
 1 

Electrophysiological dynamics of salience, default mode, and frontoparietal 
networks during episodic memory formation and recall: A multi-experiment 

iEEG replication  
 

Anup Das1 and Vinod Menon2,3,4  
 

 
Department of Biomedical Engineering1 

Columbia University, New York, NY 10027 
Department of Psychiatry & Behavioral Sciences2 

Department of Neurology & Neurological Sciences3 
Wu Tsai Neurosciences Institute4 

Stanford University School of Medicine 
Stanford, CA 94305 

 
 
 
 
 
Keywords: Human intracranial EEG, triple-network model, attentional control, episodic 
memory, human insula, salience network, default-mode network, frontoparietal network  
 
Author names and affiliations:  
 
Anup Das, Department of Biomedical Engineering, Columbia University, New York, NY 10027 
 
Vinod Menon, Department of Psychiatry & Behavioral Sciences, Department of Neurology & 
Neurological Sciences, and Stanford Neurosciences Institute, Stanford University School of 
Medicine, Stanford, CA 94305 

Corresponding author email address: ad3772@columbia.edu, menon@stanford.edu   

Conflict of interest statement: The authors declare no competing financial interests. 

Acknowledgements  
 
This research was supported by NIH grants NS086085 and MH126518. We are grateful to 
members of the UPENN-RAM consortia for generously sharing their unique iEEG data. We 
thank Dr. Byeongwook Lee for assistance with the figures. We acknowledge the computational 
resources and support provided by the Stanford Research Computing Center.  
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.02.28.582593doi: bioRxiv preprint 

mailto:ad3772@columbia.edu
mailto:menon@stanford.edu
https://doi.org/10.1101/2024.02.28.582593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 
 
Dynamic interactions between large-scale brain networks underpin human cognitive processes, 
but their electrophysiological mechanisms remain elusive. The triple network model, 
encompassing the salience (SN), default mode (DMN), and frontoparietal (FPN) networks, 
provides a framework for understanding these interactions. We analyzed intracranial EEG 
recordings from 177 participants across four diverse episodic memory experiments, each 
involving encoding as well as recall phases. Phase transfer entropy analysis revealed consistently 
higher directed information flow from the anterior insula (AI), a key SN node, to both DMN and 
FPN nodes. This directed influence was significantly stronger during memory tasks compared to 
resting-state, highlighting the AI's task-specific role in coordinating large-scale network 
interactions. This pattern persisted across externally-driven memory encoding and internally-
governed free recall. Control analyses using the inferior frontal gyrus (IFG) showed an inverse 
pattern, with DMN and FPN exerting higher influence on IFG, underscoring the AI's unique role. 
We observed task-specific suppression of high-gamma power in the posterior cingulate 
cortex/precuneus node of the DMN during memory encoding, but not recall. Crucially, these 
results were replicated across all four experiments spanning verbal and spatial memory domains 
with high Bayes replication factors. Our findings advance understanding of how coordinated 
neural network interactions support memory processes, highlighting the AI's critical role in 
orchestrating large-scale brain network dynamics during both memory encoding and retrieval. 
By elucidating the electrophysiological basis of triple network interactions in episodic memory, 
our study provides insights into neural circuit dynamics underlying memory function and offer a 
framework for investigating network disruptions in memory-related disorders. 
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Introduction 

Dynamic interactions between large-scale brain networks are thought to underpin human 
cognitive processes, but the electrophysiological dynamics that underlie these interactions 
remain elusive. The triple network model, which includes the salience (SN), default mode 
(DMN), and frontoparietal (FPN) networks, offers a fundamental framework for understanding 
these complex interactions (Cai, Ryali, Pasumarthy, Talasila, & Menon, 2021; Menon, 2011, 
2023). These networks collaboratively manage tasks that require significant stimulus-driven and 
stimulus-independent attentional control, highlighting the integrated nature of brain function. 
Building on Mesulam’s (Mesulam, 1990) theory that all cognitive and memory systems operate 
within a complex architecture of interconnected brain regions, the triple network model 
articulates how these networks facilitate demanding cognitive tasks. However, despite the 
model’s broad influence, the specific electrophysiological mechanisms that support these 
interactions during cognition remain poorly understood.  

Episodic memory, the cognitive process of encoding, storing, and retrieving personally 
experienced events, is essential for a variety of complex cognitive functions and everyday 
activities (Dickerson & Eichenbaum, 2010; Düzel, Penny, & Burgess, 2010; Moscovitch, 
Cabeza, Winocur, & Nadel, 2016; Ranganath & Ritchey, 2012; Rugg & Vilberg, 2013; 
Rutishauser, Reddy, Mormann, & Sarnthein, 2021; Yonelinas, Ranganath, Ekstrom, & Wiltgen, 
2019). Influential theoretical models of human memory posit a key role for control processes in 
regulating hierarchical processes associated with episodic memory formation (Andermane, 
Joensen, & Horner, 2021; Atkinson & Shiffrin, 1968; Bastos et al., 2012; Kumaran & 
McClelland, 2012; Tulving, 2002). Crucially, the formation of episodic memories relies on the 
intricate interplay between external stimulus-driven processes during encoding and internal recall 
processes during retrieval (Buckner & DiNicola, 2019; Fornito, Harrison, Zalesky, & Simons, 
2012; Mesulam, 1990), making it an ideal cognitive process to investigate the triple network 
model's broader applicability and its underlying neurophysiological mechanisms. Elucidating 
these mechanisms is crucial not only for understanding basic brain functions but also for 
addressing neuropsychological disorders where these mechanisms may be disrupted (Li et al., 
2019). 

Each network in the triple network model plays a unique and critical role in regulating human 
cognition (Menon, 2023). The SN, anchored by the anterior insula (AI), identifies and filters 
salient stimuli, helping individuals focus on goal-relevant aspects of their environment (Menon 
& Uddin, 2010). In contrast, the DMN is typically engaged during internally focused cognitive 
processes and is implicated in retrieval of past events and experiences (Buckner, Andrews-
Hanna, & Schacter, 2008; Fox & Raichle, 2007; Fox et al., 2005; Greicius et al., 2008; Greicius 
& Menon, 2004; Laufs et al., 2003; Raichle, 2015; Raichle et al., 2001; Smallwood et al., 2021). 
The FPN is involved in the maintenance and manipulation of information within working 
memory and exerts top-down attentional control to regulate memory formation (Badre, Poldrack, 
Paré-Blagoev, Insler, & Wagner, 2005; Badre & Wagner, 2007; Helfrich & Knight, 2016; Jin, 
Olk, & Hilgetag, 2010; Simons & Spiers, 2003; Uncapher & Wagner, 2009; Wagner, Paré-
Blagoev, Clark, & Poldrack, 2001; Wagner, Shannon, Kahn, & Buckner, 2005).  
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Central to the functionality of this model is the AI, a pivotal node within the SN. Functional 
brain imaging studies have revealed the SN’s critical role in regulating the engagement and 
disengagement of the DMN and FPN across diverse cognitive tasks (Bressler & Menon, 2010; 
Cai et al., 2016; Cai et al., 2021; Chen, Cai, Ryali, Supekar, & Menon, 2016; Kronemer et al., 
2022; Raichle et al., 2001; Seeley et al., 2007; Sridharan, Levitin, & Menon, 2008). The AI 
dynamically detects and filters task-relevant information, facilitating rapid and efficient 
switching between the DMN and FPN in response to shifting task demands (Menon, 2015a).  
However, how this process operates at the neurophysiological level remains unknown, 
underlining a significant gap in our understanding of directed network dynamics in memory 
formation.  

While the tripartite network has been most extensively studied in the context of cognitive tasks 
requiring explicit cognitive control, growing evidence suggests its relevance to episodic memory 
as a domain-general control system. Brain imaging studies in both healthy individuals and 
clinical populations provide growing evidence for the involvement of the tripartite network in 
memory processes. In healthy adults, Sestieri et al. found that the SN exhibited sustained activity 
across all phases of both episodic memory search and perceptual tasks (Sestieri, Corbetta, 
Spadone, Romani, & Shulman, 2014). The SN was consistently activated across all task phases, 
from initiation to response, indicating its broad involvement in memory processes. Importantly, 
the SN demonstrated flexible functional connectivity, linking with the DMN during memory 
search and dorsal attention network during perceptual search. These findings point to the SN's 
involvement in dynamically coordinating large-scale brain networks during episodic memory 
processes, supporting its characterization as a versatile, domain-general control network that 
adapts its connectivity patterns to meet diverse cognitive demands.  
 
Further supporting this view, Vatansever et al. demonstrated shared neural processes, centered 
on the AI, supporting the controlled retrieval of both semantic and episodic memories 
(Vatansever, Smallwood, & Jefferies, 2021). They identified a common cluster of cortical 
activity centered on the AI and adjoining inferior frontal gyrus for the retrieval of both weakly-
associated semantic and weakly-encoded episodic memory traces. Moreover, they found that 
reduced functional interaction between this cluster and the ventromedial prefrontal cortex, a key 
node of the DMN, was associated with better performance across both memory types. Higher 
pre-stimulus activity in the SN was associated with increased activity in temporal regions linked 
to encoding and reduced activity in regions associated with retrieval and self-referential 
processing (Cohen et al., 2020). This suggests that the SN may regulate memory by enhancing 
encoding and reducing interference from competing memory processes. Together, these findings 
not only reinforce the domain-general role of the SN in memory processes but also highlight the 
importance of investigating interactions between the tripartite network components during 
memory tasks.  
 
Clinical studies have also underscored aspects of the tripartite network in memory function. Le 
Berre et al. found that disrupted insula connectivity was associated with unawareness of memory 
impairments in non-Korsakoff's syndrome alcoholism, highlighting the crucial role of the right 
insula in memory functioning (Le Berre et al., 2017). Additionally, alcoholics showed weaker 
connectivity between the right insula and the dorsal anterior cingulate cortex nodes of the SN, 
and stronger connectivity between the right insula and ventromedial prefrontal cortex, a key node 
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of the DMN. Importantly, alcoholics who failed to desynchronize insula-ventromedial prefrontal 
cortex activity demonstrated greater overestimation of their memory predictions and poorer 
recognition performance. Similarly, Xie et al. demonstrated that disrupted intrinsic connectivity 
of insula networks was associated with episodic memory deficits in patients with amnestic mild 
cognitive impairment (Xie et al., 2012). These studies suggest that disrupted insula connectivity 
may underlie the lack of awareness of memory impairments, and highlights the crucial role of the 
SN in memory functioning.  
 
Despite these advances, the electrophysiological basis and dynamic interactions of these 
networks during memory formation and retrieval remain poorly understood. Our understanding 
of dynamic network interactions during human cognition is primarily informed by fMRI studies, 
which are limited by their temporal resolution. This constraint impedes our understanding of 
real-time, millisecond-scale neural dynamics and underscores the need to explore network 
interactions at time scales more pertinent to neural circuit dynamics. However, the difficulties 
involved in acquiring human electrophysiological data from multiple brain regions have made it 
challenging to elucidate the precise neural mechanisms underlying the functioning of large-scale 
networks. These challenges obscure our understanding of the dynamic temporal properties and 
directed interactions between the AI and other large-scale distributed networks during memory 
formation.  
 
To address these gaps, we leveraged intracranial EEG (iEEG) data acquired during multiple 
memory experiments from the University of Pennsylvania Restoring Active Memory (UPENN-
RAM) study (Solomon et al., 2019). This dataset provides an unprecedented opportunity to probe 
the electrophysiological dynamics of triple network interactions during both episodic memory 
encoding and recall, with depth recordings from 177 participants across multiple memory 
experiments. The UPENN-RAM dataset includes electrodes in the AI, the posterior cingulate 
cortex (PCC)/precuneus and medial prefrontal cortex (mPFC) nodes of the DMN, and the dorsal 
posterior parietal cortex (dPPC) and middle frontal gyrus (MFG) nodes of the FPN. By 
examining four diverse episodic memory tasks spanning verbal and spatial domains, we aimed to 
elucidate the neurophysiological underpinnings of the AI's dynamic network interactions with 
the DMN and FPN and assess the consistency of these interactions across tasks and stages of 
memory formation. 
 
We investigated four episodic memory experiments spanning both verbal and spatial domains. 
The first experiment was a verbal free recall memory task (VFR) in which participants were 
presented with a sequence of words during the encoding period and asked to remember them for 
subsequent verbal recall. The second was a categorized verbal free recall task (CATVFR) in 
which participants were presented with a sequence of categorized words during the encoding 
period and asked to remember them for subsequent verbal recall. The third involved a paired 
associates learning verbal cued recall task (PALVCR) in which participants were presented with 
a sequence of word-pairs during the encoding period and asked to remember them for subsequent 
verbal cued recall. The fourth was a water maze spatial memory task (WMSM) in which 
participants were shown objects in various locations during the encoding periods and asked to 
retrieve the location of the objects during a subsequent recall period. This comprehensive 
approach afforded a rare opportunity in an iEEG setting to examine network interactions 
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between the AI and the DMN and FPN nodes during both encoding and recall phases across 
multiple memory domains. 
 
A crucial test of the triple network model is whether the AI exerts a strong directed directed 
influence on the DMN and FPN. The AI is consistently engaged during attentional tasks and, 
dynamic causal modeling of fMRI data suggests that it exerts strong causal influences on the 
DMN and FPN in these contexts (Cai et al., 2016; Cai et al., 2021; Chen et al., 2016; Sridharan 
et al., 2008; Wen, Liu, Yao, & Ding, 2013). However, it remains unknown whether the AI plays 
a causal role during both memory encoding and recall and whether such influences have a 
neurophysiological basis. To investigate the directionality of information flow between neural 
signals in the AI and DMN and FPN, we employed phase transfer entropy (PTE), a robust and 
powerful measure for characterizing information flow between brain regions based on phase 
coupling (Hillebrand et al., 2016; Lobier, Siebenhühner, Palva, & Matias, 2014; Wang et al., 
2017). Crucially, it captures linear and nonlinear intermittent and nonstationary dynamics in 
iEEG data (Hillebrand et al., 2016; Lobier et al., 2014; Menon et al., 1996). We hypothesized 
that the AI would exert higher directed influence on the DMN and FPN than the reverse.  
 
To further enhance our understanding of the dynamic activations within the three networks 
during episodic memory formation, we determined whether high-gamma band power in the AI, 
DMN, and FPN nodes depends on the phase of memory formation. Memory encoding, driven 
primarily by external stimulation, might invoke different neural responses compared to memory 
recall, which is more internally driven (Andrews-Hanna, 2012; Buckner et al., 2008). We 
hypothesized that DMN power would be suppressed during memory encoding as it is primarily 
driven by external stimuli, whereas an opposite pattern would be observed during memory recall 
which is more internally driven. Based on the distinct functions of the DMN and FPN—
internally-oriented cognition and adaptive external response —we expected to observe 
differential modulations during encoding and recall phases. By testing these hypotheses, we 
aimed to provide a more detailed understanding of the dynamic role of triple network 
interactions in episodic memory formation, offering insights into the temporal dynamics and 
directed interactions within these large-scale cognitive networks. 
 
