
Rapid hyperspectral photothermal mid-infrared

spectroscopic imaging from sparse data for gynecologic

cancer tissue subtyping

Reza Reihanisaransari,†,§ Chalapathi Charan Gajjela,†,§ Xinyu Wu,† Ragib Ishrak,†

Sara Corvigno,‡ Yanping Zhong,‡ Jinsong Liui,‡ Anil K. Sood,‡ David Mayerich,†

Sebastian Berisha,¶ and Rohith Reddy∗,†,∥

†Department of Electrical and Computer Engineering, University of Houston, Houston, TX

‡The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

¶Milwaukee School of Engineering, Milwaukee, WI, USA

§Both authors contributed equally to this work

∥Address, 4226 Martin Luther King Boulevard, N308 Engineering Building 1, Houston TX,

77584, USA

E-mail: rkreddy@uh.edu

Abstract

Ovarian cancer detection has traditionally relied on a multi-step process that in-

cludes biopsy, tissue staining, and morphological analysis by experienced pathologists.

While widely practiced, this conventional approach suffers from several drawbacks: it

is qualitative, time-intensive, and heavily dependent on the quality of staining. Mid-

infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quan-

titative technology that, when combined with machine learning algorithms, can elim-

inate the need for staining and provide quantitative results comparable to traditional
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histology. However, this technology is slow. This work presents a novel approach to

MIR photothermal imaging that enhances its speed by an order of magnitude. Our

method significantly accelerates data collection by capturing a combination of high-

resolution and interleaved, lower-resolution infrared band images and applying com-

putational techniques for data interpolation. We effectively minimize data collection

requirements by leveraging sparse data acquisition and employing curvelet-based re-

construction algorithms. This approach enhances imaging speed without compromis-

ing image quality and ensures robust tissue segmentation. This method resolves the

longstanding trade-off between imaging resolution and data collection speed, enabling

the reconstruction of high-quality, high-resolution images from undersampled datasets

and achieving a 10X improvement in data acquisition time. We assessed the perfor-

mance of our sparse imaging methodology using a variety of quantitative metrics, in-

cluding mean squared error (MSE), structural similarity index (SSIM), and tissue sub-

type classification accuracies, employing both random forest and convolutional neu-

ral network (CNN) models, accompanied by Receiver Operating Characteristic (ROC)

curves. Our statistically robust analysis, based on data from 100 ovarian cancer patient

samples and over 65 million data points, demonstrates the method’s capability to pro-

duce superior image quality and accurately distinguish between different gynecological

tissue types with segmentation accuracy exceeding 95%. Our work demonstrates the

feasibility of integrating rapid MIR hyperspectral photothermal imaging with machine

learning in enhancing ovarian cancer tissue characterization, paving the way for quan-

titative, label-free, automated histopathology. It represents a significant leap forward

from traditional histopathological methods, offering profound implications for cancer

diagnostics and treatment decision-making.

1 Introduction

Mid-infrared spectroscopic imaging (MIRSI) is a class of quantitative, label-free, non-

destructive techniques for acquiring spatially resolved chemical information from a sample.

Its utility extends across various fields, such as disease diagnosis, offering an alternative to
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histopathology1–9, as well as material science10–12, environmental and toxicological chem-

istry13,14, and forensics15,16. Fourier transform infrared (FT-IR) spectroscopic imaging is

the best-known MIRSI technology and has been the de facto standard for spatially resolved

molecular fingerprinting of organic molecules6–8,17. FT-IR measurements typically cover

800-4000 cm−1 MIR wavenumbers. However, the acquisition process is notably slow, as

not every wavenumber offers distinct chemical information. Additionally, the resolution

of FT-IR is constrained by diffraction limits18. For effective analysis, samples must be

thin (around 5 µm) and dehydrated due to the substantial challenges posed by water ab-

sorption. Previous research has demonstrated that only a certain subset of wavenumbers

contain features necessary for deciphering the chemical composition of samples19–21. The

adoption of Quantum Cascade Laser (QCL)-based Discrete Frequency IR (DFIR) imaging

mitigates some of the limitations of FT-IR imaging by facilitating data acquisition at fewer

wavenumbers, specifically those with chemically significant features22–25. The tunability

and wavenumber selectivity offered by QCL sources enable DFIR instruments to acquire

data at specific wavenumbers tailored to the application, thereby enhancing the speed

of data acquisition. Despite these advancements, both DFIR and FT-IR are subject to a

diffraction-limited spatial resolution of 5.5 µm.

