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Abstract

Studies comparing acoustic signals often rely on pixel-wise differences between
spectrograms, as in for example mean squared error (MSE). Pixel-wise errors are not
representative of perceptual sensitivity, however, and such measures can be highly
sensitive to small local signal changes that may be imperceptible. In computer vision,
high-level visual features extracted with convolutional neural networks (CNN) can be
used to calculate the fidelity of computer-generated images. Here, we propose the
auditory perceptual distance (APD) metric based on acoustic features extracted with an
unsupervised CNN and validated by perceptual behavior. Using complex vocal signals
from songbirds, we trained a Siamese CNN on a self-supervised task using spectrograms
rescaled to match the auditory frequency sensitivity of European starlings, Sturnus
vulgaris. We define APD for any pair of sounds as the cosine distance between
corresponding feature vectors extracted by the trained CNN. We show that APD is
more robust to temporal and spectral translation than MSE, and captures the sigmoidal
shape of typical behavioral psychometric functions over complex acoustic spaces. When
fine-tuned using starlings’ behavioral judgments of naturalistic song syllables, the APD
model yields even more accurate predictions of perceptual sensitivity, discrimination,
and categorization on novel complex (high-dimensional) acoustic dimensions, including
diverging decisions for identical stimuli following different training conditions. Thus, the
APD model outperforms MSE in robustness and perceptual accuracy, and offers
tunability to match experience-dependent perceptual biases.

Introduction 1

Characterizing and comparing natural acoustic signals in a manner that mirrors 2

perception is vital for researchers across wide-ranging fields spanning neuroscience, 3

artificial intelligence, and psychology. These sounds, which include vocal and other 4

acoustic communication signals as well as environmental sounds, typically vary 5

simultaneously along multiple physical dimensions. Each of these dimensions may carry 6

different (or no) behaviorally relevant information and which may vary across contexts. 7

Species differences can complicate matters even further, as the features that carry 8

perceptual relevance for one species may not necessarily generalize to another [1]. Thus, 9

an ideal measure of the perceptually relevant similarities and differences between 10
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natural acoustic signals should be able to capture the complex multi-variate feature 11

spaces of these sounds, and have a flexibility that permits tuning to context- and 12

species-specific functional outputs. 13

To quantify differences between two audio signals, current studies, especially those 14

using machine learning for audio generation, often resort to pixel-wise error functions 15

between corresponding spectrograms, such as mean squared error (MSE) [2–4]. This 16

approach has the benefit of easy quantification, but deviates from perception in 17

significant ways. First, representations, spectrograms, commonly scale signal power 18

across frequencies (Hz) linearly which is not representative of how frequency differences 19

are perceived [5, 6]. In animals, including both humans and European starlings (Fig 1, 20

frequency sensitivity, defined as the minimum detectable change in frequency, is not 21

uniform across the frequency spectrum but scales positively with frequency [7]. That is, 22

a 20 Hz frequency deviation at 8,000Hz is perceptually less noticeable than a 20Hz 23

change at 1,000 Hz, although the absolute values of frequency deviations are the same. 24

Log- or Mel-scaled spectrograms can mitigate this discrepancy somewhat, but fail to 25

compensate fully for the non-uniformity of frequency sensitivity [8]. A second problem 26

lies in the comparison of the signals. MSE and other pixel-wise error functions are naive 27

to the statistical structure of the signals under comparison, and consider each 28

time-frequency coefficient from the constituent spectrograms as an independent 29

”feature”. As a result, these measures focus only on local (time-frequency restricted) 30

details, weigh all such local deviations equally, and thus are highly sensitive to noise and 31

other perceptually irrelevant signal perturbations. These instabilities are evident in 32

Fig 1 where two spectrograms offset from each other by only one spectral slice, result in 33

significant pixel-wise MSE across all frequency bands, whereas the perceptual difference 34

between the two signals would be minimal. Finally, perceptual differences are not fixed. 35

Vocal communication signals in particular are highly context-dependent. Human speech 36

contains many examples where perception is biased strongly by language experience [9] 37

or by local contextual cues within words, e.g. the Ganong effect [10]. A more ideal 38

auditory distance metric would be more closely representative of perception, invariant 39

to behaviorally irrelevant perturbation, and dynamically adjustable to context. Here we 40

describe such a metric. 41

As an alternative to pixel-wise error, recent studies in computer vision quantify the 42

visual difference (distance) between two images based on high-level features [11–14]. 43

Instead of calculating per-pixel differences, these error functions extract and compare 44

embeddings of images within the layers of convolutional neural networks (CNN). These 45

embeddings successfully capture significant global features [11,12], and can be used as 46

quantifiable measures of perceptual distances between images [14]. For several deep 47

neural networks, particularly those designed for image generation, feature vector based 48

loss functions have enabled successful feature visualization [11], texture synthesis [15], 49

and image style transfer [14]. Although powerful, the foregoing feature sets rely on 50

highly labeled image datasets such as ImageNet [16], and are not likely to generalize 51

across perceptual modality or task [17]. One solution to the constraint of hand-labeling 52

is to apply self-supervised learning to unlabeled, readily available datasets [18–21]. 53