Our final objective was to investigate the replicability of our findings across multiple episodic 
memory domains involving both verbal and spatial materials. Reproducing findings across 
experiments is a significant challenge in neuroscience, particularly in invasive iEEG studies 
where data sharing and sample sizes have been notable limitations. There have been few 
previous replicated findings from human iEEG studies across multiple task domains. 
Quantitatively rigorous measures are needed to address the reproducibility crisis in human iEEG 
studies. We used Bayesian analysis to quantify the degree of replicability (Ly, Etz, Marsman, & 
Wagenmakers, 2019; Verhagen & Wagenmakers, 2014). Bayes factors (BFs) are a powerful tool 
for evaluating evidence for replicability of findings across tasks and for determining the strength 
of evidence for the null hypothesis (Verhagen & Wagenmakers, 2014). Briefly, the replication 
BF is the ratio of marginal likelihood of the replication data, given the posterior distribution 
estimated from the original data, and the marginal likelihood for the replication data under the 
null hypothesis of no effect (Ly et al., 2019).  
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In summary, our study aims to elucidate the neurophysiological basis of the interactions between 
large-scale cognitive networks by leveraging a unique dataset of iEEG recordings across multiple 
memory experiments. By examining directed information flow, high-gamma band power 
modulation, and replicability across verbal and spatial memory domains, we sought to advance 
our understanding of the neural mechanisms underpinning human episodic memory. Our 
findings shed light on how the brain effectively integrates information from distinct networks to 
support memory formation, and cognition more broadly. 
 
Results 
 
AI response compared to PCC/precuneus during encoding and recall in the VFR task  
 
We first examined neuronal activity in the AI and the PCC/precuneus and tested whether activity 
in the PCC/precuneus is suppressed compared to activity in the AI. Previous studies have 
suggested that power in the high-gamma band (80-160 Hz) is correlated with fMRI BOLD 
signals (Hermes, Nguyen, & Winawer, 2017; Hutchison, Hashemi, Gati, Menon, & Everling, 
2015; Lakatos, Gross, & Thut, 2019; Leopold, Murayama, & Logothetis, 2003; Mantini, 
Perrucci, Del Gratta, Romani, & Corbetta, 2007; Schölvinck, Maier, Ye, Duyn, & Leopold, 
2010), and is thought to reflect local neuronal activity (Canolty & Knight, 2010). Therefore, we 
compared high-gamma band power (see Methods for details) in the AI and PCC/precuneus 
electrodes during both encoding and recall and across the four episodic memory tasks. Briefly, in 
the VFR task, participants were presented with a sequence of words and asked to remember them 
for subsequent recall (Methods, Tables S1, S2a, S3a, Figures 1a, 2).  
 
Encoding Compared to the AI, high-gamma power in PCC/precuneus was suppressed during 
almost the entire window 110 – 1600 msec during memory encoding (ps < 0.05, Figure 3a).  
 
Recall In contrast, suppression of high-gamma power in the PCC/precuneus was absent during 
the recall periods. Rather, high-gamma power in the PCC/precuneus was enhanced compared to 
the AI mostly during the 1390 – 1530 msec window prior to recall (ps < 0.05, Figure 3a).  
 
AI response compared to PCC/precuneus during encoding and recall in the CATVFR task  
 
We next examined high-gamma power in the CATVFR task. In this task, participants were 
presented with a list of words with consecutive pairs of words from a specific category (for 
example, JEANS-COAT, GRAPE-PEACH, etc.) and subsequently asked to recall as many as 
possible from the original list (Methods, Tables S1, S2b, S3b, Figure 1b) (Qasim, Mohan, 
Stein, & Jacobs, 2023).  
 
Encoding High-gamma power in PCC/precuneus was suppressed compared to the AI during the 
570 – 790 msec interval (ps < 0.05, Figure 3b).  
 
Recall High-gamma power mostly did not differ between AI and PCC/precuneus prior to recall 
(ps > 0.05, Figure 3b). 
 
AI response compared to PCC/precuneus during encoding and recall in the PALVCR task  
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The PALVCR task also consisted of three periods: encoding, delay, and recall (Methods, Tables 
S1, S2c, S3c, Figure 1c). During encoding, a list of word-pairs was visually presented, and then 
participants were asked to verbally recall the cued word from memory during the recall periods.  
 
Encoding High-gamma power in PCC/precuneus was suppressed compared to the AI during the 
memory encoding period, during the 470 – 950 msec and 2010 – 2790 msec windows (ps < 0.05, 
Figure 3c).  
 
Recall High-gamma power mostly did not differ between AI and PCC/precuneus prior to recall 
(ps > 0.05, Figure 3c). 
 
AI response compared to PCC/precuneus during encoding and recall in the WMSM task  
 
We next examined high-gamma power in the WMSM task. Participants performed multiple trials 
of a spatial memory task in a virtual navigation paradigm (Goyal et al., 2018; Jacobs et al., 2016; 
Lee et al., 2018) similar to the Morris water maze (Morris, 1984) (Methods, Tables S1, S2d, 
S3d, Figure 1d). Participants were shown objects in various locations during the encoding 
periods and asked to retrieve the location of the objects during the recall period.  
 
Encoding High-gamma power in PCC/precuneus was suppressed compared to the AI, mostly 
during the 1390 – 2030 msec and 3150 – 4690 msec window (ps < 0.05, Figure 3d).  
 
Recall High-gamma power mostly did not differ between AI and PCC/precuneus (ps > 0.05, 
Figure 3d).  
 
Replication of increased high-gamma power in AI compared to PCC/precuneus across four 
memory tasks 
 
We next used replication BF analysis to estimate the degree of replicability of high-gamma 
power suppression of the PCC/precuneus compared to the AI during the memory encoding 
periods of the four tasks. We used the posterior distribution obtained from the VFR (primary) 
dataset as a prior distribution for the test of data from the CATVFR, PALVCR, and WMSM 
(replication) datasets (Ly et al., 2019) (see Methods for details). We used the encoding time-
windows for which we most consistently observed decrease of PCC/precuneus high-gamma 
power compared to the AI. These correspond to 110 – 1600 msec during the VFR task, 570 – 
790 msec in the CATVFR task, 2010 – 2790 msec in the PALVCR task, and 3150 – 4690 msec 
in the WMSM task. We first averaged the high-gamma power across these strongest time-
windows for each task and then used replication BF analysis to estimate the degree of 
replicability of high-gamma power suppression of the PCC/precuneus compared to the AI.  
 
Findings corresponding to the high-gamma power suppression of the PCC/precuneus compared 
to AI were replicated in the PALVCR (BF 5.16e+1) and WMSM (BF 2.69e+8) tasks. These 
results demonstrate very high replicability of high-gamma power suppression of the 
PCC/precuneus compared to AI during memory encoding. The consistent suppression effect was 
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localized only to the PCC/precuneus, but not to the mPFC node of the DMN or the dPPC and 
MFG nodes of the FPN (Figures S1-S3). 
 
In contrast to memory encoding, a similar analysis of high-gamma power did not reveal a 
consistent pattern of increased high-gamma power in AI and suppression of the PCC/precuneus 
across the four tasks during memory recall (Figure 3).  
 
AI and PCC/precuneus response during encoding and recall compared to resting baseline 
 
We examined whether AI and PCC/precuneus high-gamma power response during the encoding 
and recall periods are enhanced or suppressed when compared to the baseline periods. High-
gamma power in the AI was increased compared to the resting baseline during both the encoding 
and recall periods, and across all four tasks (ps < 0.05, Figure 3). This suggests an enhanced role 
for the AI during both memory encoding and recall compared to resting baseline.   
 
In contrast, high-gamma power in the PCC/precuneus was reduced compared to the resting 
baseline in three tasks – VFR, PALVCR, and WMSM – providing direct evidence for 
PCC/precuneus suppression during memory encoding (Figure 3). We did not find any increased 
high-gamma power activity in the PCC/precuneus, compared to the baseline, during memory 
retrieval (Figure 3). These results provide evidence for PCC/precuneus suppression compared to 
both the AI and resting baseline, during externally triggered stimuli during encoding.  
 
High-gamma power for other brain areas compared to resting baseline were not consistent across 
tasks (Figures S1-S3).  
 
Directed information flow from the AI to the DMN during encoding  
 
We next examined directed information flow from the AI to the PCC/precuneus and mPFC 
nodes of the DMN, during the memory encoding periods of the VFR task. We used phase 
transfer entropy (PTE) (Lobier et al., 2014) to evaluate directed influences from the AI to the 
PCC/precuneus and mPFC and vice-versa. Informed by recent electrophysiology studies in 
nonhuman primates, which suggest that broadband field potentials activity, rather than 
narrowband, governs information flow in the brain (Davis, Muller, Martinez-Trujillo, Sejnowski, 
& Reynolds, 2020; Davis, Muller, & Reynolds, 2022), we examined PTE in a 0.5 to 80 Hz 
frequency spectrum to assess dynamic directed influences of the AI on the DMN.  
 
Directed information flow from the AI to the PCC/precuneus (F(1, 264) = 59.36, p<0.001, 
Cohen's d = 0.95) and mPFC (F(1, 208) = 13.96, p<0.001, Cohen's d = 0.52) were higher, than 
the reverse (Figure 4a).  
 
Replication across three experiments with BF We used replication BF analysis to estimate the 
degree of replicability of direction of information flow across the four experiments (Table 1a, 
Figures 4b-d, also see Supplementary Results for detailed stats related to the CATVFR, 
PALVCR, and WMSM experiments). Findings corresponding to the direction of information 
flow between the AI and the PCC/precuneus during memory encoding were replicated all three 
tasks (BFs 9.31e+5, 1.44e+4, and 1.68e+18 for CATVFR, PALVCR, and WMSM respectively). 
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Findings corresponding to the direction of information flow between the AI and mPFC during 
memory encoding were also replicated across all three tasks (BFs 4.10e+1, 8.78e+0, and 5.34e+5 
for CATVFR, PALVCR, and WMSM respectively). This highly consistent pattern of results was 
not observed in any other frequency band (delta-theta (0.5-8 Hz), alpha (8-12 Hz), beta (12-30 
Hz), gamma (30-80 Hz), and high-gamma (80-160 Hz); results not shown). These results 
demonstrate very high replicability of directed information flow from the AI to the DMN nodes 
during memory encoding.  
 
These results demonstrate robust directed information flow from the AI to the PCC/precuneus 
and mPFC nodes of the DMN during memory encoding.   
 
Directed information flow from the AI to the DMN during recall 
 
Next, we examined directed influences of the AI on PCC/precuneus and mPFC during the recall 
phase of the verbal episodic memory task. During memory recall, directed information flow from 
the AI to the PCC/precuneus (F(1, 264) = 43.09, p<0.001, Cohen's d = 0.81) and mPFC (F(1, 
211) = 21.94, p<0.001, Cohen's d = 0.65) were higher, than the reverse (Figure 4a).  
 
Replication across three experiments with BF We next repeated the replication BF analysis for 
the recall periods of the memory tasks (Table 1b, Figures 4b-d, also see Supplementary 
Results for detailed stats related to the CATVFR, PALVCR, and WMSM experiments). 
Findings corresponding to the direction of information flow between the AI and the 
PCC/precuneus during memory recall were replicated across all three tasks (BFs 1.30e+5, 
6.74e+0, and 2.54e+10 for CATVFR, PALVCR, and WMSM respectively). Findings 
corresponding to the direction of information flow between the AI and the mPFC during memory 
recall were also replicated across the CATVFR and WMSM tasks (BFs 2.02e+1 and 1.32e+4 
respectively).  
 
These results demonstrate very high replicability of directed information flow from the AI to the 
DMN nodes across verbal and spatial memory tasks, during both memory encoding and recall.  
 
Directed information flow from AI to FPN nodes during memory encoding  
 
We next probed directed information flow between the AI and FPN nodes during the encoding 
periods of the verbal free recall task. Directed information flow from the AI to the dPPC (F(1, 
1143) = 11.69, p<0.001, Cohen's d = 0.20) and MFG (F(1, 1245) = 21.69, p<0.001, Cohen's d = 
0.26) were higher, than the reverse during memory encoding of the VFR task (Figure 5a).  
 
Replication across three experiments with BF We used replication BF analysis for the replication 
of AI directed influences on FPN nodes during the encoding phase of the memory tasks (Table 
1a, Figures 5b-d, Supplementary Results). Similarly, we also obtained very high BFs for 
findings corresponding to the direction of information flow between the AI and dPPC (BFs > 
2.33e+26) and also between the AI and MFG (BFs > 2.35e+27), across all three tasks.   
 
These results demonstrate that the AI has robust directed information flow to the dPPC and MFG 
nodes of the FPN during memory encoding.  
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Directed information flow from AI to FPN nodes during memory recall 
 
Directed influences from the AI to the dPPC (F(1, 1143) = 17.47, p<0.001, Cohen's d = 0.25) 
and MFG (F(1, 1246) = 42.75, p<0.001, Cohen's d = 0.37) were higher, than the reverse during 
memory recall of the VFR task (Figure 5a).  
 
Replication across three experiments with BF We also found very high BFs for findings 
corresponding to the direction of information flow between the AI and the dPPC (BFs > 
4.51e+27) and MFG (BFs > 6.90e+27) nodes of the FPN across the CATVFR, PALVCR, and 
WMSM tasks, during the memory recall period (Table 1b, Figures 5b-d, Supplementary 
Results).  
 
These results demonstrate very high replicability of directed information flow from the AI to the 
FPN nodes across multiple memory experiments, during both memory encoding and recall.  
 
Comparison of directed information flow: AI vs. Inferior Frontal Gyrus 
 
To examine the specificity of the AI directed information flow to the DMN and FPN, we 
conducted a control analysis using electrodes implanted in the inferior frontal gyrus (IFG, BA 
44). The IFG serves as an ideal control region due to its anatomical adjacency to the AI, its 
involvement in a wide range of cognitive control functions including response inhibition (Cai, 
Ryali, Chen, Li, & Menon, 2014), and its frequent co-activation with the AI in fMRI studies. 
Furthermore, the IFG has been associated with controlled retrieval of memory (Badre et al., 
2005; Badre & Wagner, 2007; Wagner et al., 2001), making it a compelling region for 
comparison. 
 
Our analysis revealed a striking contrast between the AI and IFG in their patterns of directed 
information flow. While the AI exhibited strong directed influences on both the DMN and FPN, 
the IFG showed the opposite pattern. Specifically, both the DMN and FPN demonstrated higher 
influence on the IFG than the reverse, during both encoding and recall periods, and across all 
four memory experiments (Figures S4, S5).  
 
To quantify this difference more precisely, we calculated the net outflow for both regions, 
defined as the difference (PTE(out)–PTE(in), see Methods for details). This analysis revealed 
that the AI’s net outflow was significantly higher than that of the IFG during both encoding and 
recall phases, a finding replicated across all four experiments (all ps < 0.001) (Figure S6).  
 
These results not only highlight the unique role of the AI in orchestrating large-scale network 
dynamics during memory processes but also demonstrate the specificity of this function when 
compared to an anatomically adjacent and functionally relevant region. The consistent pattern 
across diverse memory tasks and experimental phases underscores the robustness of the AI's role 
as an outflow hub during memory formation and retrieval.   
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Enhanced information flow from the AI to the DMN and FPN during episodic memory 
processing, compared to resting-state baseline  
 
We next examined whether directed information flow from the AI to the DMN and FPN nodes 
during the memory tasks differed from the resting-state baseline. Resting-state baselines were 
extracted immediately before the start of the task sessions and the duration of task and rest 
epochs were matched to ensure that differences in network dynamics could not be explained by 
differences in duration of the epochs. Directed information flow from the AI to both the DMN 
and FPN were higher during both the memory encoding and recall phases and across the four 
experiments, compared to baseline in all but two cases (Figures S7, S8).  
 
To further elucidate the task-specific role of the anterior insula (AI), we compared its net 
outward directed influence during memory tasks to that observed during resting state. We 
quantified this influence as the difference between outgoing and incoming information flow 
(PTE(out) - PTE(in)). This analysis revealed that the AI's net outflow was significantly enhanced 
during both encoding and recall phases of memory tasks compared to resting state in all but one 
case (ps < 0.05) (Figure S9). This pattern was consistently observed across all four experiments. 
These findings provide strong evidence for enhanced role of AI directed information flow to the 
DMN and FPN during memory processing compared to the resting state.  
 