The introduction of Optical Photothermal Infrared (O-PTIR) imaging26–30 overcomes

resolution limitations by providing a 0.5 µm spatial resolution and delivers information

100 times more detailed than that provided by FT-IR. O-PTIR imaging overcomes the IR

diffraction limit using a pump and probe mechanism. The IR-induced photothermal effect

alters the sample’s optical properties, leading to changes in visible light intensity, which is

proportional to the IR absorption of infrared radiation. Detection is achieved through a

coaxial and confocal visible (532 nm) light probe illustrated in Figure1. Figure 2 compares

the image quality of O-PTIR, FT-IR on the same cancer tissue. Cropped region in this figure

is 140×140 µm. At 5×5 µm resolution we have 28×28 pixels which is the limit for FTIR. On

the other hand, same region for O-PTIR at 0.5×0.5 µm resolution has 280×280 pixels. The
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improved spatial resolution of O-PTIR relative to FT-IR is evident. However, this superior

resolution results in extended data acquisition times.

QCL (IR) Green Laser Sample

(a) (b)

(c)

(d)

(e)

(f)

Figure 1 Schematic illustration of the O-PTIR optical configuration showing both the IR and green (532
nm) laser paths. Pulsed QCL at point (a) causes a photothermal expansion in the sample. A Continuous
Wave (CW) green laser, indicated by (b), is collinearly directed onto the sample to serve as a probe
beam. A dichroic mirror (c) merges the green and QCL beams, focusing them onto the sample (e)
through a reflective Cassegrain objective (d). The resulting modulation in the intensity of the green light
(f), scattered back from the sample, facilitates the measurement of its IR absorbance.

To successfully apply O-PTIR imaging in clinical settings, faster acquisition speeds are

required, which are currently not achievable. One possible solution is to exploit the high

data redundancy in MIRSI through sparse data acquisition and subsequent reconstruc-

tion, significantly shortening the data acquisition time by orders of magnitude. Research

across various modalities has demonstrated the feasibility of reconstructing data using di-

verse sparse sampling algorithms31. This paper proposes using non-uniform rectangular

sampling for data acquisition, along with curvelet-based reconstruction, to dramatically

improve data acquisition speed.

The following discussion highlights acquisition speed challenges with current commer-

cial O-PTIR systems and also suggests potential solutions. O-PTIR imaging employs raster

scanning, with imaging time directly proportional to the image’s height (Y dimension). Ta-

ble 1 demonstrates that utilizing rectangular data sampling can reduce imaging time. In-
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Conventional FTIR O-PTIR

140 µm

14 µm

Figure 2 Comparison of High-Definition FT-IR and O-PTIR images of a cancerous Core. This figure illus-
trates the significant advantage of O-PTIR over FT-IR, showcasing its ability to overcome the diffraction
limit, which results in enhanced spatial resolution. The improved image quality of O-PTIR is evident.

creasing the spacing for data sampling along the Y-dimension means less data is collected

compared to uniformly sampled data at high resolution across both X and Y dimensions.
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The third column of the table presents the percentage of data acquired relative to the orig-

inal high-resolution images. This non-uniform sampling method coupled to reconstruction

algorithms32 can effectively reduce acquisition time by leveraging the spatial and spectral

sparsity inherent in MIRSI data21.

Validating our approach with multiple methodologies is essential for ensuring the ro-

bustness and generalizability of our methods. Therefore, we propose three independent

metrics for assessing reconstruction accuracy: mean square error (MSE), structural simi-

larity index measure (SSIM), and classification accuracy. MSE quantifies the average dis-

crepancy between the reconstructed images and the original, ground-truth images. In

contrast, SSIM evaluates the visual similarity and the presence of artifacts in the recon-

structed images. The application of machine learning algorithms is pivotal in various do-

mains, ranging from electronics33 to cancer diagnosis34. Given that one primary objective

of our reconstruction is to enhance the segmentation accuracy of different cell types, we

have employed machine learning algorithms and assessed their classification accuracy as

an additional metric to ensure optimal reconstruction performance. We obtain data at

multiple pixel spacing, measure reconstruction accuracies using the aforementioned met-

rics, and optimize our algorithms to achieve reliable performance. This reconstruction

approach represents a novel and promising method capable of accelerating the acquisition

of high-resolution spectroscopic data tenfold, thereby unlocking the full capabilities of the

O-PTIR system.

