

transcript quantification from long read RNA-seq data. Because of

differences in the fundamental generative process (i.e. the absence

of systematic fragmentation in long-read protocols and hence the

lack of a length dependence in the abundance parameters), existing

short-read quantification tools — at leas those that have not been

explicitly retrofitted for long read quantification — are not well-

suited to the task. At the same time, while numerous long read

transcriptome analysis methods have been developed, most of these

tools have prioritized identification over quantification. Yet, accurate

quantification from long reads remains an unresolved challenge, and

our emphasis here has been is on improving the quantification model

itself, recognizing its significance alongside identification.

While existing long read quantification tools such as Bambu,

NanoCount, ESPRESSO, and LIQA augment short-read quantification

models with various additions, including read equivalence class

categorization, distinct modifications of the read-isoform compatibility

matrix, novel incorporation of read quality scores, and the read length

distribution, none of these tools incorporate a model that explicitly

accounts for the distribution of read coverage for individual transcripts.

The read coverage pattern is a crucial factor, a piece of evidence that

can shed light on the likelihood of sequenced reads originating from

specific regions of transcripts. In our proposed model, we integrate

a novel coverage distribution directly into the generative model that

is used for transcript quantification. We have demonstrated that

accounting for these coverage profiles can increase the accuracy of

quantification from long-read RNA-seq data.

Additionally, an unsurprising but clear trend in the data we

evaluated is that a higher read throughput can offer a more

insightful perspective on the read coverage of transcripts, resulting

in improved transcript expression estimation. This improvement is

particularly highlighted in datasets obtained from high-throughput

sequencing of the H1975 cell line, which was 20-40 times larger

than datasets from Hct116 and SH-SY5Y cell lines. The outcomes

demonstrate a significant enhancement in the quantification of the

H1975 dataset. Notably, however, our proposed method, incorporating

a coverage distribution model oarfish_binomial, exhibits performance

improvements even in datasets with lower throughput, such as

those sequenced from Hct116 and SH-SY5Y cell lines. This

improvement is evident in terms of Pearson and Spearman correlation

coefficients as well as RMSE, showcasing the robustness and

versatility of our method across varying dataset sizes and sequencing

depths. Furthermore, considering practical performance implications

and computational resource usage, oarfish demonstrates highly-

favorable behavior in terms of both execution speed and memory

usage. This enhanced performance is particularly evident with larger

dataset sizes, underscoring the scalability and efficiency of oarfish.

Although our proposed model improves quantification accuracy,

and points at an interesting new direction for enhancing quantification

models for long read data, it is but a first step and there are many
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Fig. 7. Performance metrics (elapsed time and peak memory usage) for the proposed and alternative methods using the Hct116 cell line datasets: (a) Elapsed time

for all methods presented in seconds. (b) Memory usage for all methods displayed in kilobytes. (c) Elapsed time for oarfish, bambu, and NanoCount after excluding

ESPRESSO and LIQA, providing a detailed comparison in seconds. (d) Memory usage for the same subset of methods, again excluding ESPRESSO and LIQA, enhancing the

clarity of comparison and performance of specific tools, presented in kilobytes. In these figures, direct cDNA and direct RNA represent ONT long reads sequenced with

direct cDNA and direct RNA protocols, respectively. shr stands for short read counts, and direct cDNA + shr and direct RNA + shr indicate the use of Illumina short

read counts for initialization in the oarfish EM algorithm during the quantification of transcripts in Hct116 cell line sequenced with direct cDNA and direct RNA

protocols, respectively, in both proposed and comparative methods.

potential directions for future work. Here, we highlight one theoretical

and one practical direction for future work. From a theoretical

perspective, our coverage model is one of the simpler models that one

could imagine, based on a simple modified Binomial probability and,

notably, static from the perspective of the inference algorithm. That is,

we compute the coverage model given the initial alignments, and count

a read as potentially covering each of its given multimapping locations.

However, as we undertake inference, we learn meaningful information

about where, among the many places from which a multimapping

read might originate, the loci where it likely did originate. One

interesting extension of our model would be to update the implied

coverage profiles dynamically during inference based on the allocation

probabilities for the reads, as they are inferred during the execution

of the algorithm. This poses some of its own challenges (e.g. how

to retain computational efficiency, and how to ensure convergence

of the overall procedure). However, a similar approach is used to

learn fragment length distributions [24] and bias models [37, 41] in

existing short-read quantification tools, and a similar approach may

be very promising in the context of the coverage distributions here.

As we have mentioned earlier, oarfish considers an alignment-

level model for the purposes of optimization — that is, there is no

summarization or aggregation of alignments into e.g. equivalence-

classes [44, 38, 8, 37, 50]. As demonstrated by the time and

memory efficiency of oarfish, this does not seem to pose a practical

impediment to efficient implementation. Nonetheless, while existing

standard factorizations of the likelihood would interfere with our

coverage modeling, an interesting practical direction for future work

is designing a factorization that is appropriate for application under

our coverage model (or a dynamic variant of it). Such an approach

could even further improve the computational efficiency of oarfish.
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