Differential information flow from the AI to the DMN and FPN for successfully recalled and 
forgotten memory trials  
 
We examined memory effects by comparing PTE between successfully recalled and forgotten 
memory trials. However, this analysis did not reveal differences in directed influence from the 
AI on the DMN and FPN or the reverse, between successfully recalled and forgotten memory 
trials during the encoding as well as recall periods in any of the memory experiments (all 
ps>0.05) (Figures S10, S11).    
 
Outflow hub during encoding and recall  
 
fMRI studies have suggested that the AI acts as an outflow hub with respect to interactions with 
the DMN and FPN (Sridharan et al., 2008). To test the potential neural basis of this finding, we 
calculated net outflow (PTE(out)–PTE(in)) as the difference between the total outgoing 
information and total incoming information.   
 
Encoding This analysis revealed that the net outflow from the AI is positive and higher than the 
PCC/precuneus (F(1, 3319) = 154.8, p<0.001, Cohen's d = 0.43) node of the DMN, in the VFR 
task (Figure 6a).  
 
This analysis also revealed that the net outflow from the AI is higher than both the dPPC (F(1, 
5346) = 67.87, p<0.001, Cohen's d = 0.23) and MFG (F(1, 6920) = 132.74, p<0.001, Cohen's d = 
0.28) nodes of the FPN, in the VFR task (Figure 6a).  
 
Findings in the VFR task were also replicated across the CATVFR, PALVCR, and WMSM 
tasks, where we found that the net outflow from the AI is higher than the PCC/precuneus and 
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mPFC nodes of the DMN and the dPPC and MFG nodes of the FPN (Figures 6b-d, also see 
Supplementary Results for detailed stats related to the CATVFR, PALVCR, and WMSM 
experiments).  
 
Recall Net outflow from the AI is positive and higher than both PCC/precuneus (F(1, 3287) = 
151.21, p<0.001, Cohen's d = 0.43) and mPFC (F(1, 4694) = 7.81, p<0.01, Cohen's d = 0.08) 
during the recall phase of the VFR task (Figure 6a).  
 
Net outflow from the AI is also higher than both the dPPC (F(1, 5388) = 90.71, p<0.001, 
Cohen's d = 0.26) and MFG (F(1, 6945) = 167.14, p<0.001, Cohen's d = 0.31) nodes of the FPN 
during recall (Figure 6a).  
 
Crucially, these findings were also replicated across the CATVFR, PALVCR, and WMSM tasks 
and during both encoding and recall periods (Figures 6b-d, also see Supplementary Results for 
detailed stats related to the CATVFR, PALVCR, and WMSM experiments). Together, these 
results demonstrate that the AI is an outflow hub in its interactions with the PCC/precuneus and 
mPFC nodes of the DMN and also the dPPC and MFG nodes of the FPN, during both verbal and 
spatial memory encoding and recall.  
 
Narrowband phase synchronization between the AI and the DMN and FPN during encoding 
and recall compared to resting baseline  
 
We next directly compared the phase locking values (PLVs) (see Methods for details) between 
the AI and the PCC/precuneus and mPFC nodes of the DMN and also the dPPC and MFG nodes 
of the FPN for the encoding and the recall periods compared to resting baseline. However, 
narrowband PLV values did not significantly differ between the encoding/recall vs. rest periods, 
in any of the delta-theta (0.5-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-80 Hz), and 
high-gamma (80-160 Hz) frequency bands. These results indicate that PTE, rather than phase 
synchronization, more robustly captures the AI dynamic interactions with the DMN and the 
FPN.    
 
Discussion  

Our study investigated the electrophysiological underpinnings of large-scale brain network 
interactions during episodic memory processes, focusing on the dynamic interplay between the 
salience network (SN), default mode network (DMN), and frontoparietal network (FPN) as 
conceptualized in the triple network model (Cai et al., 2021; Menon, 2011, 2023). This model 
has been primarily investigated in the context of cognitive control tasks (Cai et al., 2021; Menon, 
2011, 2023). However, its applicability to memory processes remains less explored, particularly 
at the electrophysiological level. We elucidated how these three networks interact during 
different phases of memory processing, focusing on the directed information flow between key 
cortical nodes. The triple network model posits distinct roles for each network: the SN, anchored 
by the anterior insula, is thought to detect behaviorally relevant stimuli and orient attention 
towards information that needs to be encoded; the DMN is implicated in internally-driven 
processes, and memory recall; and the FPN contributes to the maintenance and manipulation of 
information in working memory, processes critical for both encoding and recall (Badre et al., 
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2005; Badre & Wagner, 2007; Wagner et al., 2001; Wagner et al., 2005). By leveraging 
intracranial EEG data from a large cohort of participants across four diverse memory tasks, we 
sought to provide a comprehensive, high-temporal resolution account of these network 
dynamics.  

We discovered that the anterior insula (AI), a crucial node of the SN, exerts strong directed 
influence on both the DMN and FPN during both memory encoding and recall. This finding was 
consistently observed across multiple experiments spanning verbal and spatial memory domains, 
highlighting the robustness and generalizability of our results. Importantly, our study extends the 
applicability of the triple network model beyond cognitive control tasks to episodic memory 
processes, thus broadening its explanatory power in the context of memory formation. 
Furthermore, we observed a distinctive suppression of high-gamma power in the posterior 
cingulate cortex/precuneus (PCC/precuneus) node of the DMN compared to the AI during 
memory encoding, suggesting a task-specific functional down-regulation of this region. Our 
findings significantly advance the understanding of the SN's role in modulating large-scale brain 
networks during episodic memory formation and underscore the importance of the triple network 
model in domain-general coordination of brain networks (Figure 7).  

Investigating directed inter-network interactions using iEEG and phase transfer entropy  

Dynamic interactions between the AI and the DMN and FPN are hypothesized to shape human 
cognition (Cai et al., 2016; Cai et al., 2014; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 
2008; Dosenbach et al., 2006; Menon, 2015b; Menon & Uddin, 2010). Although fMRI research 
has suggested that the AI plays a pivotal role in the task-dependent engagement and 
disengagement of the DMN and FPN across diverse cognitive tasks (Menon & Uddin, 2010; 
Sridharan et al., 2008), the neuronal basis of these results or the possibility of their being artifacts 
arising from slow dynamics and regional variation in the hemodynamic response inherent to 
fMRI signals remained unclear. To address these ambiguities, our analysis focused on casual 
interactions involving the AI and leveraged the high temporal resolution of iEEG signals. By 
investigating the directionality of information flow, we aimed to overcome the temporal 
resolution limitations of fMRI signals, providing a more mechanistic understanding of the AI's 
role in modulating the DMN and FPN during memory formation. To assess reproducibility, we 
scrutinized network interactions across four different episodic memory tasks involving verbal 
free recall, categorized verbal free recall, paired associates learning verbal cued recall, and water 
maze spatial episodic memory tasks (Solomon et al., 2019).  

We employed Phase Transfer Entropy (PTE), a robust metric of nonlinear and nonstationary 
dynamics to investigate dynamic interactions between the AI and four key cortical nodes of the 
DMN and FPN. PTE assesses the ability of one time-series to predict future values of another, 
estimating time-delayed directed influences, and is superior to methods like phase locking or 
coherence as it captures nonlinear and nonstationary interactions (Bassett & Sporns, 2017; 
Hillebrand et al., 2016; Lobier et al., 2014). PTE offers a robust and powerful tool for 
characterizing information flow between brain regions based on phase coupling (Hillebrand et 
al., 2016; Lobier et al., 2014; Wang et al., 2017) and has been successfully utilized in our 
previous studies (Das, de Los Angeles, & Menon, 2022; Das & Menon, 2020, 2021, 2022b, 
2023).  
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Broadband directed influences of the AI on DMN and FPN 
 
Informed by recent electrophysiology studies in nonhuman primates, which suggest that 
broadband field potentials activity, rather than narrowband, governs information flow in the 
brain (Davis et al., 2020; Davis et al., 2022), we first examined PTE in a 0.5 to 80 Hz frequency 
spectrum to assess dynamic directed influences of the AI on the DMN and FPN. Our analysis 
revealed that AI exerts stronger influences on the PCC/precuneus and mPFC nodes of the DMN 
than the reverse. A similar pattern also emerged for FPN nodes, with the AI displaying stronger 
directed influences on the dPPC and MFG, than the reverse. Crucially, this asymmetric pattern of 
directed information flow was replicated across all four memory tasks. Moreover, this pattern 
also held during the encoding and recall of memory phases of all four tasks.  
 
Replicability across memory tasks 
 
Replication, a critical issue in all of systems neuroscience, is particularly challenging in the field 
of intracranial EEG studies, where data acquisition from patients is inherently difficult. 
Compounding this issue is the virtual absence of data sharing and the substantial complexities 
involved in collecting electrophysiological data across distributed brain regions (Das & Menon, 
2022b). Consequently, one of our study’s major objectives was to reproduce our findings across 
multiple experiments, bridging verbal and spatial memory domains and task phases. To quantify 
the degree of replicability of our findings across these domains, we employed replication Bayes 
Factor (BF) analysis (Ly et al., 2019; Verhagen & Wagenmakers, 2014). Our analysis revealed 
very high replication BFs related to replication of information flow from the AI to the DMN and 
FPN (Table 1). Specifically, the BFs associated with the replication of direction of information 
flow between the AI and the DMN and FPN were decisive (BFs > 100), demonstrating 
consistent results across various memory tasks and contexts.  
 
Task-specific enhancement of AI’s directed influence: Contrasts with IFG and resting state 
 
Our analysis revealed a striking contrast between the AI and inferior frontal gyrus (IFG) in their 
patterns of directed information flow. While the AI exhibited strong directed influences on both 
the DMN and FPN, the IFG demonstrated an inverse relationship. Specifically, both the DMN 
and FPN exerted higher influence on the IFG than vice versa, a pattern that held consistent 
across both encoding and recall periods, and throughout all four memory experiments (Figures 
S4, S5). Our analysis also revealed that the AI's net outflow was significantly higher than that of 
the IFG during both encoding and recall phases, a finding replicated across all four experiments.  
 
Furthermore, we compared the AI's net outward directed influence during memory tasks to that 
observed during resting state. This analysis showed that the AI's net outflow was significantly 
enhanced during both encoding and recall phases of memory tasks compared to resting state, 
consistently across all four experiments. This task-specific enhancement suggests that the AI's 
role in coordinating large-scale network dynamics is specifically amplified during memory 
processes. 
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These results not only highlight the unique role of the AI in orchestrating large-scale network 
dynamics during memory processes but also demonstrate the specificity of this function when 
compared to an anatomically adjacent and functionally relevant region implicated in cognitive 
control (Badre et al., 2005; Badre & Wagner, 2007; Cai et al., 2014; Wagner et al., 2001). The 
consistent pattern across diverse memory tasks and experimental phases underscores the 
robustness of the AI's role in memory-related network interactions.  

High-gamma power suppression in the PCC/precuneus during encoding, but not recall 
 
Our analysis of local neuronal activity revealed a consistent and specific pattern of high-gamma 
power suppression in the PCC/precuneus compared to the AI during memory encoding across all 
four episodic memory tasks. This finding aligns with the typical deactivation of default mode 
network (DMN) nodes during attention-demanding tasks (Wen et al., 2013), while also 
extending our understanding of the DMN's role in episodic memory formation (Buckner et al., 
2008; Menon, 2023). 
 
Importantly, this suppression effect was confined to the PCC/precuneus within the DMN, with 
no parallel reductions observed in the mPFC. Moreover, suppression of the PCC/precuneus was 
stronger when compared to the dorsal posterior parietal cortex (dPPC) and middle frontal gyrus 
(MFG) nodes of the FPN (Figures S12, S13). Bayesian replication analysis substantiated the 
high degree of replicability of this PCC/precuneus suppression effect across tasks (Bayes Factors 
> 5.16e+1). These findings extend previous fMRI studies reporting DMN suppression during 
attention to external stimuli (Bressler & Menon, 2010; Raichle et al., 2001; Seeley et al., 2007) 
and complement optogenetic research in rodents’ brains demonstrating AI-induced suppression 
of DMN regions (Menon et al., 2023).  
 
High-gamma activity (80-160 Hz) is a reliable indicator of localized, task-related neural 
processing, often associated with synchronized activity of local neural populations and elevated 
neuronal spiking (Canolty & Knight, 2010). High-gamma activity (typically ranging from 80-
160 Hz) has been reliably implicated in various cognitive tasks across sensory modalities, 
including visual (Lachaux et al., 2005; Tallon-Baudry, Bertrand, Hénaff, Isnard, & Fischer, 
2005), auditory (Crone, Boatman, Gordon, & Hao, 2001; Edwards, Soltani, Deouell, Berger, & 
Knight, 2005), and across cognitive domains, including working memory (Canolty et al., 2006; 
Mainy et al., 2007) and episodic memory (Daitch & Parvizi, 2018; Sederberg et al., 2007). The 
suppression we observed during encoding likely reflects functional down-regulation of the 
PCC/precuneus, potentially to minimize interference from internally-oriented processes during 
the encoding of external information. 
 
In contrast, during memory recall, we observed different patterns of activity. In the three verbal 
tasks (VFR, CATVFR, and PALVCR), PCC/precuneus activity showed enhanced responses 
compared to the AI in the 1-1.6 second window prior to word production. However, it's crucial to 
note that our analysis was time-locked to word production rather than the onset of internal 
retrieval processes. In the spatial memory task WMSM, the PCC/precuneus exhibited an earlier 
onset and enhanced activity compared to the AI. This task may provide a clearer window into 
recall processes: findings align with the view that DMN nodes may play a crucial role in 
triggering internal recall processes. However, the precise timing of internal retrieval initiation 
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remains a challenge in verbal tasks, potentially limiting our ability to capture the full dynamics 
of regional activity, and its replicability, during early stages of recall. 

The observed high-gamma suppression in the PCC/precuneus during encoding, but not recall, 
likely reflects the distinct cognitive demands of these memory phases. Encoding primarily 
involves externally-driven processes, requiring attention to and processing of incoming stimuli. 
In contrast, recall is predominantly internally-driven, relying on the retrieval and reconstruction 
of stored information. This dissociation in PCC/precuneus activity aligns with its known role in 
the DMN, which typically shows deactivation during externally-oriented tasks and activation 
during internally-directed cognition. This pattern of activity underscores the flexible and context-
dependent functioning of brain regions within large-scale networks, adapting their engagement to 
support different aspects of memory processing.  

Broadband vs. high-gamma directed influences 
 
Notably, our findings reveal a robust and consistent directed influence exerted by the AI on all 
nodes of both the DMN and the FPN, extending across all four memory tasks and both memory 
encoding and recall phases. These directed influences were prominently manifested in broadband 
signals. Interestingly, such directed influences were not observed in the high-gamma frequency 
range (80-160 Hz). This absence aligns with current models positing that high-gamma activity is 
more likely to reflect localized processing, while lower-frequency bands are implicated in 
longer-range network communication and coordination (Bastos et al., 2015; Das et al., 2022; Das 
& Menon, 2020, 2021, 2022b, 2023; K. J. Miller et al., 2007). More generally, our findings 
emphasize that it is crucial to differentiate between high-gamma activity (f  > 80 Hz) and sub-
high-gamma (f < 80 Hz) fluctuations, as these signal types are indicative of different underlying 
physiological processes, each with distinct implications for understanding neural network 
dynamics.  
 