2 Materials and Methods

An ovarian biopsy tissue microarray (TMA) was obtained from Biomax US (BC11115c) and

imaged using a commercial O-PTIR system (Mirage, Photothermal Spec.). The TMA con-

sists of paraffin-embedded cores mounted on a 1 mm thickness CaF2 substrate. These cores

are from separate patients with cases of normal, hyperplastic, dysplastic, and malignant

tumors. The patient cohort was composed of women aged 29 to 69; ovarian tumor stages
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Table 1 Sample X-Y versus time for single band imaging (minutes needed for imaging 1500×1500 µm
region). As the pixel spacing increases, the acquisition time decreases, as shown in the second column.
The higher pixel spacing results in some data being missing, as a tradeoff.

X-Y spacing Imaging time Data fraction

(µm × µm) (minutes) (%)

0.5 µm × 0.5 µm 90 100%

0.5 µm×1 µm 45 50%

0.5 µm×2 µm 23 25%

0.5 µm×3 µm 15 15%

0.5 µm×5 µm 9 10 %

0.5 µm×10 µm 4.5 5 %

0.5 µm×20 µm 2.5 2.5 %

varied between stage I to stage IIIC; histological subtypes include clear cell carcinoma,

high-grade serous carcinoma, and Mucinous adenocarcinoma. The deparaffinization was

done following the protocol along the lines described in Baker et al.7 before undergo-

ing O-PTIR imaging. The paraffin-embedded samples were deparaffinized by washing the

sample in 100% xylene twice for 5 minutes each and then with 100% ethanol thrice. The

corresponding adjacent histological section was stained with H&E and examined by an ex-

pert pathologist. Cell subtypes were identified across disease stages. We trained a random

forest (RF) classifier, and a CNN model by using the 45 cores on the left half of TMA for

training and testing on the remaining 55 cores on the right half of TMA, ensuring that we

have an appropriate amount of pixels for each class in training and testing.

2.1 Data acquisition

The O-PTIR dataset was acquired using a Photothermal mIRage microscope with a sili-

con photodiode, a pixel size of 0.5 µm×0.5 µm and a 0.65 numerical aperture. A Quantum

Cascade Laser (QCL) source sweeps through the range of 902 cm−1 to 1898 cm−1. Each

core was imaged at 28 selected wavenumbers (908 cm−1, 974 cm−1, 984 cm−1, 1036 cm−1,
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1070 cm−1, 1102 cm−1, 1136 cm−1, 1178 cm−1, 1238 cm−1, 1280 cm−1, 1300 cm−1, 1325 cm−1,

1358 cm−1, 1396 cm−1, 1420 cm−1, 1456 cm−1, 1482 cm−1, 1500 cm−1, 1536 cm−1, 1556 cm−1,

1596 cm−1, 1610 cm−1, 1662 cm−1, 1668 cm−1, 1682 cm−1, 1746 cm−1, and 1786 cm−1 ). Amide

I band (1660 cm−1) was collected at high resolution (0.5 µm×0.5 µm pixel size) and the re-

maining 27 bands were collected at (0.5 µm×5 µm pixel size.) for the entire TMA. Image

of the TMA acquired at the Amide I band is shown in Figure 3. Background spectra are

collected with 8 co-additions and used to normalize the raw data to calculate the IR ab-

sorbance at each band. We also collected these bands for 4 random cores at different

spacing in Y-axis (0.5 µm×0.5 µm, 0.5 µm×1 µm, 0.5 µm×2 µm, 0.5 µm×3 µm, 0.5 µm×5 µm,

0.5 µm×10 µm, 0.5 µm×20 µm) in order to calculate MSE and SSIM to identify the optimal

pixel spacing for effective image reconstruction.