Instead of using true labels as training targets, self-supervised training involves pretext 54

tasks, which apply automatic preprocessing to an unlabeled dataset and optimizes on 55

corresponding machine-generated pseudo-labels. A popular self-supervised algorithm for 56

visual feature extraction is ”Jigsaw”, where an image is decomposed into small 57

randomly-ordered puzzle pieces. When tasked to reorder shuffled pieces, the network 58

eventually learns to identify significant visual features from images [19]. A similar 59

algorithm has been proposed for spectrograms where the network learns acoustic 60

features from reordering spectrogram fragments [22]. Unlike the original jigsaw model, 61

the model on spectrograms performs the best when spectrograms are dissected in only 62

2/17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2024.02.28.582631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582631
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

D

B C
Metric

Star
Mel
log
linear

400 1000 4000 8000
Frequency (Hz)

0

1

2

3

N
or

m
al

iz
ed

F
re

qu
en

cy
S

en
si

tiv
ity

0 0.4 0.8 1.2
Time (s)

0
512

1024
2048
4096
8192

16384

Fr
eq

ue
nc

y
(H

z)

X

0 0.4 0.8 1.2
Time (s)

Y

0 0.4 0.8 1.2
Time (s)

X - Y

400 1000 40008000
Frequency (Hz)

0

20

40

60

F
re

qu
en

cy
S

en
si

tiv
ity

(H
z) Species

starling
human

0 5000 10000
Frequency (Hz)

C
or

re
sp

on
di

ng
M

et
ri

c
Va

lu
e

Metric
Star
Mel
log
linear

Fig 1. Current approach limitations. A) Frequency sensitivity, defined as the
minimum discernable change at a given frequency, in both starlings and humans. B)
Mapping between different frequency scaling metrics. C) Normalized frequency
sensitivities in each frequency scale. Sensitivity values are normalized to the mean
within each frequency scale. D) Two identical Star-scale spectrograms (X and Y) from
each other by only one frequency band, corresponding to one Star. The distance
spectrogram (X-Y) is calculated from pixel-wise subtraction between X and Y.

the frequency domain. 63

Considering the forgoing challenges, constraints, and machine learning (ML) 64

methods, we propose the Auditory Perceptual Distance (APD) metric, a computational 65

method to quantify perceptual distances based on high-dimensional spectrotemporal 66

features of acoustic communication signals. The APD metric combines innovative ML 67

approaches to tackle the shortcomings of static pixel-wise error functions through a 68

three-step process (Fig 2) optimized for auditory peripheral tuning accuracy, acoustic 69

feature-based embedding, and experience-dependent perceptual bias. As a test case, we 70

focus on the complex natural vocalization repertoire and auditory perceptual 71

characteristics of European starlings, a species of songbird. We evaluate the absolute 72

performance of the APD metric on behavioral data where ground truth perception is 73

available, and compare its relative accuracy to MSE. 74

Results 75

Figure 2 outlines the three-step process for deriving the APD metric. Step one 76

optimizes signal representation by devising the STAR-scale (Fig 2 A), a species-specific 77

frequency scale, based on empirically measured critical bandwidths [7]. Mirroring 78

similar scales in humans, such as the mel [5] and bark [23] scales, equal distances on the 79

STAR-scale correspond to equal perceptual distance (Fig 1). We then train a CNN to 80

learn significant acoustic features in a large library of starling songs using a 81

self-supervised training algorithm (Fig 2 B, Materials and Methods). This process yields 82

a naive embedding space that is familiar with vocal signals and the spectrotemporal 83

features that characterize starling vocalizations statistically, but which lacks 84

experience-dependent biases. To establish these biases, in step three we fine-tune the 85

network-derived embedding space using behavioral data from real-world song perception 86
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Fig 2. Three-step training process for the APD metric. A) Representation.
Schematized process for converting to STAR-scale spectrograms. Linear spectrograms
are converted to STAR-scale spectrograms through a set of STAR-scaled filter banks
(see Materials and Methods for actual parameters). B) Pre-training. The CNN model is
pre-trained on STAR-scale spectrograms of starling vocalizations to learn statistical
features of song. Input spectrograms are divided into four equally sized spectral slices
and shuffled (not shown here). The CNN outputs a ranking vector that indexes the
original position of the shuffled slices. During training, all four slices are fed into the
same CNN, yielding four feature vectors, which are then concatenated and passed to the
fully connected (FC) ranking layers for classification. C) Fine-tuning. Once pre-trained,
the learned CNN is fine-tuned on behavioral data. Pre-trained weights are transferred
directly to the same CNN which is now connected to task-specific networks. Inputs to
the fine-tuned model are unsegmented STAR-scale spectrograms. Outputs are animal
judgments collected during the behavioral experiment.
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experiments with starlings (Fig 2 C). In its final form, the APD metric enables 87

characterization of vocal communication signals as low-dimensional feature vectors 88

optimized for species and context-dependent perceptual experience. As a measure of the 89

difference between signals in this perceptually-tuned embedding space, we take the 90

cosine distance between acoustic feature vectors extracted by the trained CNN. We 91

assess the effectiveness of each step separately and compare its performance to existing 92

approaches. First, we inspect the perceptual uniformity of the STAR scale which we use 93

to construct spectrograms for the APD metric. We then evaluate the effectiveness of 94

pre-training on STAR-spectrograms compared to naive ImageNet weights, and the 95

robustness of the pre-trained model to small local changes. Finally, we draw 96

comparisons between computed and experimentally recorded perceptual distances after 97

fine-tuning the metric on behavioral data, taking animal judgments as ground truth. 98