Successful and unsuccessful memory effects engage similar AI-directed circuits  

Our analysis revealed no significant differences in directed connectivity between successfully 
recalled and forgotten memory trials, suggesting that the reported effects may not be specific to 
successful memory formation and may be related to attentional or other general cognitive 
processing rather than memory processing per se. While our study provides valuable insights into 
the interactions between the AI and the DMN and FPN during cognitive tasks involving verbal 
and spatial information processing during memory tasks, it is crucial to acknowledge that these 
interactions may not be unique to memory processes. The AI's directed influence on the DMN 
and FPN could reflect a more general role in coordinating attentional resources, which are 
essential for various cognitive functions, including memory formation (Menon & Uddin, 2010; 
Uddin, 2015). To disentangle the specific contributions of memory recall and attention, future 
studies should incorporate carefully designed control tasks that do not involve memory 
components. It is also important to note that successful memory recall likely involves the 
coordinated activity of multiple brain systems beyond the triple network model investigated here. 
For instance, the medial temporal lobe, including the hippocampus and adjacent cortical regions, 
plays a crucial role in episodic memory formation and retrieval (Burgess, Maguire, & O'Keefe, 
2002; Moscovitch et al., 2016). Future studies will need to investigate a broader set of brain 
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areas during successful and unsuccessful memory trials to gain a more comprehensive 
understanding of the neural circuits supporting distinctions between successfully recalled and 
forgotten memory trials.  

Externally triggered vs. internally driven memory processes 
 
Our results reveal a consistent pattern of directed information flow from the AI to both the DMN 
and FPN, persisting across externally triggered encoding and internally driven free recall. This 
pattern underscores the AI’s robust and versatile role in modulating large-scale brain networks 
across diverse task contexts, aligning with the triple network model's conceptualization of the AI 
as a critical hub for attentional and cognitive control (Menon, 2011, 2023). However, the 
persistence of AI-driven information flow during internally triggered free recall was unexpected, 
given the view of the DMN's dominance in internal cognition. This reproducible pattern, 
observed across both externally and internally driven tasks in all four experiments, reinforces the 
AI's crucial role in orchestrating network dynamics over extended time periods.  
 
We did not detect an opposing pattern of greater directed influences from the DMN during recall, 
as might be expected given the internally-driven nature of free recall. Several factors may 
contribute to this unexpected result. First, in the three verbal recall tasks, our PTE analysis was 
time-locked to word production onset, which may not capture the dynamics of network 
interactions during recall, particularly in the early retrieval initiation stage whose precise onset is 
unknown. This limitation is especially relevant for understanding the DMN's role, which might 
be more prominent in the initiation of recall rather than the selection of verbal output. Secondly, 
the PTE method requires relatively long time series for robust estimation of information flow. 
The brief windows associated with initiation of individual recall events may not provide 
sufficient data for detecting subtle shifts in network dynamics, potentially masking transient 
increases in DMN influence.  
 
Moreover, the consistent AI-driven information flow during recall might reflect the SN's ongoing 
role in monitoring and evaluating retrieved information, even during internally-driven processes. 
This interpretation aligns with Sestieri and colleagues’ observation of sustained SN activity 
across all phases of memory search tasks (Sestieri et al., 2014) and suggests a more complex 
view of the AI's function in both externally-driven and internal cognitive processes.  
 
Intriguingly, as noted above, while we observed PCC/precuneus suppression during encoding 
and enhancement during recall, the AI maintained its directed influence on this DMN node 
during encoding and recall. This apparent discrepancy between local activity (suppression) and 
network-level communication highlights the complex nature of brain network dynamics. It is 
likely that PTE-based network interactions examined in this study at the time scale of about 2 
seconds misses subtle changes in directed interactions that occur during internally-driven 
initiation of memory recall. Furthermore, our directed connectivity analysis used broadband 
signals (0.5-80 Hz), while power analysis of local neuronal activity focused on the high-gamma 
band (80-160 Hz). These different frequency ranges may capture distinct aspects of neural 
processing, with broadband connectivity reflecting more general, sustained network interactions. 
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To further elucidate these dynamics, future studies should consider employing techniques that 
can capture rapid changes in directed network interactions, investigating the temporal evolution 
of network interactions leading up to and following recall events, exploring the relationship 
between different frequency bands in connectivity and local activity measures, and developing 
methods to better estimate the onset of internal retrieval processes in verbal tasks. These 
approaches could provide valuable insights into the transition between externally-driven and 
internally-driven processes and offer a more precise understanding of the AI and 
PCC/precuneus’s differential roles in coordinating network dynamics across different memory 
phases. 
 
AI as an outflow hub and a novel perspective on theoretical models of memory  
 
Beyond information flow along individual pathways linking the AI with the DMN and FPN, our 
PTE analysis further revealed that the AI is an outflow hub in its interactions with the DMN and 
the FPN regardless of stimulus materials. As a central node of the salience network (Menon & 
Uddin, 2010; Seeley et al., 2007; Sridharan et al., 2008), the AI is known to play a crucial role in 
influencing other networks (Menon & Uddin, 2010; Uddin, 2015). Our results align with 
findings based on control theory analysis of brain networks during a working memory task. 
Specifically, Cai et al found higher causal outflow and controllability associated with the AI 
compared to DMN and FPN nodes during an n-back working memory task (Cai et al., 2021). 
Controllability refers to the ability to perturb a system from a given initial state to other 
configuration states in finite time by means of external control inputs. Intuitively, nodes with 
higher controllability require lower energy for perturbing a system from a given state, making 
controllability measures useful for identifying driver nodes with the potential to influence overall 
state dynamics. By virtue of its higher controllability relative to other brain areas, the AI is well-
positioned to dynamically engage and disengage with other brain areas. These findings expand 
our understanding of the AI's role, extending beyond attention and working memory tasks to 
incorporate two distinct stages of episodic memory formation. Our study, leveraging the 
temporal precision of iEEG data, substantially enhances previous fMRI findings by unveiling the 
neurophysiological mechanisms underlying the AI's dynamic regulation of network activity 
during memory formation and cognition more generally.  

Our findings bring a novel perspective to the seminal model of human memory proposed by 
Atkinson and Shiffrin (Atkinson & Shiffrin, 1968). This model conceptualizes memory as a 
multistage process, with control mechanisms regulating the transition of information across these 
stages. The observed suppression of high-gamma power in the PCC/precuneus and enhancement 
in the AI during the encoding phase may be seen as one neurophysiological manifestation of 
these control processes. The AI's role as a dynamic switch, modulating activity between the 
DMN and FPN, aligns with active processing and control needed to encode sensory information 
into short-term memory. On the other hand, the transformations observed during the recall phase, 
particularly the discernable lack of DMN suppression patterns, may correspond to the retrieval 
processes where internally generated cues steer the reactivation of memory representations 
during recall. These results provide a novel neurophysiological model for understanding the 
complex control processes underpinning human memory functioning. 
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Limitations and future work  

Our study, while revealing important insights into network dynamics during memory processes, 
has several limitations that provide avenues for further investigation. Although our 
computational methods suggest directed influences, direct causal manipulations, such as targeted 
brain stimulation during memory tasks, are needed to establish definitive causal relationships 
between network nodes. The PTE method, while powerful, cannot reliably capture rapid shifts in 
network dynamics. Subsequent research should employ techniques with higher temporal 
precision to map these changes. 

To determine whether our observed network dynamics are memory-specific or reflect more 
general cognitive processes, additional work should compare directed connectivity patterns 
across memory and non-memory tasks. Our analysis approach, necessitated by limited multi-task 
participation, precluded robust within-subject analyses. Future studies should aim for more 
consistent multi-task participation to enable individual-level analyses of network dynamics 
across tasks. 

In the free recall verbal tasks, precisely timing the onset of internal retrieval processes remains 
challenging. Experimental designs with cued recall similar to the WMSM task could provide 
crucial insights into early stages of memory retrieval. This approach could help clarify the roles 
of different networks, especially the DMN, during the initiation of recall versus the execution of 
verbal output. The dissociation we observed between local activity and network-level 
communication warrants further investigation. Further studies are needed to determine the 
relationship between different frequency bands in connectivity and local activity measures to 
better understand how these distinct aspects of neural processing contribute to memory formation 
and retrieval.  

Despite these limitations, our findings provide a robust foundation for investigations into the 
electrophysiological basis of large-scale brain network interactions during memory formation 
and recall. By addressing these limitations, subsequent studies can further refine our 
understanding of how these networks dynamically coordinate to support episodic memory and 
other cognitive functions. Such investigations may reveal a more dynamic interplay between the 
SN, DMN, and FPN, where their relative influences shift rapidly depending on the specific 
cognitive demands of the task. 

Conclusions  

Our study provides novel insights into the neural dynamics underpinning episodic memory 
processes across four diverse memory experiments. We discovered that the anterior insula, a key 
node of the salience network, exerts a strong and consistent directed influence on both the default 
mode network and frontoparietal network during memory encoding and recall. This finding 
extends the applicability of the triple network model to episodic memory processes in both 
verbal and spatial domains, highlighting the anterior insula's crucial role as an outflow hub  that 
modulates information flow within and between these cognitive networks.  
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Importantly, we observed a dissociation between local activity and network-level communication 
in the posterior cingulate cortex/precuneus node of the default mode network. The suppression of 
high-gamma power in this region during encoding, but not during recall, suggests a context-
specific functional regulation that varies across memory phases. This finding reveals the intricate 
and dynamic interplay between local neural activity and large-scale network communication, and 
highlights the multifaceted nature of brain mechanisms underlying human memory processing.  

The robust replicability of our findings across multiple memory tasks and modalities enhances 
the reliability and generalizability of our results, addressing a critical need in human intracranial 
EEG research. Our results reinforce the concept that memory operations rely on the concerted 
action of widely distributed brain networks (Mesulam, 1990), extending beyond traditional 
memory-specific regions. 

By elucidating the electrophysiological basis of directed information flow within the triple 
network model, our study advances the understanding of neural circuit dynamics in human 
memory and cognition. Our findings provide a template for understanding the neural basis of 
memory impairments in neurological and psychiatric disorders. For instance, the disruption of 
these network interactions could contribute to memory deficits in conditions such as Alzheimer's 
disease, where dysfunctions in the salience, default mode, and frontoparietal networks are now 
being increasingly documented (Bonthius, Solodkin, & Van Hoesen, 2005; Guzmán-Vélez et al., 
2022).  
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Figure Captions 

Figure 1. Task design of the encoding and recall periods of the memory experiments, and 
iEEG recording sites in AI, with DMN and FPN nodes. (a) Experiment 1, Verbal free recall 
(VFR): (i) Task design of memory encoding and recall periods of the verbal free recall 
experiment (see Methods for details). Participants were first presented with a list of words in the 
encoding block and asked to recall as many as possible from the original list after a short delay. 
(ii) Electrode locations for AI with DMN nodes (top panel) and AI with FPN nodes (bottom 
panel), in the verbal free recall experiment. Proportion of electrodes for AI, PCC/Pr, mPFC, 
dPPC, and MFG were 9%, 8%, 19%, 32%, and 32% respectively, in the VFR experiment. (b) 
Experiment 2, Categorized verbal free recall (CATVFR): (i) Task design of memory 
encoding and recall periods of the categorized verbal free recall experiment (see Methods for 
details). Participants were presented with a list of words with consecutive pairs of words from a 
specific category (for example, JEANS-COAT, GRAPE-PEACH, etc.) in the encoding block and 
subsequently asked to recall as many as possible from the original list after a short delay. (ii) 
Electrode locations for AI with DMN nodes (top panel) and AI with FPN nodes (bottom panel), 
in the categorized verbal free recall experiment. Proportion of electrodes for AI, PCC/Pr, mPFC, 
dPPC, and MFG were 10%, 7%, 11%, 35%, and 37% respectively, in the CATVFR experiment. 
(c) Experiment 3, Paired associates learning verbal cued recall (PALVCR): (i) Task design 
of memory encoding and recall periods of the paired associates learning verbal cued recall 
experiment (see Methods for details). Participants were first presented with a list of 6 word-pairs 
in the encoding block and after a short post-encoding delay, participants were shown a specific 
word-cue and asked to verbally recall the cued word from memory. (ii) Electrode locations for 
AI with DMN nodes (top panel) and AI with FPN nodes (bottom panel), in the paired associates 
learning verbal cued recall experiment. Proportion of electrodes for AI, PCC/Pr, mPFC, dPPC, 
and MFG were 14%, 5%, 13%, 33%, and 35% respectively, in the PALVCR experiment. (d) 
Experiment 4, Water maze spatial memory (WMSM): (i) Task design of memory encoding 
and recall periods of the water maze spatial memory experiment (see Methods for details). 
Participants were shown objects in various locations during the encoding period and asked to 
retrieve the location of the objects during the recall period. Modified from Jacobs et. al. (2018) 
with permission. (ii) Electrode locations for AI with DMN nodes (top panel) and AI with FPN 
nodes (bottom panel), in the water maze spatial memory experiment. Proportion of electrodes for 
AI, PCC/Pr, mPFC, dPPC, and MFG were 10%, 15%, 13%, 38%, and 24% respectively, in the 
WMSM experiment. Overall, proportion of electrodes for VFR, CATVFR, PALVCR, and 
WMSM experiments were 43%, 27%, 15%, and 15% respectively. AI: anterior insula, PCC: 
posterior cingulate cortex, Pr: precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal posterior 
parietal cortex, MFG: middle frontal gyrus.  
 
Figure 2. Anterior insula electrode locations (red) visualized on insular regions based on 
the atlas by Faillenot and colleagues (Faillenot, Heckemann, Frot, & Hammers, 2017). 
Anterior insula is shown in blue, and posterior insula mask is shown in green (see Methods for 
details). This atlas is based on probabilistic analysis of the anatomy of the insula with 
demarcations of the AI based on three short dorsal gyri and the PI which encompasses two long 
and ventral gyri.  
 
Figure 3. iEEG evoked response, quantified using high-gamma (HG) power, for AI (red) 
and PCC/precuneus (blue) during (a) VFR, (b) CATVFR, (c) PALVCR, and (d) WMSM 
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experiments. Green horizontal lines denote greater high-gamma power for AI compared to 
PCC/precuneus (ps < 0.05). Red horizontal lines denote increase of AI response compared to the 
resting baseline during the encoding and recall periods (ps < 0.05). Blue horizontal lines denote 
decrease of PCC/precuneus response compared to the baseline during the encoding periods and 
increase of PCC/precuneus response compared to the baseline during the recall periods (ps < 
0.05).  
 
Figure 4. Directed information flow between the anterior insula and the PCC/precuneus 
and mPFC nodes of the default mode network (DMN), across verbal and spatial memory 
domains, measured using phase transfer entropy (PTE). (a) Experiment 1, VFR: The 
anterior insula showed higher directed information flow to the PCC/precuneus (AI à PCC/Pr) 
compared to the reverse direction (PCC/Pr à AI) (n=142) during both encoding and recall. The 
anterior insula also showed higher directed information flow to the mPFC (AI à mPFC) 
compared to the reverse direction (mPFC à AI) (n=112) during both memory encoding and 
recall. (b) Experiment 2, CATVFR: The anterior insula showed higher directed information 
flow to the PCC/precuneus (AI à PCC/Pr) compared to the reverse direction (PCC/Pr à AI) 
(n=46) during both encoding and recall. (c) Experiment 3, PALVCR: The anterior insula 
showed higher directed information flow to the PCC/precuneus (AI à PCC/Pr) compared to the 
reverse direction (PCC/Pr à AI) (n=10) during both encoding and recall. (d) Experiment 4, 
WMSM: The anterior insula showed higher directed information flow to PCC/precuneus (AI à 
PCC/Pr) than the reverse (PCC/Pr à AI) (n=91), during both spatial memory encoding and 
recall. The anterior insula also showed higher directed information flow to mPFC (AI à mPFC) 
than the reverse (mPFC à AI) (n=23), during both spatial memory encoding and recall. In each 
panel, the direction for which PTE is higher, is underlined. White dot in each violin plot 
represents median PTE across electrode pairs. *** p < 0.001, * p < 0.05.  
 