The adjacent H&E stained TMA was imaged with a Nikon inverted optical microscope

with a 10X, 0.4NA objective in the brightfield mode, and has diffraction-limited spatial

resolution in the visible range (0.4 µm - 0.7 µm).

2.2 Sparse Image Reconstruction

We imaged tissue cores using sparse sampling along the y-axis to reduce O-PTIR imaging

time, resulting in rectangular hyperspectral images. Using the curvelet transform, we re-

constructed images to match the best resolution afforded by O-PTIR. These images were

resized, registered, and then enhanced using an unsupervised curvelet transform, as illus-

trated in Figure 4. The images were acquired with a 0.5 µm spacing along the x-axis and

variable spacing along the y-axis, ranging from 0.5 µm to 20 µm.

2.2.1 Interpolation

To reconstruct images, we initially rescale the raw rectangular images along the y-dimension

to match a pixel size of 0.5 µm×0.5 µm. This process involves computing the Fourier trans-

form of each low-resolution (0.5 µm×5 µm) band, then centering the lower frequencies in

the Fourier domain. We utilize the high-resolution (0.5 µm×0.5 µm) Amide I band (1660
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Figure 3 Microarray of ovarian cancer cores imaged by O-PTIR at the 1660 cm−1 band. The data
encompasses samples from 100 ovarian cancer patients. Variations in tissue biochemistry are highlighted
by the color differences, demonstrating the rich biochemical information at the 1660 cm−1 band, chosen
for high-resolution reconstruction due to its significance in the fingerprint region. Scale bar: 1.5 mm.

cm−1) as a reference for determining the interpolated image’s dimensions. Subsequently,

we zero-pad the low-resolution image along the y-axis to align with the high-resolution

image’s size. After padding, we apply a Gaussian window to smooth the image. The inter-

polated image is finally obtained by performing the inverse Fourier transform. Please see

Figure 5 for a visual overview of the interpolation process.
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Figure 4 Schematic for the data reconstruction algorithm used to enhance data acquisition speed. The
figure illustrates how rectangular pixel-spaced data (0.5X5) acquired from the O-PTIR system is used
to reconstruct 27 high-resolution, diffraction-limited band images. This method increases the data
acquisition speed by 10X, yielding high-resolution images that offer more detailed information for improved
segmentation of different cell types. The algorithm fuses spatial features from a high-resolution Amide I
image with the linearly interpolated rectangular image via curvelet transform. This fusion preserves the
biochemical information of each band image while accurately translating the spatial features of biological
samples.
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Figure 5 Method for interpolating low-resolution band images. We begin by performing a Fourier trans-
form, followed by padding zeros along the Y-axis, and then applying a Gaussian filter to isolate lower
frequencies. The interpolated image is obtained by taking the inverse Fourier transform.
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2.2.2 Curvelet Transform

We applied a curvelet transform-based image sharpening algorithm to improve the qual-

ity of interpolated square images, which showed increased blurring along the y-axis with

greater sampling distances. This method, inspired by our research on multi-modal fusion

to enhance the spatial resolution of FTIR images31, was adapted to increase O-PTIR imag-

ing speed through sparse sampling along the y-axis. The algorithm effectively enhances

images by incorporating spatial information from high spatial resolution band images into

lower spatial resolution images, aligning the quality with that of high-resolution images.

Our previous multi-modal image fusion study employed dark-field imaging to capture high-

resolution spatial information, circumventing the diffraction-limited spatial resolution of

FTIR imaging31. Given that O-PTIR can achieve a resolution of 0.5 µm, it allows us to avoid

the previous challenges associated with integrating data from two distinct technologies,

enabling the reconstruction of high-resolution 0.5 µm × 0.5 µm band images solely from

sparse O-PTIR data. Furthermore, data from multiple O-PTIR bands are co-registered at

acquisition. We initially perform linear equalization between the Amide I band image and

each interpolated band image to preserve spectral information and adjust for absorption

across different bands. Following equalization, we employ CurveLab 2.1.2 to reconstruct

the interpolated image using the high-resolution image. We acquire the curvelet trans-

form of the interpolated and Amide I images and combine the low-frequency components

from the interpolated image while selecting high-frequency components from the Amide

I image, resulting in sharper edges in the reconstructed image. We compute the inverse

curvelet transform on the combined data to get the sharpened high-resolution band image.