STAR Scale 99

The APD metric is designed to work with spectrograms that capture species-specific 100

frequency sensitivity. Ideally the frequency scale should be perceptually uniform. That 101

is, any change of one unit should be perceived similarly by listeners regardless of 102

absolute frequency values. To meet these requirements, we devise the STAR scale, a 103

starling-specific frequency scale where equal distance on the STAR-scale represents 104

equal perceptual distances observed (on average) by starlings (Fig 1). Accordingly, one 105

”STAR” corresponds to the minimum detectable frequency difference at any given 106

frequency. To compare the STAR scale to existing frequency scales, namely the Hz scale 107

and the mel scale, we convert frequency sensitivity measurements collected by Kuhn et 108

al. to units of STAR and mel (Fig 1) [7]. Sensitivity values are normalized to the mean 109

within each frequency scale, as we focus more on the fluctuation of sensitivity across all 110

frequency levels rather than the absolute values. Across the three frequency scales, the 111

Hz scale shows the highest degree of variability (µ = 1.0, σ = 0.75, range 0.53∼2.43) 112

followed by the mel scale (µ = 1.0, σ = 0.26, range 0.80∼1.38). The STAR scale is the 113

most uniform (µ = 1.0, σ = 0.06, range 0.89∼1.06); even the maximum degree of 114

fluctuation, logged at 120 STAR (1,200Hz), only measures 11%. Thus, the STAR scale 115

outperforms both the Hz scale and the mel scale in terms of perceptual uniformity 116

across frequencies. 117

Pre-training 118

Estimating differences between spectrographic representations can be seen as an image 119

processing problem. Following advances in computer vision, we compared embeddings 120

of spectrograms within the layers of a well-known convolutional neural network (CNN), 121

VGG-19 [24](Fig 2 C). Because spectrograms do not necessarily share the same 122

behaviorally relevant feature space as images, we pre-train our network on STAR-scale 123

spectrograms rather than adopting ImageNet weights like most computer vision models. 124

Our pre-training dataset consists of 21,000 1.4s-long unlabeled starling vocalizations, 125

converted to STAR-scale spectrograms (Fig 2, Materials and Methods). To guide 126

learning we used ”Spectrographic Jigsaw” [19,22], a spectrogram-specific adaptation of 127

a popular self-supervised training task where networks learn high-level features under 128

the pretext of sorting the shuffled puzzle pieces of an image (Fig 2). After the network 129

is pre-trained in this way, the dense layers are disconnected from the CNN, the output 130

of which is a 512-dimensional feature vector. fFinally, we randomly choose 30 1.4s long 131

STAR-scale spectrograms for testing. 132

We evaluated the effectiveness of the STAR-scale spectrogram based APD metric. 133

To distinguish this from subsequent versions that involve additional tuning to animal 134

vocal judgements of vocalizations, we refer to the metric with only pre-training as the 135
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Fig 3. Perceptual loss is more robust to small changes than pixel-wise loss.
We measure the distance between two time/frequency-shifted spectrograms using MSE
and APD, and compare the trajectories of both distance metric as shifting becomes
more significant.Both MSE and APD measurements have been normalized so that the
maximum and minimum achievable distances are 1 and 0, respectively. A) Distance
measured between two time-shifted spectrograms. We start with a pair of spectrograms
separated by 5ms (leftmost points) and progress at a step size of approximately 5ms.
We then calculate MSE and APD between each pair and fit a linear regression to all the
points within either distance metric. B) Distance measured between two
frequency-shifted spectrograms. Similarly, we start with a pair of spectrograms
separated by 1 STAR (leftmost points) and progress at a step size of 1 STAR.

naive APD metric and the fine-tuned model (describe in the following section) as the 136

tuned APD metric. 137

To assay robustness of the naive APD metric to shifts in time and frequency, we 138

randomly chose 30 1.4s long STAR-scale spectrograms for testing. We consider two 139

spectrograms offset by a variable number of rows or columns in either the frequency or 140

the time domain, respectively. For simplicity, the offset was added as silence to one of 141

the four edges of the spectrogram (top, bottom, left, right), and for each spectrogram, 142

offset versions with opposite-edge offsets were compared (i.e., top vs. bottom, left vs. 143

right). We expect the naive AP metric to react differently to temporal and spectral 144

shifts. Namely, for two vocalizations offset only by trailing or leading silence similarity 145

should be high, even when these offsets grow to many tens of milliseconds, as the 146

relative differences int he spectro-temporal structure of the signal are unchanged. In 147

contrast, while similarity for two vocalizations offset by only a few Hz should be high, 148

the differences should increase as the frequency offset increases without saturating the 149

metric. As shown in Fig 3, shifting by only a single (5ms) time step close to the gap 150

detection threshold [25] for starlings yields a naive APD close to zero (APD=1.07E-4 ± 151

1.83E-4 normalized, N=30). Consistent with our intuition, the naive APD stays close to 152

zero even with longer silence padding in the time domain (APD=5.93E-4 ± 8.65E-4 153

normalized, N=450). Shifts in the frequency domain (Fig.Fig 3) also conform to our 154

intuition: a shift of one STAR, approximately the smallest frequency shift 155

distinguishable by starlings, yields a very small shift in the naive APD (APD=3.16E-3 156

± 1.46E-3 normalized, N=30) which steadily increases as the frequency offset grows. In 157

contrast, MSE lacks a similar robustness to both temporal and spectral shifts. MSE is 158

elevated significantly by even our smallest shift in time (5ms, MSE=0.06 ± 0.01 159

normalized, N=30) or frequency (MSE=0.06 ± 3.13E-3 normalized, N=30), and in both 160

cases increases markedly for progressively larger shifts in each dimension. 161
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Fine-tuning 162