Figure 5. Directed information flow between the anterior insula and the dPPC and MFG 
nodes of the frontoparietal network (FPN), across verbal and spatial memory domains. (a) 
Experiment 1, VFR: The anterior insula showed higher directed information flow to the dorsal 
PPC (AI à dPPC) compared to the reverse direction (dPPC à AI) (n=586) during both 
encoding and recall. The anterior insula also showed higher directed information flow to the 
MFG (AI à MFG) compared to the reverse direction (MFG à AI) (n=642) during both memory 
encoding and recall. (b) Experiment 2, CATVFR: The anterior insula showed higher directed 
information flow to the dorsal PPC (AI à dPPC) compared to the reverse direction (dPPC à 
AI) (n=327) during both encoding and recall. (c) Experiment 3, PALVCR: The anterior insula 
showed higher directed information flow to the dorsal PPC (AI à dPPC) compared to the 
reverse direction (dPPC à AI) (n=242) during both encoding and recall. The anterior insula also 
showed higher directed information flow to the MFG (AI à MFG) compared to the reverse 
direction (MFG à AI) (n=362) during memory recall. (d) Experiment 4, WMSM: The anterior 
insula showed higher directed information flow to MFG (AI à MFG) than the reverse (MFG à 
AI) (n=177), during both spatial memory encoding and recall. In each panel, the direction for 
which PTE is higher, is underlined. *** p < 0.001, ** p < 0.01.  
 
Figure 6. The anterior insula is an outflow hub in its interactions with the DMN and FPN, 
during encoding and recall periods, and across memory experiments. In each panel, the net 
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direction of information flow between the AI and the DMN and FPN nodes are indicated by 
green arrows on the right. *** p < 0.001, ** p < 0.01, * p < 0.05.  
 
Figure 7. Schematic illustration of key findings related to the intracranial electrophysiology 
of the triple network model in human episodic memory. (a) High-gamma response: Our 
analysis of local neuronal activity revealed consistent suppression of high-gamma power in the 
PCC/precuneus compared to the AI during encoding periods across all four episodic memory 
experiments. We did not consistently observe any significant differences in high-gamma band 
power between AI and the mPFC node of the DMN or the dPPC and MFG nodes of the FPN 
during the encoding periods across the four episodic memory experiments. In contrast, we 
detected similar high-gamma band power in the PCC/precuneus relative to the AI during the 
recall periods. (b) Directed information flow: Despite variable patterns of local activation and 
suppression across DMN and FPN nodes during memory encoding and recall, we found stronger 
directed influence (denoted by green arrows, thickness of arrows denotes degree of replicability 
across experiments, see Table 1) by the AI on both the DMN as well as the FPN nodes than the 
reverse, across all four memory experiments, and during both encoding and recall periods.  
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Tables 
        
Table 1. Replicability of findings of directed interactions of the AI with the DMN and FPN 
nodes for different memory experiments during (a) Memory Encoding and (b) Memory 
Recall. The verbal free recall (VFR) task was considered the original dataset and the categorized 
verbal free recall (CATVFR), paired associates learning verbal cued recall (PALVCR), and 
water maze spatial memory (WMSM) tasks were considered replication datasets and Bayes 
factor (BF) for replication was calculated for pairwise tasks (verbal free recall vs. T, where T can 
be categorized verbal free recall, paired associates learning verbal cued recall, or water maze 
spatial memory task). Significant BF results (BF>3) are indicated in bold. AI: anterior insula, 
PCC: posterior cingulate cortex, Pr: precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal 
posterior parietal cortex, MFG: middle frontal gyrus.  
 
(a) Memory Encoding 
 
Finding Bayes Factor for 

VFR-CATVFR 
replication  

Bayes Factor for 
VFR-PALVCR 
replication  

Bayes Factor for 
VFR-WMSN 
replication  

AI à PCC/Pr > PCC/Pr à AI 9.31e+5 1.44e+4 1.68e+18 
AI à mPFC > mPFC à AI 4.10e+1 8.78e+0 5.34e+5 
AI à dPPC > dPPC à AI 3.95e+43 2.33e+26 3.25e+40 
AI à MFG > MFG à AI 1.49e+51 1.61e+33 2.35e+27 

 
 
(b) Memory Recall 
 
Finding Bayes Factor for 

VFR-CATVFR 
replication 

Bayes Factor for 
VFR-PALVCR 
replication 

Bayes Factor for 
VFR-WMSN 
replication 

AI à PCC/Pr > PCC/Pr à AI 1.30e+5 6.74e+0 2.54e+10 
AI à mPFC > mPFC à AI 2.02e+1 3.52e-5 1.32e+4 
AI à dPPC > dPPC à AI 7.04e+38 2.98e+45 4.51e+27 
AI à MFG > MFG à AI 1.74e+54 5.72e+52 6.90e+27 
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Methods 
 
UPENN-RAM iEEG recordings 
 
iEEG recordings from 249 patients shared by Kahana and colleagues at the University of 
Pennsylvania (UPENN) (obtained from the UPENN-RAM public data release) were used for 
analysis (Jacobs et al., 2016). Patients with pharmaco-resistant epilepsy underwent surgery for 
removal of their seizure onset zones. iEEG recordings of these patients were downloaded from a 
UPENN-RAM consortium hosted data sharing archive (URL: 
http://memory.psych.upenn.edu/RAM). Prior to data collection, research protocols and ethical 
guidelines were approved by the Institutional Review Board at the participating hospitals and 
informed consent was obtained from the participants and guardians (Jacobs et al., 2016). 
 
Details of all the recording sessions and data pre-processing procedures are described by Kahana 
and colleagues (Jacobs et al., 2016). Briefly, iEEG recordings were obtained using subdural grids 
and strips (contacts placed 10 mm apart) or depth electrodes (contacts spaced 5–10 mm apart) 
using recording systems at each clinical site. iEEG systems included DeltaMed XlTek (Natus), 
Grass Telefactor, and Nihon-Kohden EEG systems. Electrodes located in brain lesions or those 
which corresponded to seizure onset zones or had significant interictal spiking or had broken 
leads, were excluded from analysis.  
 
Anatomical localization of electrode placement was accomplished by co-registering the 
postoperative computed CTs with the postoperative MRIs using FSL (FMRIB (Functional MRI 
of the Brain) Software Library), BET (Brain Extraction Tool), and FLIRT (FMRIB Linear Image 
Registration Tool) software packages. Preoperative MRIs were used when postoperative MRIs 
were not available. The resulting contact locations were mapped to MNI space using an indirect 
stereotactic technique and OsiriX Imaging Software DICOM viewer package.  
 
We used the insula atlas by Faillenot and colleagues to demarcate the anterior insula (AI) 
(Faillenot et al., 2017), downloaded from http://brain-development.org/brain-atlases/adult-brain-
atlases/. This atlas is based on probabilistic analysis of the anatomy of the insula with 
demarcations of the AI based on three short dorsal gyri and the posterior insula (PI) which 
encompasses two long gyri. To visualize iEEG electrodes on the insula atlas, we used surface-
rendering code (GitHub: https://github.com/ludovicbellier/InsulaWM) provided by Llorens and 
colleagues (Llorens et al., 2023). We used the Brainnetome atlas (Fan et al., 2016) to demarcate 
the posterior cingulate cortex (PCC)/precuneus, the medial prefrontal cortex (mPFC), the dorsal 
posterior parietal cortex (dPPC), and the middle frontal gyrus (MFG). The dorsal anterior 
cingulate cortex node of the salience network was excluded from analysis due to lack of 
sufficient electrode placement. Out of 249 individuals, data from 177 individuals (aged from 16 
to 64, mean age 36.3 ± 11.5, 91 females) were used for subsequent analysis based on electrode 
placement in the AI and the PCC/precuneus, mPFC, dPPC, and MFG.  
 
Original sampling rates of iEEG signals were 500 Hz, 1000 Hz, 1024 Hz, and 1600 Hz. Hence, 
iEEG signals were downsampled to 500 Hz, if the original sampling rate was higher, for all 
subsequent analysis. The two major concerns when analyzing interactions between closely 
spaced intracranial electrodes are volume conduction and confounding interactions with the 
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reference electrode (Burke et al., 2013; Frauscher et al., 2018). Hence bipolar referencing was 
used to eliminate confounding artifacts and improve the signal-to-noise ratio of the neural 
signals, consistent with previous studies using UPENN-RAM iEEG data (Burke et al., 2013; 
Ezzyat et al., 2018). Signals recorded at individual electrodes were converted to a bipolar 
montage by computing the difference in signal between adjacent electrode pairs on each strip, 
grid, and depth electrode and the resulting bipolar signals were treated as new “virtual” 
electrodes originating from the midpoint between each contact pair, identical to procedures in 
previous studies using UPENN-RAM data (Solomon et al., 2019). Line noise (60 Hz) and its 
harmonics were removed from the bipolar signals using band-stop filters at 57-63 Hz, 117-123 
Hz, and 177-183 Hz. Finally, each bipolar signal was Z-normalized by removing mean and 
scaling by the standard deviation. For filtering, we used a fourth order two-way zero phase lag 
Butterworth filter throughout the analysis. iEEG signals were filtered in the broad frequency 
spectrum (0.5-80 Hz) as well as narrowband frequency spectra delta-theta (0.5-8 Hz), alpha (8-
12 Hz), beta (12-30 Hz), gamma (30-80 Hz), and high-gamma (80-160 Hz).  
 
Episodic memory experiments 
 
(a) Verbal free recall (VFR) task 
 
Patients performed multiple trials of a verbal free recall experiment, where they were presented 
with a list of words and subsequently asked to recall as many as possible from the original list 
(Figure 1a) (Solomon et al., 2017; Solomon et al., 2019). The task consisted of three periods: 
encoding, delay, and recall. During encoding, a list of 12 words was visually presented for ~30 
sec. Words were selected at random, without replacement, from a pool of high frequency English 
nouns (http://memory.psych.upenn.edu/Word_Pools). Each word was presented for a duration of 
1600 msec, followed by an inter-stimulus interval of 800 to 1200 msec. After the encoding 
period, participants engaged in a math distractor task (the delay period in Figure 1a), where they 
were instructed to solve a series of arithmetic problems in the form of a + b + c = ??, where a, b, 
and c were randomly selected integers ranging from 1 to 9. Mean accuracy across patients in the 
math task was 90.87% ± 7.22%, indicating that participants performed the math task with a high 
level of accuracy, similar to our previous studies (Das & Menon, 2022a). After a 20 sec post-
encoding delay, participants were instructed to recall as many words as possible during the 30 
sec recall period. Average recall accuracy across patients was 25.0% ± 10.6%, similar to prior 
studies of verbal episodic memory retrieval in neurosurgical patients (Burke et al., 2014). We 
analyzed iEEG epochs from the encoding and recall periods of the verbal free recall task. For the 
recall periods, iEEG recordings 1600 msec prior to the vocal onset of each word were analyzed 
(Solomon et al., 2019). Data from each trial was analyzed separately and specific measures were 
averaged across trials.  
 
(b) Categorized verbal free recall (CATVFR) task 
 
This task was very similar to the verbal free recall task. Here, patients performed multiple trials 
of a categorized free recall experiment, where they were presented with a list of words with 
consecutive pairs of words from a specific category (for example, JEANS-COAT, GRAPE-
PEACH, etc.) and subsequently asked to recall as many as possible from the original list (Figure 
1b) (Qasim et al., 2023). Similar to the uncategorized verbal free recall task, this task also 
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consisted of three periods: encoding, delay, and recall. During encoding, a list of 12 words was 
visually presented for ~30 sec. Semantic categories were chosen using Amazon Mechanical 
Turk. Pairs of words from the same semantic category were never presented consecutively. Each 
word was presented for a duration of 1600 msec, followed by an inter-stimulus interval of 750 to 
1000 msec. After a 20 sec post-encoding delay (math) similar to the uncategorized verbal free 
recall task, participants were instructed to recall as many words as possible during the 30 sec 
recall period. Average accuracy across patients in the math task was 89.46% ± 9.90%. Average 
recall accuracy across patients was 29.6% ± 13.4%. Analysis of iEEG epochs from the encoding 
and recall periods of the categorized free recall task was same as the uncategorized verbal free 
recall task.  
 
(c) Paired associates learning verbal cued recall (PALVCR) task 
 
Patients performed multiple trials of a paired associates learning verbal cued recall experiment, 
where they were presented with a list of word-pairs and subsequently asked to recall based on the 
given word-cue (Figure 1c). Similar to the uncategorized verbal free recall task, this task also 
consisted of three periods: encoding, delay, and recall. During encoding, a list of 6 word-pairs 
was visually presented for ~36 sec. Similar to the uncategorized verbal free recall task, words 
were selected at random, without replacement, from a pool of high frequency English nouns 
(http://memory.psych.upenn.edu/Word_Pools). Each word was presented for a duration of 4000 
msec, followed by an inter-stimulus interval of 1750 to 2000 msec. After a 20 sec post-encoding 
delay (math) similar to the uncategorized verbal free recall task, participants were shown a 
specific word-cue for a duration of 4000 msec and asked to verbally recall the cued word from 
memory. Each word presentation during recall was followed by an inter-stimulus interval of 
1750 to 2000 msec and the recall period lasted for ~36 sec. Average accuracy across patients in 
the math task was 93.91% ± 4.66%. Average recall accuracy across patients was 33.8% ± 25.9%. 
For encoding, iEEG recordings corresponding to the 4000 msec encoding period of the task were 
analyzed. For recall, iEEG recordings 1600 msec prior to the vocal onset of each word were 
analyzed (Solomon et al., 2019). Data from each trial was analyzed separately and specific 
measures were averaged across trials.  
 
(d) Water maze spatial memory (WMSM) task 
 
Patients performed multiple trials of a spatial memory experiment in a virtual navigation 
paradigm (Goyal et al., 2018; Jacobs et al., 2016; Lee et al., 2018) similar to the Morris water 
maze (Morris, 1984). The environment was rectangular (1.8:1 aspect ratio), and was surrounded 
by a continuous boundary (Figure 1d). There were four distal visual cues (landmarks), one 
centered on each side of the rectangle, to aid with orienting. Each trial (96 trials per session, 1–3 
sessions per subject) started with two 5 sec encoding periods, during which subjects were driven 
to an object from a random starting location. At the beginning of an encoding period, the object 
appeared and, over the course of 5 sec, the subject was automatically driven directly toward it. 
The 5 sec period consisted of three intervals: first, the subject was rotated toward the object (1 
sec), second, the subject was driven toward the object (3 sec), and, finally, the subject paused 
while at the object location (1 sec). After a 5 sec delay with a blank screen, the same process was 
repeated from a different starting location. After both encoding periods for each item, there was a 
5 sec pause followed by the recall period. The subject was placed in the environment at a random 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.02.28.582593doi: bioRxiv preprint 

http://memory.psych.upenn.edu/Word_Pools
https://doi.org/10.1101/2024.02.28.582593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

starting location with the object hidden and then asked to freely navigate using a joystick to the 
location where they thought the object was located. When they reached their chosen location, 
they pressed a button to record their response. They then received feedback on their performance 
via an overhead view of the environment showing the actual and reported object locations. 
Average recall accuracy across patients was 48.1% ± 5.6%. 
 
We analyzed the 5 sec iEEG epochs corresponding to the entire encoding and recall periods of 
the task as has been done previously (Goyal et al., 2018; Jacobs et al., 2016; Lee et al., 2018). 
Data from each trial was analyzed separately and specific measures were averaged across trials, 
similar to the verbal tasks.  
 