The schematic is presented in Figure 6.

The sharpened image exhibits superior edge delineation compared to the interpolated

image, as demonstrated in Figure 7. The high-resolution image, experimentally collected

at a pixel size of 0.5 µm × 0.5 µm, shows edges and intensities akin to those in the re-

constructed image. In contrast, the interpolated image appears blurred, with smoother
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Figure 6 Data fusion through curvelet transform involves taking the curvelet transform of both low-
resolution band images and the high-resolution Amide I image. We obtain the high-frequency coefficients
from the high-resolution image to achieve sharp edges, while low-frequency coefficients are obtained from
the low-resolution band image. By combining these two and taking the inverse curvelet transform, we
obtain the reconstructed band image.

edges, potentially diminishing the accuracy of CNN networks that rely on both spectral

and spatial information.

2.3 Data annotation

Based on H&E-stained microscopy data, two pathologists independently classified tissue

cores as stroma, epithelium, or necrosis. H&E and IR images were manually aligned to

generate annotated data for machine learning, and labels were subsequently transferred

to O-PTIR images. The tissue microarray (TMA) was divided into two halves, ensuring an

equal number of cores in each cohort: the right half was designated for training, while the

left half was reserved for testing.

2.4 Classification Models and Hyperparameters

The hyperparameters for the random forest classifier and the convolutional neural net-

work (CNN) remain consistent with those reported in our previous work35. The primary
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Sharpenedinterpolated High resolution50μm

a) c)b)

Figure 7 Comparison of (a) interpolated, (b) computationally reconstructed, and (c) experimentally
obtained high-resolution images. The comparison reveals that data collected at higher speeds with
lower resolution can be effectively compensated for by our image sharpening method, which significantly
improves upon the interpolated image.

enhancements in this study involve expanding the input from five to twenty-seven bands

and increasing the quantity of training and testing data. Details on the total number of

pixels allocated for testing and training are provided in Table 2.

Table 2 Number of O-PTIR pixels in training and testing datasets separated by class. To create the
training and testing cohorts, the TMA is divided in half. First, a small, random data set is chosen, and
a classifier is optimized. To prevent class bias in training, equal numbers of pixels are selected from each
class. 10,000 O-PTIR pixels per class are used in the RF classifier and 400,000 pixels per class for CNNs.

Class Training Testing
Epithelium 11,242,103 24,056,862
Stroma 10,039,196 17,565,714
Necrosis 2,286,794 583,072
Total 23,568,093 42,205,648
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2.5 Implementation

All data pre-processing, processing, training and testing were performed in Python using

open-source software packages. The CNNs were implemented in Python with the Keras

library36, and the random forest was implemented using the Scikit-learn library.37. An

GeForce RTX 3090 GPU was used to measure the performance of the CNN classifier on five

different sets of randomly selected training pixels.

3 Results

We calculated the mean square error (MSE) and structural similarity index (SSIM) across

various pixel spacings for four cores. SSIM evaluates the spatial feature similarity between

reconstructed and original data, aiming for values near 1 for high similarity. MSE measures

the average pixel error, with lower values indicating better reconstruction. The means and

standard deviations of these metrics are depicted in Figure 8. Both plots indicate that a

pixel spacing of 0.5 µm by 5 µm yields favorable results compared to larger pixel spacings.

While smaller pixel spacings lead to improved outcomes, a balance must be struck between

data collection efficiency and reconstruction accuracy. Therefore, we recommend a pixel

spacing of 0.5 µm by 5 µm as an optimal parameter for data collection using this technique.

Overall accuracy (OA) and receiver operating characteristic (ROC) curves were used to

evaluate classifier performance. OA represents the percentage of pixels mapped correctly

to the appropriate class for binary and multi-class classification. A ROC curve illustrates

the correlation between specificity and sensitivity for identifying acceptable false positives

and true positives.