The outcome of the pre-training process suggests that, compared to MSE, the naive 163

APD model is better able to extract global features embedded in spectrograms 164

consistent with intuition. The ultimate ground truth for modelling perceptual distance, 165

however, is species-specific perceptual judgement. To better approximate real-world 166

perception, we fine-tuned the naive APD metric on naturalistic artificial stimuli used in 167

a behavioral experiment. The original experiment and its findings have been detailed 168

elsewhere [26]. Briefly, starlings were trained on a two-alternative operant choice task to 169

classify eight natural song syllables similar to those used to train the networks for naive 170

APD; four syllables (e.g., A, B, C,and D) were associated with a one operant response 171

and another four (E, F, G, and H) were associated with a second operant response. 172

Once the subjects achieved stable recognition on these natural stimuli, a large set of 173

artificial (“morph”) syllables were introduced using a double staircase procedure. Each 174

morph syllable was a machine-generated linear interpolation between two of the natural 175

syllables used for training (Fig 4, Materials and Methods). Subjects classified the 176

artificial syllables based on their training with the natural syllables, yielding sixteen 177

psychometric functions capture perceptual sensitivity on each of the 16 dimensions 178

where syllables A-D were morphed to syllables E-H. Each subject was free to place the 179

decision boundary between syllables (defined as the point of subjective equality) at any 180

point along each syllable continuum. 181

A double staircase training procedure was used to allow the birds to place their 182

perceptual boundaries freely among all linear interpolated morph stimuli (Materials and 183

Methods). One of the main findings was that birds trained under the same condition 184

(for example, peck left for ABCD, right for EFGH) yielded a remarkable degree of 185

consensus on decision boundaries across morph stimuli, suggesting a shared perceptual 186

space. To replicate the training process computationally, we simulate a naive bird’s 187

perceptual space with our naive APD model, and a trained bird’s with our fine-tuned 188

APD model, trained on aforementioned experimental decisions made by birds. To assess 189

the performance of the tuned APD model, we test our models on morph stimuli and 190

draw comparisons between the APD-simulated and the experimentally measured 191

psychometric curves. 192

Here we hypothesize that a high-performing perceptual distance metric achieves a 193

high resemblance to the ground truth, specifically in terms of the inflection point and 194

the Hill coefficient. The inflection point marks the decision boundary within a set of 195

stimuli whereas the Hill coefficient entails sensitivity at the inflection point, measured 196

as the slope of the psychometric curve [27–29]. In an example comparison between 197

computed and measured psychometric curves (Fig 4), fine-tuned APD is capable of 198

yielding simulations close to the ground truth whereas there exists an apparent 199

mismatch between MSE and the ground truth, especially in sensitivity. A similar trend 200

is observed across all stimuli sets for both computational distance metrics (Fig 4). To 201

characterize resemblance to the ground truth, we calculate the absolute residual error 202

between each computed Hill coefficient and the ground truth under the same training 203

conditions (morph stimuli, cohort, etc.), and compare it to internal variability within 204

the ground truth (GT), computed as absolute errors between all pairs of subject 205

judgments under the same training conditions (Fig 4). The residual errors incurred by 206

MSE are significantly different from the ground truth variability [µ = 0.160, σ = 0.058, 207

compared to GT: p¡0.001, linear mixed effects model (LMM)] while the sensitivity of the 208

fine-tuned APD curve is much closer to the ground truth [tuned APD: µ = 0.078, 209

σ = 0.065, p¿0.1, LMM against GT]. The same set of residual errors is calculated for 210

the inflection point (Fig 4). Similar results are observed: the tuned APD highly 211

resembles the ground truth [tuned APD: µ = 8.76, σ = 7.85, p¿0.1, LMM against GT], 212

whereas MSE shows significant deviation from the ground truth [µ = 16.17, σ = 13.62, 213
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Fig 4. Fine-tuned APD outperforms both naive APD and MSE. A) An
example set of morph stimuli, interpolated between stimuli B (left) and C (right). Refer
to [26] for a detailed description of stimuli generation. Briefly, the author linearly
interpolated between low-dimensional representations of B and C, and reverted the
interpolation vectors to spectrograms. B) Computed and behaviorally measured
psychometric curves on example morph stimuli shown in A. APD (naive) and APD
(tuned) are both calculated from APD feature vectors, with the former only pre-trained
(naive) and the latter fine-tuned on animal behavior data (tuned). C) Pairwise error in
Hill coefficient measurements between each distance metric and the ground truth. For
each computed psychometric curve (MSE, naive APD, and tuned APD), we calculate
the error between its computed Hill coefficient and the ground truth value under the
same training conditions (morph stimuli, cohort, etc.). For the ground truth, we
calculate its internal variability by measuring errors between all pairs of subject
judgments under the same training conditions. Outliers are not plotted. D) Pairwise
error in inflection point measurements between distance metrics and ground truths.
Error calculation follows the same pattern mentioned in C. All computed psychometric
curves yield measurements within the variability of ground truths. Outliers are not
plotted.
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hues and green hues respectively in this figure. B) Behaviorally measured psychometric
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cohorts 1 and 2. C) APD-generated psychometric curves on morph stimuli between F
and G. We compare results from APD models tuned on cohorts 1 and 2, as well as APD
without fine-tuning (shown in gray).