Out of total 177 participants, 51% (91 out of 177) of participants participated in at least 2 
experiments, 17% (30 out of 177) of participants participated in at least 3 experiments, and 6% 
(10 out of 177) of participants participated in all four experiments.   
 
iEEG analysis of high-gamma power 
 
We first filtered the signals in the high-gamma (80-160 Hz) frequency band (Canolty et al., 
2006; Helfrich & Knight, 2016; Kai J. Miller, Weaver, & Ojemann, 2009) using sequential band-
pass filters in increments of 10 Hz (i.e., 80–90 Hz, 90–100 Hz, etc.), using a fourth order two-
way zero phase lag Butterworth filter. We used these narrowband filtering processing steps to 
correct for the 1/f decay of power. We then calculated the amplitude (envelope) of each narrow 
band signal by taking the absolute value of the analytic signal obtained from the Hilbert 
transform (Foster, Rangarajan, Shirer, & Parvizi, 2015). Each narrow band amplitude time series was 
then normalized to its own mean amplitude, expressed as a percentage of the mean. Finally, we 
calculated the mean of the normalized narrow band amplitude time series, producing a single 
amplitude time series. Signals were then smoothed using 0.2s windows with 90% overlap (Kwon 
et al., 2021) and normalized with respect to 0.2s pre-stimulus periods by subtracting the pre-
stimulus baseline from the post-stimulus signal.     
 
iEEG analysis of phase transfer entropy (PTE)  
 
Phase transfer entropy (PTE) is a nonlinear measure of the directionality of information flow 
between time-series and can be applied to nonstationary time-series (Das & Menon, 2021, 
2022b; Lobier et al., 2014). Note that information flow described here relates to signaling 
between brain areas and does not necessarily reflect the representation or coding of behaviorally 
relevant variables per se. The PTE measure is in contrast to the Granger causality measure which 
can be applied only to stationary time-series (Barnett & Seth, 2014). We first carried out a 
stationarity test of the iEEG recordings (unit root test for stationarity (Barnett & Seth, 2014)) and 
found that the spectral radius of the autoregressive model is very close to one, indicating that the 
iEEG time-series is nonstationary. This precluded the applicability of the Granger causality 
analysis in our study.  
 
Given two time-series  and , where , instantaneous phases were first 

extracted using the Hilbert transform. Let  and  , where , denote the 

{ }ix { }iy 1,2,...,i M=

{ }pix { }piy 1,2,...,i M=
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corresponding phase time-series. If the uncertainty of the target signal at delay  is 

quantified using Shannon entropy, then the PTE from driver signal  to target signal  can 
be given by 

                                 ,                                           (i) 

 
where the probabilities can be calculated by building histograms of occurrences of singles, pairs, 
or triplets of instantaneous phase estimates from the phase time-series (Hillebrand et al., 2016). 
For our analysis, the number of bins in the histograms was set as  and delay  
was set as , where  is average standard deviation of the phase time-series  and 

 and  is the number of times the phase changes sign across time and channels (Hillebrand 
et al., 2016). PTE has been shown to be robust against the choice of the delay  and the number 
of bins for forming the histograms (Hillebrand et al., 2016). In our analysis, PTE was calculated 
for the entire encoding and recall periods for each trial and then averaged across trials.  

Net outflow was calculated as the difference between the total outgoing information and total 
incoming information, that is, net outflow = PTE(out) − PTE(in). For example, for calculation of 
PTE(out) and PTE(in) for the AI electrodes, electrodes in the PCC/precuneus, mPFC, dPPC, and 
MFG were considered, that is, PTE(out) was calculated as the net PTE from AI electrodes to the 
PCC/precuneus, mPFC, dPPC, and MFG electrodes, and PTE(in) was calculated as the net PTE 
from the PCC/precuneus, mPFC, dPPC, and MFG electrodes to AI electrodes. Net outflow for 
the PCC/precuneus, mPFC, dPPC, and MFG electrodes were calculated similarly.  

iEEG analysis of phase locking value (PLV) and phase synchronization  
 
We used phase locking value (PLV) to compute phase synchronization between two time-series 
(Lachaux, Rodriguez, Martinerie, & Varela, 1999). We first calculated the instantaneous phases 
of the two signals by using the analytical signal approach based on the Hilbert transform (Bruns, 
2004). Given time-series , its complex-valued analytical signal  can be 
computed as 
 
                                            ,                                                      (ii) 
 
where  denotes the square root of minus one,  is the Hilbert transform of , and  and 

 are the instantaneous amplitude and instantaneous phase respectively and can be given by 
 

                                and  .                                     (iii) 

 
The Hilbert transform of  was computed as 
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                                                     ,                                                          (iv) 

 
where  denotes the Cauchy principal value. MATLAB function “hilbert” was used to 
calculate the Hilbert transform in our analysis. Given two time-series  and , where 

, the PLV (zero-lag) can be computed as  
 
                                                   ,                                                        (v) 

 
where  is the instantaneous phase for time-series ,  denotes the absolute value 

operator,  denotes the expectation operator with respect to time , and denotes the square 
root of minus one. PLVs were then averaged across trials to estimate the final PLV for each pair 
of electrodes.  
 
Statistical analysis 
 
Statistical analysis was conducted using mixed effects analysis with the lmerTest package 
(Kuznetsova, Brockhoff, & Christensen, 2017) implemented in R software (version 4.0.2, R 
Foundation for Statistical Computing). Because PTE data were not normally distributed, we used 
BestNormalize (Peterson & Cavanaugh, 2018) which contains a suite of transformation-
estimating functions that can be used to optimally normalize data. The resulting normally 
distributed data were subjected to mixed effects analysis with the following model: PTE ~ 
Condition + (1|Subject), where Condition models the fixed effects (condition differences) and 
(1|Subject) models the random repeated measurements within the same participant, similar to 
prior iEEG studies (Das & Menon, 2021; Hoy, Steiner, & Knight, 2021; Salamone et al., 2021). 
Before running the mixed-effects model, PTE was first averaged across trials for each channel 
pair. Analysis of variance (ANOVA) was used to test the significance of findings with FDR-
corrections for multiple comparisons (p<0.05). Linear mixed effects models were run for 
encoding and recall periods separately. Similar mixed effects statistical analysis procedures were 
used for comparison of high-gamma power across task conditions, where the mixed effects 
analysis was run on each of the 0.2s windows.  
 
For effect size estimation, we used Cohen’s d statistics for pairwise comparisons. We used the 
lme.dscore() function in the EMAtools package in R for estimating Cohen’s d.  
 
Bayesian replication analysis  
 
We used replication Bayes factor (Ly et al., 2019; Verhagen & Wagenmakers, 2014) analysis to 
estimate the degree of replicability for the direction of information flow for each frequency and 
task condition and across task domains. Analysis was implemented in R software using the 
BayesFactor package (Rouder, Speckman, Sun, Morey, & Iverson, 2009). Because PTE data 
were not normally distributed, as previously, we used BestNormalize (Peterson & Cavanaugh, 
2018) to optimally normalize data. We calculated the replication Bayes factor for pairwise 
experiments. We compared the Bayes factor of the joint model PTE(task1+task2) ~ Condition + 
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(1|Subject) with the Bayes factor (BF) of individual model as PTE(task1) ~ Condition + 
(1|Subject), where task1 denotes the verbal free recall (original) task and task2 denotes the 
categorized verbal free recall, paired associates learning verbal cued recall, or water maze spatial 
memory (replication) conditions. We calculated the ratio BF(task1+task2)/BF(task1), which was 
used to quantify the degree of replicability. We determined whether the degree of replicability 
was higher than 3 as Bayes factor of at least 3 indicates evidence for replicability (Jeffreys, 
1998). A Bayes factor of at least 100 is considered as “decisive” for degree of replication 
(Jeffreys, 1998). Same analysis procedures were used to estimate the degree of replicability for 
high-gamma power comparison of DMN and FPN electrodes with the AI electrodes, across 
experiments.  
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Figure 2. 

 

(a) Experiment 1 ⏤ VFR

(d) Experiment 4 ⏤ WMSM

(c) Experiment 3 ⏤ PALVCR

(b) Experiment 2 ⏤ CATVFR
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure S1. iEEG evoked response for AI (red) and mPFC (cyan) in the four experiments. 
Green horizontal lines denote time periods where high-gamma power between the AI and mPFC 
were significantly different from each other. Red and cyan horizontal lines denote increase of 
high-gamma power compared to the resting baseline in the AI and mPFC respectively.   
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Figure S2. iEEG evoked response for AI (red) and dPPC (purple) in the four experiments. 
Green horizontal lines denote time periods where high-gamma power between the AI and dPPC 
were significantly different from each other. Red and purple horizontal lines denote increase of 
high-gamma power compared to the resting baseline in the AI and dPPC respectively.   
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.02.28.582593doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Figure S3. iEEG evoked response for AI (red) and MFG (orange) in the four experiments. 
Green horizontal lines denote time periods where high-gamma power between the AI and MFG 
were significantly different from each other. Red and orange horizontal lines denote increase of 
high-gamma power compared to the resting baseline in the AI and MFG respectively.   
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Figure S4. Directed information flow from the IFG to the DMN nodes and the reverse, in 
broadband frequencies (0.5-80 Hz). *** p < 0.001, ** p < 0.01, * p < 0.05.   
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 6 

Figure S5. Directed information flow from the IFG to the FPN nodes and the reverse, in 
broadband frequencies (0.5-80 Hz). *** p < 0.001, ** p < 0.01, * p < 0.05.   
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Figure S6. Comparison of net outflow for AI and IFG, in broadband frequencies (0.5-80 
Hz). *** p < 0.001.  
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 8 

Figure S7. Differential directed information flow from the anterior insula to the DMN 
nodes during task versus resting-state, in broadband frequencies (0.5-80 Hz). *** p < 0.001, 
** p < 0.01, * p < 0.05.   
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 9 

Figure S8. Differential directed information flow from the anterior insula to the FPN nodes 
during task versus resting-state, in broadband frequencies (0.5-80 Hz). *** p < 0.001, ** p < 
0.01, * p < 0.05.   
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Figure S9. Comparison of net outflow for task versus resting state in AI, in broadband 
frequencies (0.5-80 Hz). *** p < 0.001, * p < 0.05.  
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Figure S10. Directed information flow from the anterior insula to the DMN nodes during 
successfully (S) compared to unsuccessfully (U) recalled trials, in broadband frequencies 
(0.5-80 Hz).   
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Figure S11. Directed information flow from the anterior insula to the FPN nodes during 
successfully (S) compared to unsuccessfully (U) recalled trials, in broadband frequencies 
(0.5-80 Hz).   
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Figure S12. iEEG evoked response for PCC/precuneus (blue) and dPPC (purple) in the 
four experiments. Green horizontal lines denote time periods where high-gamma power 
between the PCC/precuneus and dPPC were significantly different from each other.  
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Figure S13. iEEG evoked response for PCC/precuneus (blue) and MFG (orange) in the 
four experiments. Green horizontal lines denote time periods where high-gamma power 
between the PCC/precuneus and MFG were significantly different from each other.  
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     Supplementary Results 
 
Directed information flow from the AI to the DMN during encoding and recall in the 
CATVFR task 
 
Encoding Directed information flow from the AI to the PCC/precuneus was higher than the 
reverse, during memory encoding (F(1, 84) = 36.18, p<0.001, Cohen's d = 1.32) (Figure 4b).  
 
Recall Directed information flow from the AI to the PCC/precuneus (F(1, 83) = 29.54, p<0.001, 
Cohen's d = 1.19) was higher, than the reverse, during memory recall (Figure 4b).  
 
These results demonstrate that the AI has strong directed information flow to the PCC/precuneus 
node of the DMN during both the encoding and recall phases of the CATVFR episodic memory 
task.  
 
Directed information flow from the AI to the DMN during encoding and recall in the 
PALVCR task 
 
Encoding Directed information flow from the AI to the PCC/precuneus (F(1, 17) = 22.19, 
p<0.001, Cohen's d = 2.28) was higher, than the reverse (Figure 4c).  
 
Recall Directed information flow from the AI to the PCC/precuneus was higher, than the reverse 
(F(1, 17) = 6.45, p<0.05, Cohen's d = 1.23) (Figure 4c).  
 
These results demonstrate that the AI has stronger directed information flow to the 
PCC/precuneus node of the DMN during both the encoding and recall phases of the PALVCR 
episodic memory task.   
 
Directed information flow from the AI to the DMN during encoding and recall in the WMSM 
task 
 
Encoding Directed information flow from the AI to the PCC/precuneus (F(1, 176) = 51.14, 
p<0.001, Cohen's d = 1.08) and mPFC (F(1, 41) = 44.53, p<0.001, Cohen's d = 2.08) were 
higher, than the reverse (Figure 4d).  
 
Recall Directed information flow from the AI to the PCC/precuneus (F(1, 177) = 36.86, p<0.001, 
Cohen's d = 0.91) and the mPFC (F(1, 41) = 39.62, p<0.001, Cohen's d = 1.96) were also higher, 
than the reverse (Figure 4d).  
 
These results demonstrate that the AI has stronger directed information flow to the 
PCC/precuneus and mPFC nodes of the DMN during both the encoding and recall phases of the 
WMSM task.  
 
Directed information flow from AI to FPN nodes in the CATVFR task 
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We next examined directed information flow between the AI and FPN nodes during the 
categorized verbal free recall task.  
 
Encoding Directed information flow from the AI to the dPPC was higher, than the reverse (F(1, 
639) = 27.16, p<0.001, Cohen's d = 0.41) (Figure 5b).  
 
Recall Directed information flow from the AI to the dPPC was higher, than the reverse (F(1, 
639) = 20.48, p<0.001, Cohen's d = 0.36) (Figure 5b).  
 
These results demonstrate that the AI has stronger directed information flow to the dPPC node of 
the FPN during both the encoding and recall phases of the CATVFR episodic memory task.   
 
Directed information flow from AI to FPN nodes in the PALVCR task 
 
We next examined directed information flow between the AI and FPN nodes during the paired 
associates learning verbal cued recall task.  
 
Encoding Directed information flow from the AI to the dPPC (F(1, 476) = 38.25, p<0.001, 
Cohen's d = 0.57) was higher, than the reverse (Figure 5c).  
 
Recall Directed information flow from the AI to the dPPC (F(1, 475) = 60.09, p<0.001, Cohen's 
d = 0.71) and MFG (F(1, 709) = 9.90, p<0.01, Cohen's d = 0.24) were higher, than the reverse 
(Figure 5c).  
 
These results demonstrate that the AI has stronger directed information flow to the dPPC node of 
the FPN during encoding and both dPPC and MFG nodes of the FPN during the recall phase of 
the PALVCR episodic memory task.  
 
Directed information flow from the AI to FPN nodes in the WMSM task 
 
Encoding Directed information flow from the AI to the MFG (F(1, 343) = 74.38, p<0.001, 
Cohen's d = 0.93) was higher, than the reverse (Figure 5d).  
 
Recall Directed information flow from the AI to the MFG (F(1, 344) = 102.18, p<0.001, Cohen's 
d = 1.09) was higher, than the reverse (Figure 5d).  
 
These results demonstrate that the AI has stronger directed information flow to the MFG node of 
the FPN during both the encoding and recall phases of the WMSM task.  
 