We performed tissue segmentation using the Random Forest (RF) classifier, which lever-

ages spectral information, and Convolutional Neural Networks (CNN), which utilize both

structural and spectral information. The overall and class-wise accuracies for the testing

dataset are detailed in Table 3. Compared to our previous work35, the accuracy of the

RF classifier improved by approximately 35%, attributed to the increase in the number
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a) b)

Figure 8 Reconstruction accuracy vs pixel spacing. (a) Mean square error and (b) structural similar-
ity (SSIM) averages vs pixel spacing. Data were collected from four cores at varying spacings along
the Y-axis (0.5 µm×0.5 µm, 0.5 µm×1 µm, 0.5 µm×2 µm, 0.5 µm×3 µm, 0.5 µm×5 µm, 0.5 µm×10 µm,
0.5 µm×20 µm). The 0.5 µm×0.5 µm spacing image served as a reference. We calculated MSE and
SSIM for the various spacings and reported the mean and standard deviation for the cores.

of band images from five to twenty-seven. This expansion provides the RF classifier with

more spectral information, leading to higher accuracies. As anticipated, CNNs surpass RF

in performance, benefiting from their ability to incorporate structural information.

Table 3 Accuracy scores for the classification of Epithelium, Stroma, and Necrosis using (a) Random
Forest (RF) and (b) Convolutional Neural Networks (CNNs) were averaged across five repetitions. The
superior classification accuracy of CNNs can be attributed to their ability to leverage both spatial and
spectral features, thereby outperforming RFs, which rely solely on spectral features. We determined the
overall accuracy by calculating the weighted average accuracy of the classes.

Class RF CNN
Epithelium 82.3±0.2 97.33±1.52
Stroma 73.8±0.2 94.00±1.97
Necrosis 72.6±0.1 83.00±1.97
Total 87.63±0.2 95.735±0.82

Results that characterize the performance of all classifiers, as demonstrated by the Area

Under the Curve (AUC) in a Receiver Operating Characteristic (ROC) plot, are presented

in Figure 10. Note that CNNs outperform RFs across all classes. This superiority of CNNs,

attributed to their utilization of spatial features, which RFs lack, underscores the signifi-

cance of integrating spatial and spectroscopic information to enhance tissue classification
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Figure 9 Comparison of stained image (a) identified as ground truth by a pathologist, with classifications
by RF (b) and CNN (c) for two ovarian tissue cores. The RF model demonstrates significant improvement
over our previously published results, attributed to the increased number of bands. Conversely, the CNN
model achieves classification comparable to that of a pathologist’s analysis on a stained tissue microArray
(TMA), owing to its utilization of both spectral and spatial information.

a) c)b)

Figure 10 ROC curves and associated AUC values for each tissue subtype. CNN (blue line) demonstrates
superior results compared to RF (dashed orange line) across all tissue subtypes: (a) epithelium, (b)
necrosis, and (c) stroma.

accuracy.
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4 Discussion

O-PTIR technology enhances spectral data resolution from ≈ 5µm to 0.5µm, outperforming

current state-of-the-art FTIR systems. This advancement results in a 100× increase in pixel

count over the same sample area, offering unprecedented spatial features and chemical

information beyond what existing IR spectroscopic techniques can provide. However, this

high resolution comes at the cost of slower data acquisition speeds, limited by the signal-to-

noise ratio (SNR) and the stage speed of commercial O-PTIR imaging systems. Therefore,

optimizing the hyperspectral data collection process for O-PTIR is essential.

To address this challenge, we implemented sparse, interleaved sampling along the Y-

axis while maintaining the sampling rate at the diffraction limit in the X-direction. Al-

though various robust sampling methods, such as random and Lissajous sampling, are

viable for data reconstruction, the commercial system’s design facilitates rapid acquisition

along the X-axis at high pixel density, but acquisition is slow along the Y-axis. Given these

constraints, we opted for interleaved Y-sampling as the most efficient strategy to collect

sparse data.