p¡0.001, LMM against GT]. These results suggest APD is indeed a high-performing 214

perceptual distance, yielding decision boundaries and sensitivities within the variability 215

of the ground truth. Moreover, direct comparisons between APD and MSE provide a 216

strong demonstration that APD is much more representative of starling perceptual 217

sensitivity around the decision boundary than MSE. 218

Additional comparisons between naive and tuned APD models suggest that 219

fine-tuning is imperative to achieving perceptually accurate simulations (Fig 4). 220

Without fine-tuning, both sensitivity and decision boundary accuracy yielded by naive 221

APD drop significantly lower than the ground truth [Hill coefficient: µ = 0.154, 222

σ = 0.057, p¡0.01, LMM against GT; inflection point: µ = 15.48, σ = 11.97, p¡0.001, 223

LMM against GT] whereas sensitivity level of the fine-tuned APD model is within the 224

variability of the ground truth as mentioned earlier. These results indicate that accurate 225

decision boundary placements and sensitivity characterization require fine-tuning on 226

behavioral data. 227

Our preliminary results demonstrate that the APD model achieves high fidelity in 228

characterizing starling perception. Through the characterization of frequency sensitivity 229

at all frequency levels, we demonstrate that the STAR scale achieves higher perceptual 230

uniformity than other existing frequency scales such as the Hz scale and the mel scale. 231

By measuring the accumulation of error incurred through shifting spectrograms in both 232

the spectral and the temporal direction, we find that APD successfully addresses the 233

instability issue common in pixel-wise errors. And finally, by incorporating behavioral 234

data into our training pipeline, we show that the tunable nature of APD significantly 235

improves its ability to characterize animal perception. For each step of training the 236

APD model, we systematically prove that the innovative approach involved directly 237

leads to a better performance than the existing methods and therefore contributes to 238

the observed high fidelity. 239

The significance of these preliminary findings is multifaceted. First, the introduction 240

of the STAR scale answers the long-existing call for animal-specific perceptual scales. 241

While starlings and humans share similar psychoacoustic abilities, using the Hz scale or 242

the mel scale for research on starling perception is intrinsically problematic as neither is 243
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truly representative of starling’s unique peripheral frequency sensitivity. 244

The results also suggest that the incorporation of CNN to extract perceptual 245

embedding is indispensable to the success of our model. Although there have been a few 246

computer vision studies using CNNs to extract perceptual features, our model is the 247

first to successfully apply this method to auditory perception. On one hand, the nature 248

of a CNN predicate its success at extracting high-level features and consequently its 249

robustness to local perturbations. Our results in experiment 2 indicate that the APD 250

not only tackles MSE’s instability to small local changes but also offers different 251

portrayals of the animal’s responses to temporal and spectral shifts. Given songbirds’ 252

proven capability of processing relative pitch and relative timing [30,31], such 253

differential responses conform to our expectation: two audio signals differing only in the 254

trailing or leading silence should contain resembling information whereas two signals 255

separated by a few octaves should convey much more distinct messages. We argue the 256

differential treatment originates from pre-training the CNN on spectrograms. 257

Intuitively, the CNN learns to extract spectral features differently at various frequencies. 258

In fact, if we directly use ImageNet weights, shifting in the frequency domain results in 259

APDs close to zero, proving pre-training is essential for an accurate representation of 260

songbirds’ ability to differentially respond to temporal and spectral shifts. 261

Compared to universal error metrics such as MSE, a CNN-based error metric offers 262

the unparalleled advantage of tunability. Findings in experiment 3 exemplify the 263

significant improvement in both sensitivity characterization and decision boundary 264

placement only made possible by fine-tuning the APD model on animal judgments. In 265

the original behavioral experiment, subjects were divided into cohorts where training 266

conditions differ (Fig 5). Interestingly, a rare observation was that subjects in the same 267

cohort arrive at similar decision boundaries on the same stimuli set while boundaries 268

placed by different cohorts diverge (Fig 5) [26]. We show that through differential 269

training to mimic different cohorts, the APD model can arrive at the same diverging 270

boundaries as in the experimental data (Fig 5). While the naive APD fails to capture 271

this property, its predictions between the two decision boundaries are scattered around 272

0.5, indicating uncertainty, whereas the predictions beyond both boundaries are much 273

more determined, floating close to 0 or 1. This observation offers insight into what 274

fine-tuning does to the model: we hypothesize that fine-tuning polarizes stimuli 275

recognition by recalibrating response probabilities for both target categories to better 276

align with the contrasting features between targets. In other words, fine-tuning realigns 277

the originally global feature vector to reflect specific aspects of the stimuli and 278

subsequently assigns a recognition threshold in that feature space. As a result, what is 279

uncertain to a naive model can be tuned in either direction depending on the training 280

condition, leading to the observed characterization of diverging decision boundaries. 281

Intuitively, this process matches the effect behavioral training has on experiment 282

subjects: while the subject already has an internal measure of perceptual distance before 283

training, the training process teaches it to focus on specific features in the signal and 284

iteratively refines the subject’s left/right decision thresholds based on feature distances. 285

Another advantage of the APD model is its adaptability to the user’s task. Every 286

step can be modified to fit the user’s specific need: the user has not only a wide range 287

of pretext tasks for pre-training but also unrestrained freedom to fine-tune the model. 288