Outflow hub during encoding and recall in the CATVFR task 
 
Encoding Net outflow from the AI is positive and higher than both PCC/precuneus (F(1, 2023) = 
59.97, p<0.001, Cohen's d = 0.34) and mPFC (F(1, 2676) = 23.16, p<0.001, Cohen's d = 0.19) 
during encoding (Figure 6b).  
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We also found that the net outflow from the AI is higher than the MFG during encoding (F(1, 
3974) = 11.61, p<0.001, Cohen's d = 0.11) (Figure 6b). However, the net outflow from the AI 
was lower than the dPPC during encoding (F(1, 3535) = 6.04, p<0.05, Cohen's d = 0.08) (Figure 
6b).  
 
Recall Net outflow from the AI is positive and higher than both PCC/precuneus (F(1, 1827) = 
33.55, p<0.001, Cohen's d = 0.27) and mPFC (F(1, 2656) = 29.81, p<0.001, Cohen's d = 0.21) 
during the recall phase of the categorized verbal free recall task (Figure 6b).  
 
We also found that the net outflow from the AI is higher than the MFG during recall (F(1, 3827) 
= 6.87, p<0.01, Cohen's d = 0.08) (Figure 6b).  
 
Outflow hub during encoding and recall in the PALVCR task 
 
Encoding We found similar results for the paired associates learning verbal cued recall task 
where, net outflow from the AI is positive and higher than both PCC/precuneus (F(1, 736) = 
9.84, p<0.01, Cohen's d = 0.23) and mPFC (F(1, 1079) = 21.93, p<0.001, Cohen's d = 0.29) 
during memory encoding (Figure 6c).  
 
We also found that the net outflow from the AI is higher than the MFG during encoding (F(1, 
1779) = 14.45, p<0.001, Cohen's d = 0.18) (Figure 6c). However, the net outflow from the AI is 
lower than the dPPC during encoding (F(1, 1261) = 8.72, p<0.01, Cohen's d = 0.17) (Figure 6c).  
 
Recall Net outflow from the AI is positive and higher than both PCC/precuneus (F(1, 530) = 
10.96, p<0.001, Cohen's d = 0.29) and mPFC (F(1, 909) = 8.42, p<0.01, Cohen's d = 0.19) 
during memory recall (Figure 6c).  
 
Net outflow from the AI is higher than both the dPPC (F(1, 1041) = 31.15, p<0.001, Cohen's d = 
0.35) and MFG (F(1, 736) = 70.08, p<0.001, Cohen's d = 0.62) nodes of the FPN during the 
recall phase of the paired associates learning verbal cued recall task (Figure 6c).  
 
Together, these results demonstrate that the AI is an outflow hub in its interactions with the 
PCC/precuneus and mPFC nodes of the DMN and the MFG node of the FPN, during both verbal 
memory encoding and recall.  
 
Outflow hub during encoding and recall in the WMSM task 
 
We next repeated our hub analysis during the encoding and recall phases of the water maze 
spatial memory task. 
 
Encoding We found that net outflow from the AI is positive and higher than both the 
PCC/precuneus (F(1, 1669) = 168.5, p<0.001, Cohen's d = 0.64) and mPFC (F(1, 1278) = 9.91, 
p<0.01, Cohen's d = 0.18) nodes of the DMN during encoding (Figure 6d).  
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We also found that net outflow from the AI is higher than both the dPPC (F(1, 2501) = 7.10, 
p<0.01, Cohen's d = 0.11) and MFG (F(1, 1977) = 73.49, p<0.001, Cohen's d = 0.39) nodes of 
the FPN during encoding (Figure 6d).  
 
Recall Net outflow from the AI is positive and higher than both the PCC/precuneus (F(1, 1672) 
= 166.95, p<0.001, Cohen's d = 0.63) and mPFC (F(1, 1270) = 12.75, p<0.001, Cohen's d = 
0.20) nodes of the DMN during recall (Figure 6d).  
 
Net outflow from the AI is also higher than the MFG (F(1, 1985) = 90.81, p<0.001, Cohen's d = 
0.43) node of the FPN during recall (Figure 6d).  
 
Together, these results demonstrate that the AI is an outflow hub in its interactions with the 
PCC/precuneus and mPFC nodes of the DMN and also the dPPC and MFG nodes of the FPN, 
during both spatial memory encoding and recall.  
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Supplementary Tables 
 
Table S1. Participant demographic information (total 177 participants).  
 
Participant ID Gender Age  
001 F 48 
002 F 49 
003 F 39 
006 F 20 
010 F 30 
014 F 47 
015 F 54 
018 M 47 
019 F 34 
020 F 48 
021 M 38 
022 M 24 
023 M 32 
024 F 36 
025 F 19 
026 F 24 
027 M 48 
028 F 27 
029 F 33 
030 M 23 
032 F 19 
033 F 31 
034 F 29 
035 F 45 
036 M 49 
039 F 28 
041 M 34 
042 F 28 
044 M 58 
045 M 51 
049 F 52 
050 M 20 
051 F 24 
052 F 19 
053 F 39 
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054 M 23 
056 M 34 
057 M 53 
059 F 44 
060 F 36 
062 F 23 
063 M 23 
064 M 56 
065 F 34 
066 M 39 
067 F 45 
068 F 39 
069 M 26 
070 F 40 
074 M 24 
075 M 50 
076 M 29 
077 F 47 
078 F 22 
080 F 43 
081 F 33 
082 M 39 
084 M 25 
087 M 51 
089 M 36 
090 F 52 
091 M 28 
092 M 44 
093 M 24 
094 M 47 
095 F 35 
097 M 34 
098 F 38 
100 F 43 
101 F 26 
102 M 34 
105 M 25 
106 M 26 
107 M 25 
108 F 23 
109 F 43 
111 M 20 
114 F 31 
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115 M 47 
118 M 33 
119 F 26 
120 F 33 
121 M 34 
123 F 29 
124 F 40 
125 F 44 
127 F 40 
128 M 26 
129 F 34 
130 M 57 
131 M 24 
134 M 64 
135 M 47 
136 F 16 
137 F 21 
138 M 41 
141 F 44 
142 F 43 
144 M 53 
147 M 47 
148 F 59 
149 F 28 
150 F 49 
151 M 36 
153 M 38 
155 M 37 
156 M 27 
157 M 22 
158 F 45 
159 F 42 
161 F 53 
162 F 30 
163 M 45 
164 M 37 
166 M 38 
167 M 33 
168 M 24 
171 M 36 
172 F 22 
173 F 18 
174 M 29 
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175 M 34 
176 F 41 
177 F 23 
178 M 40 
180 F 21 
181 M 22 
184 M 42 
186 M 27 
187 F 51 
189 M 22 
190 F 57 
193 M 37 
195 M 44 
196 M 18 
200 M 25 
202 F 29 
203 F 36 
204 F 25 
207 F 39 
212 M 46 
221 M 57 
222 F 20 
223 F 42 
227 M 32 
228 F 58 
230 F 56 
232 M 27 
234 M 25 
236 F 51 
238 M 27 
239 M 27 
240 F 37 
245 M 30 
247 F 61 
251 M 31 
260 F 57 
263 M 30 
264 F 52 
268 F 32 
271 M 37 
274 F 44 
275 M 41 
276 M 28 
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279 F 57 
283 F 29 
284 F 32 
286 F 57 
292 F 39 
297 M 24 
298 F 24 
299 M 43 
302 M 48 
303 F 62 
304 F 33 
310 M 20 
312 M 21 
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Table S2a. Number of electrode pairs used in phase transfer entropy (PTE) analysis in the 
verbal free recall task. AI: anterior insula, PCC: posterior cingulate cortex, Pr: precuneus, 
mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal cortex, MFG: middle frontal 
gyrus. 
 
 
Network pair Number of 

electrode 
pairs (n) 

Number of 
participants 

Participant IDs (Gender/Age) 

AI-PCC/Pr 142 18 030 (M/23), 049 (F/52), 054 (M/23), 
057 (M/53), 062 (F/23), 114 (F/31), 
115 (M/47), 134 (M/64), 153 (M/38), 
158 (F/45), 168 (M/24), 193 (M/37), 
196 (M/18), 204 (F/25), 236 (F/51), 
240 (F/37), 286 (F/57), 299 (M/43) 

AI-mPFC 112 20 026 (F/24), 027 (M/48), 049 (F/52), 
057 (M/53), 062 (F/23), 114 (F/31),  
115 (M/47), 123 (F/29), 153 (M/38), 
163 (M/45), 168 (M/24), 189 (M/22), 
193 (M/37), 196 (M/18), 204 (F/25), 
223 (F/42), 228 (F/58), 247 (F/61), 
274 (F/44), 299 (M/43)  

AI-dPPC 586 28 030 (M/23), 032 (F/19), 033 (F/31), 
049 (F/52), 054 (M/23), 057 (M/53), 
062 (F/23), 065 (F/34), 080 (F/43), 
114 (F/31), 115 (M/47), 128 (M/26), 
134 (M/64), 153 (M/38), 158 (F/45), 
163 (M/45), 168 (M/24), 173 (F/18), 
189 (M/22), 193 (M/37), 196 (M/18), 
204 (F/25), 232 (M/27), 236 (F/51), 
240 (F/37), 247 (F/61), 286 (F/57), 
299 (M/43) 

AI-MFG 642 36 026 (F/24), 030 (M/23), 032 (F/19), 
033 (F/31), 049 (F/52), 054 (M/23), 
057 (M/53), 062 (F/23), 063 (M/23), 
065 (F/34), 114 (F/31), 115 (M/47), 
153 (M/38), 158 (F/45), 163 (M/45), 
166 (M/38), 168 (M/24), 178 (M/40), 
189 (M/22), 193 (M/37), 196 (M/18), 
204 (F/25), 207 (F/39), 223 (F/42), 
228 (F/58), 230 (F/56), 232 (M/27), 
240 (F/37), 247 (F/61), 264 (F/52), 
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274 (F/44), 283 (F/29), 286 (F/57), 
298 (F/24), 299 (M/43), 310 (M/20) 

 
 
Table S2b. Number of electrode pairs used in phase transfer entropy (PTE) analysis in the 
categorized verbal free recall task. AI: anterior insula, PCC: posterior cingulate cortex, Pr: 
precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal cortex, MFG: middle 
frontal gyrus. 
 
Network pair Number of 

electrode 
pairs (n) 

Number of 
participants 

Participant IDs (Gender/Age) 

AI-PCC/Pr 46 7 114 (F/31), 141 (F/44), 158 (F/45), 
204 (F/25), 240 (F/37), 245 (M/30), 
286 (F/57) 

AI-mPFC 64 12 026 (F/24), 114 (F/31), 141 (F/44), 
163 (M/45), 189 (M/22), 204 (F/25), 
228 (F/58), 245 (M/30), 247 (F/61), 
271 (M/37), 274 (F/44), 303 (F/62) 

AI-dPPC 327 14 028 (F/27), 032 (F/19), 065 (F/34), 
114 (F/31), 141 (F/44), 158 (F/45), 
163 (M/45), 189 (M/22), 204 (F/25), 
240 (F/37), 245 (M/30), 247 (F/61), 
271 (M/37), 286 (F/57)  

AI-MFG 462 22 026 (F/24), 032 (F/19), 065 (F/34), 
114 (F/31), 141 (F/44), 158 (F/45), 
163 (M/45), 178 (M/40), 189 (M/22), 
204 (F/25), 207 (F/39), 228 (F/58), 
230 (F/56), 240 (F/37), 245 (M/30), 
247 (F/61), 264 (F/52), 271 (M/37), 
274 (F/44), 286 (F/57), 303 (F/62), 
310 (M/20) 

 
 
Table S2c. Number of electrode pairs used in phase transfer entropy (PTE) analysis in the 
paired associates learning verbal cued recall task. AI: anterior insula, PCC: posterior 
cingulate cortex, Pr: precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal 
cortex, MFG: middle frontal gyrus. 
 
Network pair Number of 

electrode 
pairs (n) 

Number of 
participants 

Participant IDs (Gender/Age) 

AI-PCC/Pr 10 2 141 (F/44), 196 (M/18) 
AI-mPFC 36 5 141 (F/44), 196 (M/18), 223 (F/42), 

228 (F/58), 303 (F/62)   
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AI-dPPC 242 9 028 (F/27), 065 (F/34), 090 (F/52), 
091 (M/28), 141 (F/44), 196 (M/18), 
232 (M/27), 238 (M/27), 312 (M/21)   

AI-MFG 362 14 065 (F/34), 090 (F/52), 091 (M/28), 
141 (F/44), 196 (M/18), 207 (F/39), 
223 (F/42), 228 (F/58), 230 (F/56), 
232 (M/27), 238 (M/27), 283 (F/29), 
303 (F/62), 312 (M/21)   

 
 
Table S2d. Number of electrode pairs used in phase transfer entropy (PTE) analysis in the 
water maze spatial memory task. AI: anterior insula, PCC: posterior cingulate cortex, Pr: 
precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal cortex, MFG: middle 
frontal gyrus. 
 
Network pair Number of 

electrode 
pairs (n) 

Number of 
participants 

Participant IDs (Gender/Age) 

AI-PCC/Pr 91 6 030 (M/23), 049 (F/52), 054 (M/23), 
062 (F/23), 114 (F/31), 124 (F/40) 

AI-mPFC 23 5 026 (F/24), 049 (F/52), 052 (F/19), 
062 (F/23), 114 (F/31) 

AI-dPPC 302 10 030 (M/23), 032 (F/19), 033 (F/31), 
049 (F/52), 052 (F/19), 054 (M/23), 
062 (F/23), 065 (F/34), 114 (F/31), 
124 (F/40) 

AI-MFG 177 10 026 (F/24), 030 (M/23), 032 (F/19), 
033 (F/31), 049 (F/52), 052 (F/19), 
054 (M/23), 062 (F/23), 065 (F/34), 
114 (F/31)  

 
 
Table S3a. Number of electrodes in each node used in high-gamma power analysis in the 
verbal free recall task. AI: anterior insula, PCC: posterior cingulate cortex, Pr: precuneus, 
mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal cortex, MFG: middle frontal 
gyrus.  
 