The size of pixels chosen for sampling relies on striking a balance between the time

required to obtain data and the accuracy of data reconstruction. Table 1 outlines the

time it takes to collect data for a specific area, with sampling pixel sizes ranging from 0.5

to 10 µm. In these sets of samples, collecting each band image at full resolution would

take approximately 37 hours; therefore, for 28 band images for each core, it would take

approximately 37 hours at 0.5× 0.5µm pixel spacing. In our method, by collecting 27

bands at 0.5× 5µm, and one band at maximum resolution for reconstruction purposes,

each core image takes about 5 hours to collect. This shows that data collection alone is

shortened almost 7 times, including all overheads. To determine the best pixel spacing,

we used three key metrics, namely SSIM, MSE, and classification accuracy, to compare

reconstructed data with high-resolution data from the O-PTIR system. These metrics were
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Figure 11 Classification results of 100 cores with (a) RF and (b) CNN. Red, Green, and Blue channels
correspond to epithelium, stroma, and necrosis respectively. The scale bar is 1.5 mm

evaluated on five cancer cores selected randomly from an ovarian TMA. We limited the

evaluation to only five cores because acquiring the 27 high-resolution images for each core

can take anywhere from 24 to 36 hours, depending on core size. Therefore, obtaining

high-resolution images for all 100 cores to compute these metrics is impractical. The

SSIM metric measures the similarity in spatial features between the reconstructed data

and the original raw data, aiming for a value close to 1 to indicate high similarity. The

MSE measures the mean pixel-wise discrepancy between the reconstructed and original

images, with values approaching zero indicating better reconstruction quality. To verify

the accuracy of the reconstructed data in representing biological features, we employed

random forest and Convolutional Neural Networks (CNNs) to determine whether these

supervised machine learning algorithms could effectively distinguish between different

cell types within ovarian and cervical tissues.

In our previous study, we classified epithelium and stroma in ovarian tissue using im-

ages from five specific wavenumbers with both random forest and CNN algorithms35.

However, the 5-bands have insufficient spectroscopic information for identifying classes
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beyond epithelium and stroma, and the need for a broader range of wavenumbers became

apparent. Therefore, we needed a broader range of wavenumbers. Here, we present a

generalized approach to practically obtain hyperspectral data that opens new possibilities

using O-PTIR. Inspired by results38 that indicate that a whole (1600 band) hyperspectral

data cube is unnecessary for multi-class classification in FT-IR, we selected 27 wavenum-

bers to achieve efficient multi-class classification.

Our study reveals that a CNN significantly outperformed a random forest classifier,

primarily because the latter depends on pixel-wise spectral data, whereas CNNs leverage

spatial in addition to spectral features. The addition of 22 new reconstructed band im-

ages significantly improved the classification performance of the random forest classifier as

demonstrated in Figure 10 and Table 3. The performance of random forest demonstrated

the need for more spectral information, but obtaining additional band images would sig-

nificantly increase the data acquisition time.

Comparing our results to previous research35 on the binary classification of ovarian

cancer, we observed that the accuracy of the random forest classifier increased from 53%

with 5 bands to 87% with 27 bands, thanks to the richer spectral information. Similarly,

using CNNs led to an accuracy improvement from 90% to 95% when employing 27 bands.

Note that our results from multi-class classification outperforms prior binary classification,

which is a testament to the robustness and effectiveness of our approach. The classification

outcomes for each algorithm are depicted in Figure 11, with red, green, and blue channels

representing epithelium, stroma, and necrosis, respectively. Additionally, Figure 9 shows

two cores containing all classes. An adjacent section, stained with H&E and annotated by

a pathologist, shows a close alignment with our classification results.

5 Conclusion

We propose a novel high-speed Mid-Infrared Spectral Imaging (MIRSI) approach that re-

constructs hyperspectral images using curvelets, addressing the significant bottleneck of

19



data acquisition time in traditional MIRSI imaging. This technique involves acquiring

sparse, interleaved data and applying reconstruction algorithms to overcome the chal-

lenges associated with slow data acquisition rates. By selecting higher-order curvelet co-

efficients from the Amide I image, our algorithm effectively reconstructs missing spatial

information in sparse hyperspectral data, resulting in sharper edges and enhanced delin-

eation of tissue features. To validate our approach, we employed several metrics, including

MSE, SSIM, and tissue classification, to evaluate our method’s capability in categorizing

different cell types within an ovarian biopsy. Our technique improves O-PTIR data ac-

quisition speed by 10X, making label-free histopathology practical. We have validated

our approach extensively on statistically robust datasets with 100 ovarian cancer patients

and >65 million data points. This work is a crucial step towards quantitative, label-free,

automated histopathology and will be an invaluable tool for early cancer detection and

comprehensive evaluation of ovarian tissue.
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