The APD model can even be expanded to species beyond starlings. In the event of 289

missing frequency sensitivity data to generate a species-specific frequency scale, the mel 290

scale is an acceptable substitute, even showing similar results in starling perception 291

thanks to its logarithmic nature. For starling perception, the STAR scale is still 292

recommended as it is more perceptually accurate than the mel scale. 293

Importantly, we believe that the APD model, while proven more perceptually 294

accurate than existing methods, can be further optimized to achieve higher fidelity. A 295
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few components to tune include the CNN architecture, the pretext task employed during 296

self-supervision, and the fine-tune training procedure. Our currently chosen approaches 297

are direct adoptions from existing literature, but most hyperparameters have yet to be 298

tuned for optimal performance because the tuning result would be highly specific to our 299

data and less significant to other users looking to adopt the approach. Another future 300

application is to use the APD model alongside a generative neural network for 301

spectrograms as a loss function between the target and the generated spectrograms, 302

similar to the loss function proposed by Johnson et al. [14]. Moreover, we acknowledge 303

the possibility that the spectrotemporal information captured by the APD model from 304

spectrograms, while already superior to MSE, could be further improved upon with 305

other acoustic signal representations. One potential candidate is wavelet transforms, 306

which have recently seen more usage in animal vocalizations [32–35]. Although currently 307

we cannot say what the best solution is, we designed the APD model to be easily 308

adaptable to any representation so it can be extensively studied and compared. 309

In this paper, we propose the APD model, a CNN-based model to quantify the 310

perceptual distance between two auditory signals. Training the APD model is a 311

three-step process, for each of which we systematically prove that the innovative 312

approach involved directly leads to better performance than the existing methods and 313

therefore contributes to better-portraying starling perception. Specifically, the APD 314

model significantly outperforms MSE in terms of stability and sensitivity around 315

perceptual boundaries and is therefore a more accurate representation of starling 316

perception. In the future, we hope to optimize the APD model as well as use it as a loss 317

function for generative neural networks for spectrograms. 318

Materials and methods 319

Datasets 320

Starling Vocalization Dataset 321

The dataset we use for pre-training the CNN was published by Sainburg et al. and 322

available online [36]. It consists of songs from 14 European starlings individually 323

collected in isolated chambers. All recordings were originally stored as 16 bit, 44.1 kHz 324

wave files. From each singer’s hour-long recordings, we randomly segment 1,500 325

1.4s-long continuous vocalizations. The segmentation process is done automatically so 326

that no syllable is truncated and no motif information is taken into consideration, 327

meaning a signal can start and end inside a motif as long as there is no continuous 328

silence longer than 0.5s. 329

Morph Stimuli Dataset 330

The morph dataset is directly borrowed from [26], where a more detailed description is 331

available. Briefly, eight arbitrarily chosen motifs (labeled A H) are divided equally in 332

three different ways (ABCD vs EFGH, ABGH vs EFCD, ABEF vs CDGH), forming a 333

total of 24 unique pairs of motifs. Spectrograms of each pair of stimuli are passed 334

through a trained autoencoder with a 64-dimensional bottleneck. Between the two 335

64-dimensional latent vectors, 128 linear interpolations are extracted, reverted back to 336

full-size spectrograms using the same autoencoder, and subsequently inverted to wave 337

files sampled at 48kHz using methods proposed by Griffin and Lim [37]. Altogether, the 338

dataset consists of 3072 morph stimuli, including repeating endpoints. 339
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Behavioral Training Methods 340

Shaping 341

We adopt a multistage autoshaping routine [38] that familiarizes the birds with the 342

apparatus, guides the bird to initiate trials, and associates trials with possible food 343

rewards. On average, it takes the subjects 3-5 days to complete shaping, after which 344

they start behavioral trials. 345

Baseline Training Procedure 346

All subjects learn to classify natural stimuli using a two-alternative choice (2AC) 347

procedure [39]. Each subject initiates a trial by pecking at the center port on the panel, 348

which triggers playback of a stimuli. The subject must peck the left or right port 349

afterwards to indicate its choice. Each stimulus is associated with a ground truth, either 350

left or right (4 each). Incorrect responses incur punishments (timeout), while correct 351

responses result in rewards (food access). High response rates can be achieved, and 352

stimulus-independent response biases can be ameliorated by manipulating the 353

reinforcement schedules or introducing remedial trials according to established 354

procedures. The subjects are trained with a variable reinforcement ratio of 4, meaning 355

they need to get 1-7 (average of 4) correct choices in a row to be rewarded. 356

Double Staircase Procedure 357

Once the subject is able to classify natural stimuli at a high accuracy, we start the 358

double staircase procedure to probe the perceptual boundary between each pair of left 359

and right natural stimuli. The procedure works by estimating a window encompassing 360

the boundary and iteratively reducing the window edge on either side based on the 361

subject’s performance. The staircase procedure begins by randomly choosing one of the 362

16 possible natural stimuli pairs, and then selects a morph stimulus between the natural 363

stimuli pair that is outside the window (90%) or just inside the window (10%). For an 364

easy trial, the morph stimulus is one natural stimuli mixed only slightly with the other 365

natural stimulus. For the probe trial, the stimulus is a morph just within the window 366

the procedure believes the perceptual boundary to be in. If the subject gets a probe trial 367

correct, the corresponding window edge advances to the location of the probe trial and 368

further probe trials along this axis become more difficult. The subjects are rewarded by 369

a variable reinforcement ratio mentioned above so that the birds are forced to perform 370

on each trial but are not necessarily rewarded. This also allows for more trials per day. 371