Brain regions Number of 

electrodes (n) 
Number of 
participants 

Participant IDs (Gender/Age) 

AI 148 44 026 (F/24), 027 (M/48), 030 (M/23), 
032 (F/19), 033 (F/31), 049 (F/52), 
054 (M/23), 057 (M/53), 062 (F/23), 
063 (M/23), 065 (F/34), 080 (F/43), 
114 (F/31), 115 (M/47), 123 (F/29), 
128 (M/26), 134 (M/64), 150 (F/49), 
153 (M/38), 158 (F/45), 163 (M/45), 
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166 (M/38), 168 (M/24), 173 (F/18), 
178 (M/40), 189 (M/22), 193 (M/37), 
196 (M/18), 204 (F/25), 207 (F/39), 
223 (F/42), 228 (F/58), 230 (F/56), 
232 (M/27), 236 (F/51), 240 (F/37), 
247 (F/61), 264 (F/52), 274 (F/44), 
283 (F/29), 286 (F/57), 298 (F/24), 
299 (M/43), 310 (M/20) 

PCC/Pr 143 47 006 (F/20), 010 (F/30), 015 (F/54), 
018 (M/47), 023 (M/32), 030 (M/23), 
034 (F/29), 039 (F/28), 044 (M/58), 
049 (F/52), 051 (F/24), 054 (M/23), 
057 (M/53), 062 (F/23), 070 (F/40), 
074 (M/24), 076 (M/29), 077 (F/47), 
081 (F/33), 084 (M/25), 094 (M/47), 
101 (F/26), 105 (M/25), 106 (M/26), 
114 (F/31), 115 (M/47), 134 (M/64), 
135 (M/47), 138 (M/41), 153 (M/38), 
155 (M/37), 158 (F/45), 162 (F/30), 
168 (M/24), 175 (M/34), 186 (M/27), 
193 (M/37), 196 (M/18), 203 (F/36), 
204 (F/25), 236 (F/51), 240 (F/37), 
268 (F/32),  275 (M/41), 286 (F/57), 
297 (M/24), 299 (M/43) 

mPFC 312 55 018 (M/47), 022 (M/24), 026 (F/24), 
027 (M/48), 034 (F/29), 036 (M/49), 
039 (F/28), 049 (F/52), 051 (F/24), 
053 (F/39), 056 (M/34), 057 (M/53), 
059 (F/44), 060 (F/36), 062 (F/23), 
070 (F/40), 074 (M/24), 075 (M/50),  
077 (F/47), 081 (F/33), 084 (M/25),  
098 (F/38), 106 (M/26), 114 (F/31), 
115 (M/47), 121 (M/34), 123 (F/29), 
129 (F/34), 130 (M/57), 131 (M/24), 
142 (F/43), 151 (M/36), 153 (M/38), 
155 (M/37), 156 (M/27), 163 (M/45), 
167 (M/33), 168 (M/24), 175 (M/34), 
187 (F/51), 189 (M/22), 193 (M/37), 
196 (M/18), 200 (M/25), 202 (F/29),  
203 (F/36), 204 (F/25), 222 (F/20), 
223 (F/42), 228 (F/58), 247 (F/61), 
274 (F/44), 275 (M/41), 299 (M/43), 
304 (F/33) 

dPPC 537 89 001 (F/48), 003 (F/39), 006 (F/20), 
010 (F/30), 015 (F/54), 018 (M/47), 
020 (F/48), 023 (M/32), 030 (M/23), 
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032 (F/19), 033 (F/31), 035 (F/45), 
036 (M/49), 039 (F/28), 042 (F/28), 
044 (M/58), 049 (F/52), 050 (M/20), 
053 (F/39), 054 (M/23), 056 (M/34), 
057 (M/53), 059 (F/44), 062 (F/23), 
065 (F/34), 066 (M/39), 067 (F/45), 
068 (F/39), 069 (M/26), 070 (F/40), 
074 (M/24), 075 (M/50), 077 (F/47), 
080 (F/43), 084 (M/25), 089 (M/36), 
094 (M/47), 101 (F/26), 102 (M/34), 
105 (M/25), 106 (M/26), 111 (M/20), 
114 (F/31), 115 (M/47), 120 (F/33), 
121 (M/34), 125 (F/44), 128 (M/26), 
130 (M/57), 134 (M/64), 135 (M/47), 
138 (M/41), 147 (M/47), 151 (M/36), 
153 (M/38), 156 (M/27), 158 (F/45), 
161 (F/53), 162 (F/30), 163 (M/45), 
164 (M/37), 168 (M/24), 171 (M/36), 
173 (F/18), 174 (M/29), 175 (M/34), 
176 (F/41), 177 (F/23), 184 (M/42), 
186 (M/27), 189 (M/22), 193 (M/37), 
195 (M/44), 196 (M/18), 203 (F/36), 
204 (F/25), 232 (M/27), 234 (M/25), 
236 (F/51), 240 (F/37), 247 (F/61), 
251 (M/31), 260 (F/57), 268 (F/32),  
275 (M/41), 286 (F/57), 292 (F/39), 
297 (M/24), 299 (M/43) 

MFG 538 97 002 (F/49), 003 (F/39), 006 (F/20), 
015 (F/54), 020 (F/48), 022 (M/24), 
023 (M/32), 026 (F/24), 030 (M/23), 
032 (F/19), 033 (F/31), 034 (F/29), 
036 (M/49), 039 (F/28), 042 (F/28), 
045 (M/51), 049 (F/52), 051 (F/24), 
053 (F/39), 054 (M/23), 056 (M/34), 
057 (M/53), 059 (F/44), 060 (F/36), 
062 (F/23), 063 (M/23), 065 (F/34), 
066 (M/39), 067 (F/45), 069 (M/26), 
070 (F/40), 074 (M/24), 075 (M/50), 
076 (M/29), 077 (F/47), 081 (F/33), 
084 (M/25), 089 (M/36), 098 (F/38), 
102 (M/34), 105 (M/25), 106 (M/26), 
114 (F/31), 115 (M/47), 121 (M/34), 
127 (F/40), 129 (F/34), 130 (M/57), 
131 (M/24), 135 (M/47), 136 (F/16), 
137 (F/21), 142 (F/43), 147 (M/47), 
148 (F/59), 149 (F/28), 151 (M/36), 
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153 (M/38), 155 (M/37), 156 (M/27), 
158 (F/45), 159 (F/42), 162 (F/30), 
163 (M/45), 164 (M/37), 166 (M/38), 
168 (M/24), 172 (F/22), 175 (M/34), 
177 (F/23), 178 (M/40), 186 (M/27), 
189 (M/22), 193 (M/37), 195 (M/44), 
196 (M/18), 200 (M/25), 203 (F/36), 
204 (F/25), 207 (F/39), 222 (F/20), 
223 (F/42), 228 (F/58), 230 (F/56), 
232 (M/27), 240 (F/37), 247 (F/61), 
260 (F/57), 264 (F/52), 274 (F/44), 
275 (M/41), 283 (F/29), 286 (F/57), 
298 (F/24), 299 (M/43), 304 (F/33), 
310 (M/20) 

 
 
Table S3b. Number of electrodes in each node used in high-gamma power analysis in the 
categorized verbal free recall task. AI: anterior insula, PCC: posterior cingulate cortex, Pr: 
precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal cortex, MFG: middle 
frontal gyrus. 
 
Brain regions Number of 

electrodes (n) 
Number of 
participants 

Participant IDs (Gender/Age) 

AI 107 25 026 (F/24), 028 (F/27), 032 (F/19), 
065 (F/34), 114 (F/31), 141 (F/44), 
158 (F/45), 163 (M/45), 178 (M/40), 
189 (M/22), 204 (F/25), 207 (F/39), 
228 (F/58), 230 (F/56), 236 (F/51), 
239 (M/27), 240 (F/37), 245 (M/30), 
247 (F/61), 264 (F/52), 271 (M/37), 
274 (F/44), 286 (F/57), 303 (F/62), 
310 (M/20) 

PCC/Pr 74 21 015 (F/54), 039 (F/28), 041 (M/34), 
044 (M/58), 074 (M/24), 094 (M/47), 
105 (M/25), 106 (M/26), 114 (F/31), 
135 (M/47), 141 (F/44), 157 (M/22), 
158 (F/45), 186 (M/27), 204 (F/25), 
227 (M/32), 236 (F/51), 240 (F/37), 
245 (M/30), 275 (M/41), 286 (F/57) 

mPFC 116 33 026 (F/24), 029 (F/33), 036 (M/49), 
039 (F/28), 041 (M/34), 056 (M/34), 
060 (F/36), 074 (M/24), 075 (M/50),  
106 (M/26), 107 (M/25), 114 (F/31), 
119 (F/26), 130 (M/57), 131 (M/24), 
141 (F/44), 163 (M/45), 167 (M/33), 
180 (F/21), 181 (M/22), 187 (F/51), 
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189 (M/22), 202 (F/29), 204 (F/25), 
212 (M/46), 222 (F/20), 228 (F/58), 
245 (M/30), 247 (F/61), 271 (M/37), 
274 (F/44), 275 (M/41), 303 (F/62)  

dPPC 357 57 015 (F/54), 028 (F/27), 032 (F/19), 
035 (F/45), 036 (M/49), 039 (F/28), 
042 (F/28), 044 (M/58), 050 (M/20), 
056 (M/34), 065 (F/34), 066 (M/39), 
067 (F/45), 069 (M/26), 074 (M/24), 
075 (M/50), 089 (M/36), 092 (M/44), 
094 (M/47), 102 (M/34), 105 (M/25), 
106 (M/26), 108 (F/23), 111 (M/20), 
114 (F/31), 119 (F/26), 130 (M/57), 
135 (M/47), 141 (F/44), 144 (M/53), 
147 (M/47), 157 (M/22), 158 (F/45), 
163 (M/45), 171 (M/36), 174 (M/29), 
176 (F/41), 181 (M/22), 184 (M/42), 
186 (M/27), 189 (M/22), 190 (F/57), 
204 (F/25), 212 (M/46), 221 (M/57), 
227 (M/32), 236 (F/51), 240 (F/37), 
245 (M/30), 247 (F/61), 251 (M/31), 
260 (F/57), 271 (M/37), 275 (M/41), 
279 (F/57), 286 (F/57), 302 (M/48)  

MFG 375 58 015 (F/54), 021 (M/38), 026 (F/24), 
029 (F/33), 032 (F/19), 036 (M/49), 
039 (F/28), 041 (M/34), 042 (F/28), 
045 (M/51), 056 (M/34), 060 (F/36), 
065 (F/34), 066 (M/39), 067 (F/45), 
069 (M/26), 074 (M/24), 075 (M/50), 
089 (M/36), 092 (M/44), 093 (M/24), 
102 (M/34), 105 (M/25), 106 (M/26), 
107 (M/25), 108 (F/23), 114 (F/31), 
119 (F/26), 130 (M/57), 131 (M/24), 
135 (M/47), 141 (F/44), 147 (M/47), 
157 (M/22), 158 (F/45), 163 (M/45), 
178 (M/40), 181 (M/22), 186 (M/27), 
189 (M/22), 204 (F/25), 207 (F/39), 
212 (M/46), 221 (M/57), 222 (F/20), 
228 (F/58), 230 (F/56), 240 (F/37), 
245 (M/30), 247 (F/61), 260 (F/57), 
264 (F/52), 271 (M/37), 274 (F/44), 
275 (M/41), 286 (F/57), 303 (F/62), 
310 (M/20)  
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Table S3c. Number of electrodes in each node used in high-gamma power analysis in the 
paired associates learning verbal cued recall task. AI: anterior insula, PCC: posterior 
cingulate cortex, Pr: precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal 
cortex, MFG: middle frontal gyrus. 
 
Brain regions Number of 

electrodes (n) 
Number of 
participants 

Participant IDs (Gender/Age) 

AI 84 15 028 (F/27), 065 (F/34), 090 (F/52), 
091 (M/28), 141 (F/44), 196 (M/18), 
207 (F/39), 223 (F/42), 228 (F/58), 
230 (F/56), 232 (M/27), 238 (M/27), 
283 (F/29), 303 (F/62), 312 (M/21)   

PCC/Pr 28 10 023 (M/32), 074 (M/24), 078 (F/2), 
106 (M/26), 141 (F/44), 162 (F/30), 
175 (M/34), 196 (M/18), 284 (F/32), 
297 (M/24)  

mPFC 78 20 036 (M/49), 056 (M/34), 060 (F/36), 
074 (M/24), 082 (M/39), 097 (M/34), 
106 (M/26), 121 (M/34), 130 (M/57), 
131 (M/24), 141 (F/44), 142 (F/43), 
175 (M/34), 196 (M/18), 202 (F/29),  
212 (M/46), 223 (F/42), 228 (F/58), 
263 (M/30), 303 (F/62) 

dPPC 192 39 001 (F/48), 003 (F/39), 023 (M/32), 
028 (F/27), 035 (F/45), 036 (M/49), 
042 (F/28), 050 (M/20), 056 (M/34), 
065 (F/34), 066 (M/39), 069 (M/26), 
074 (M/24), 078 (F/22), 082 (M/39), 
087 (M/51), 089 (M/36), 090 (F/52), 
091 (M/28), 095 (F/35), 097 (M/34), 
102 (M/34), 106 (M/26), 109 (F/43), 
111 (M/20), 118 (M/33), 121 (M/34), 
130 (M/57), 141 (F/44), 162 (F/30), 
175 (M/34), 196 (M/18), 212 (M/46), 
232 (M/27), 238 (M/27), 276 (M/28), 
284 (F/32), 297 (M/24), 312 (M/21)  

MFG 204 44 002 (F/49), 003 (F/39), 023 (M/32), 
036 (M/49), 042 (F/28), 056 (M/34), 
060 (F/36), 065 (F/34), 066 (M/39), 
069 (M/26), 074 (M/24), 078 (F/22), 
082 (M/39), 089 (M/36), 090 (F/52), 
091 (M/28), 095 (F/35), 097 (M/34), 
100 (F/43), 102 (M/34), 106 (M/26), 
118 (M/33), 121 (M/34), 130 (M/57), 
131 (M/24), 136 (F/16), 141 (F/44), 
142 (F/43), 149 (F/28), 162 (F/30), 
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175 (M/34), 196 (M/18), 207 (F/39), 
212 (M/46), 223 (F/42), 228 (F/58), 
230 (F/56), 232 (M/27), 238 (M/27), 
263 (M/30), 276 (M/28), 283 (F/29), 
303 (F/62), 312 (M/21)  

Table S3d. Number of electrodes in each node used in power spectral density (PSD) 
analysis in the water maze spatial memory task. AI: anterior insula, PCC: posterior cingulate 
cortex, Pr: precuneus, mPFC: medial prefrontal cortex, dPPC: dorsal posterior parietal cortex, 
MFG: middle frontal gyrus. 
 
Brain regions Number of 

electrodes (n) 
Number of 
participants 

Participant IDs (Gender/Age) 

AI 59 11 026 (F/24), 030 (M/23), 032 (F/19), 
033 (F/31), 049 (F/52), 052 (F/19), 
054 (M/23), 062 (F/23), 065 (F/34), 
114 (F/31), 124 (F/40) 

PCC/Pr 89 21 006 (F/20), 010 (F/30), 015 (F/54), 
018 (M/47), 023 (M/32), 024 (F/36), 
030 (M/23), 034 (F/29), 041 (M/34), 
044 (M/58), 049 (F/52), 051 (F/24), 
054 (M/23), 062 (F/23), 064 (M/56), 
074 (M/24), 077 (F/47), 101 (F/26), 
106 (M/26), 114 (F/31), 124 (F/40) 

mPFC 77 17 014 (F/47), 018 (M/47), 025 (F/19), 
026 (F/24), 034 (F/29), 041 (M/34), 
049 (F/52), 051 (F/24), 052 (F/19), 
056 (M/34), 060 (F/36), 062 (F/23), 
074 (M/24), 075 (M/50), 077 (F/47), 
106 (M/26), 114 (F/31) 

dPPC 226 36 001 (F/48), 006 (F/20), 010 (F/30), 
014 (F/47), 015 (F/54), 018 (M/47), 
019 (F/34), 023 (M/32), 024 (F/36), 
025 (F/19), 030 (M/23), 032 (F/19), 
033 (F/31), 042 (F/28), 044 (M/58), 
049 (F/52), 050 (M/20), 052 (F/19), 
054 (M/23), 056 (M/34), 062 (F/23), 
064 (M/56), 065 (F/34), 066 (M/39), 
067 (F/45), 068 (F/39), 069 (M/26), 
074 (M/24), 075 (M/50), 077 (F/47), 
089 (M/36), 101 (F/26), 106 (M/26), 
114 (F/31), 124 (F/40), 177 (F/23) 

MFG 147 33 006 (F/20), 014 (F/47), 015 (F/54), 
019 (F/34), 021 (M/38), 023 (M/32), 
025 (F/19), 026 (F/24), 030 (M/23), 
032 (F/19), 033 (F/31), 034 (F/29), 
041 (M/34), 042 (F/28), 045 (M/51), 
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049 (F/52), 051 (F/24), 052 (F/19), 
054 (M/23), 056 (M/34), 060 (F/36), 
062 (F/23), 065 (F/34), 066 (M/39), 
067 (F/45), 069 (M/26), 074 (M/24), 
075 (M/50), 077 (F/47), 089 (M/36), 
106 (M/26), 114 (F/31), 177 (F/23)  
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