Computational Methods 372

STAR Scale 373

To convert a frequency value from the Hz scale to the STAR scale, the following formula 374

is used: 375

S =

{
f/20 if f < 1600

80 + 150/log(6.4)× log(f/1600) if f ⩾ 1600
(1)

Where f is the frequency value in Hz. Note that the unit itself is meaningless, meaning 376

it can be arbitrarily large or small depending on the multiplier attached to the formula. 377

Mel Scale 378

We use the mel scale conversion proposed by McFee et al. in Librosa [40]. 379
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Spectrogram Generation 380

All spectrograms used in this study are converted to the STAR scale. Computationally, 381

this is a two-step process where Hz-scale spectrograms are first constructed from sound 382

waves using an FFT size of 2048 combined with a step size of 256. Specifically for 383

morph stimuli, spectrograms have a low-frequency cutoff of 850 Hz and a high-frequency 384

cutoff of 10,000 Hz to avoid silence occupying the majority of the spectrogram. The 385

Hz-scale spectrograms are then converted to STAR-scale spectrograms via a series of 386

STAR filters, which are subsequently converted to decibel-based and normalized 387

individually. All steps other than the STAR-scale conversion are accomplished with 388

Librosa [40]. The final morph spectrograms are 186 STARs tall, whereas the final 389

vocalization spectrograms are 291 STARs tall. 390

Model Architecture 391

Briefly, the APD model consists of a CNN and a few dense layers which are only used 392

during training and dropped for feature extraction. Specifically for results included in 393

this study, we use VGG19 as our choice of CNN due to the abundant literature on its 394

capability of extracting high-level features [24]. During pre-training, we connect a single 395

dense layer of size 4096 to the VGG19 whereas during fine-tuning, three dense layers 396

(size 2048, 2048, 1024, respectively; ReLU activation) are used. Four separate input 397

layers are connected simultaneously to the VGG19 during pre-training, rendering the 398

model a Siamese network. 399

Pre-training 400

The APD model is pre-trained on a pretext task similar to the popular jigsaw task. For 401

pre-training, we use the starling vocalization dataset in the form of STAR-scale 402

spectrograms. 90% of the dataset is assigned the training set, whereas the remaining 403

10% is set aside as the validation set. There is no testing set because the purpose of 404

pre-training is to transfer learned weights and thus we are uninterested in the pretext 405

accuracy. Each spectrogram is divided in the frequency domain into four equally sized 406

puzzle pieces which are subsequently shuffled. The goal of the model is to reorder the 407

puzzle pieces based on relevant information extracted. During training, all four puzzle 408

pieces are fed into the APD model, yielding four 512-dimensional vectors, which are 409

then concatenated and passed to the dense layer for classification. The model is trained 410

to minimize the MSE between target rank vectors and predicted rank vectors and is 411

optimized with Adam (learning rate 10−6). A batch size of 32 is used in conjunction 412

with a maximum of 1,000 epochs and early stopping to prevent overfitting, meaning the 413

training will stop if validation accuracy does not improve. 414

APD Calculation 415

Once the model is trained, we can calculate APD between two spectrograms. This is 416

achieved by first dropping the dense layers and reconfiguring the model so that there is 417

only one input layer. Both spectrograms can be passed through the model, yielding two 418

512-dimensional feature vectors. We define the APD between these two spectrograms as 419

the cosine distance between the two vectors, which ranges from -1 to 1, with a vaule of 420

-1 indicating that the two vectors are exact opposites, 0 indicates they are orthogonal, 421

and 1 indicates they are identical. 422

APD = cos(θ) =
A ·B

∥A∥∥B∥
(2)
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where A and B are CNN-derived feature vectors with n = 512 dimensions from the 423

two spectrograms. 424

Shifting 425

To achieve the effect of shifting in either time or frequency domain, we pad the 426

spectrograms with lines of silence. In the example of temporal shifting, we obtain two 427

copies of the same spectrogram, one with n lines of silence added to the left and the 428

other with n lines of silence added to the right. The APD model and MSE are then 429

applied to both copies to characterize the error incurred by shifting the spectrogram. 430

Fine-tuning 431

We fine-tune the APD model on the morph stimuli dataset, under three different 432

conditions to simulate the three cohorts in the behavioral experiment. For each set of 433

morph stimuli judged by each subject, we train the model on all other morph stimuli 434

sets using the subject’s response probability as target. For example, to investigate the 435

model’s performance on mimicking subject X’s responses to stimuli set AE, we train a 436

model on all remaining stimuli X has been exposed to, including AF, AG, AH, etc. If 437

during behavioral experiment X classified AF12 as A 95% of the time, we assign a true 438

label of [0.95, 0.05] to the stimulus. Starting with weights from the pre-training step, 439

the model is optimized with Adam (learning rate 10−6) and trained to minimize 440

categorical cross-entropy between true labels and predicted labels. To avoid overfitting, 441

we inserted a 20% dropout after every dense layer. The output layer uses a softmax 442

activation function to better characterize the structure of classification labels. Same as 443

pre-training, early stopping is used to prevent overfitting. 444

Fitting Psychometric Curves 445

We model both the simulated and the measured behavior with a four-parameter logistic 446

regression characterized by the following formula: 447

P (x) = A+
K −A

1 + e−B(x−M)
(3)

Where A and K are the minimum and the maximum value that can be obtained, 448

respectively. M symbolizes the inflection point where the probability of yielding either 449

response is 0.5. B represents Hill’s coefficient, the measured slope at the inflection point. 450
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4. Purwins H, Li B, Virtanen T, Schlüter J, Chang SY, Sainath T. Deep learning 462

for audio signal processing. IEEE Journal of Selected Topics in Signal Processing. 463

2019;13(2):206–219. 464

5. Stevens SS, Volkmann J, Newman EB. A scale for the measurement of the 465

psychological magnitude pitch. The journal of the acoustical society of america. 466

1937;8(3):185–190. 467

6. Hudspeth AJ. How the ear’s works work. Nature. 1989;341(6241):397–404. 468

7. Kuhn A, Leppelsack H, Schwartzkopff J. Measurement of frequency 469

discrimination in the starling (Sturnus vulgaris) by conditioning of heart rate. 470

Die Naturwissenschaften. 1980;67(2):102–103. 471

8. Greenwood DD. The Mel Scale’s disqualifying bias and a consistency of 472

pitch-difference equisections in 1956 with equal cochlear distances and equal 473

frequency ratios. Hearing research. 1997;103(1-2):199–224. 474

9. Werker JF, Tees RC. Cross-language speech perception: Evidence for perceptual 475

reorganization during the first year of life. Infant behavior and development. 476

1984;7(1):49–63. 477

10. Ganong WF. Phonetic categorization in auditory word perception. Journal of 478

experimental psychology: Human perception and performance. 1980;6(1):110. 479

11. Mahendran A, Vedaldi A. Understanding deep image representations by inverting 480

them. In: Proceedings of the IEEE conference on computer vision and pattern 481

recognition; 2015. p. 5188–5196. 482

12. Dosovitskiy A, Brox T. Inverting visual representations with convolutional 483

networks. In: Proceedings of the IEEE conference on computer vision and 484

pattern recognition; 2016. p. 4829–4837. 485

13. Gatys LA, Ecker AS, Bethge M. A neural algorithm of artistic style. arXiv 486

preprint arXiv:150806576. 2015;. 487

14. Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and 488

super-resolution. In: European conference on computer vision. Springer; 2016. p. 489

694–711. 490

15. Gatys L, Ecker AS, Bethge M. Texture synthesis using convolutional neural 491

networks. Advances in neural information processing systems. 2015;28. 492

16. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale 493

hierarchical image database. In: 2009 IEEE conference on computer vision and 494

pattern recognition. Ieee; 2009. p. 248–255. 495

17. Kornblith S, Shlens J, Le QV. Do better imagenet models transfer better? In: 496

Proceedings of the IEEE/CVF conference on computer vision and pattern 497

recognition; 2019. p. 2661–2671. 498

18. Zhai X, Oliver A, Kolesnikov A, Beyer L. S4l: Self-supervised semi-supervised 499

learning. In: Proceedings of the IEEE/CVF International Conference on 500

Computer Vision; 2019. p. 1476–1485. 501

15/17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2024.02.28.582631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582631
http://creativecommons.org/licenses/by-nc-nd/4.0/


19. Noroozi M, Favaro P. Unsupervised learning of visual representations by solving 502

jigsaw puzzles. In: European conference on computer vision. Springer; 2016. p. 503

69–84. 504

20. Jing L, Tian Y. Self-supervised visual feature learning with deep neural networks: 505

A survey. IEEE transactions on pattern analysis and machine intelligence. 506

2020;43(11):4037–4058. 507

21. Kolesnikov A, Zhai X, Beyer L. Revisiting self-supervised visual representation 508

learning. In: Proceedings of the IEEE/CVF conference on computer vision and 509

pattern recognition; 2019. p. 1920–1929. 510

22. Carr AN, Berthet Q, Blondel M, Teboul O, Zeghidour N. Self-supervised learning 511

of audio representations from permutations with differentiable ranking. IEEE 512

Signal Processing Letters. 2021;28:708–712. 513

23. Zwicker E. Subdivision of the Audible Frequency Range into Critical Bands 514

(Frequenzgruppen). Journal of the Acoustical Society of America. 515

1961;33(2):248–248. 516

24. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale 517

image recognition. arXiv preprint arXiv:14091556. 2014;. 518

25. Klump GM, Maier EH. Gap detection in the starling (Sturnus vulgaris). Journal 519

of Comparative Physiology A. 1989;164(4):531–538. 520

26. Thielk M. The Unreasonable Effectiveness of Machine Learning in Neuroscience: 521

Understanding High-dimensional Neural Representations with Realistic Synthetic 522

Stimuli. University of California, San Diego; 2019. 523

27. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin 524

on its dissociation curves. j physiol. 1910;40:4–7. 525

28. Hill AV. The combinations of haemoglobin with oxygen and with carbon 526

monoxide. I. Biochemical Journal. 1913;7(5):471. 527

29. Weiss JN. The Hill equation revisited: uses and misuses. The FASEB Journal. 528

1997;11(11):835–841. 529

30. Hulse SH, Cynx J. Relative pitch perception is constrained by absolute pitch in 530

songbirds (Mimus, Molothrus, and Sturnus). Journal of Comparative Psychology. 531

1985;99(2):176. 532

31. Rouse AA, Patel AD, Kao MH. Vocal learning and flexible rhythm pattern 533

perception are linked: Evidence from songbirds. Proceedings of the National 534

Academy of Sciences. 2021;118(29). 535
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