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Abstract
Background: A better understanding of the structure of relations among insomnia and anxiety, mood,
eating, and alcohol-use disorders is needed, given its prevalence among young adults. Supervised
machine learning provides the ability to evaluate the discriminative accuracy of psychiatric disorders
associated with insomnia. Combined with Bayesian network analysis, the directionality between
symptoms and their associations may be illuminated.

Methods: The current exploratory analyses utilized a national sample of college students across 26 U.S.
colleges and universities collected during population-level screening before entering a randomized
controlled trial. Firstly, an elastic net regularization model was trained to predict,

via repeated 10-fold cross-validation, which psychiatric disorders were associated with insomnia severity.
Seven disorders were included: major depressive disorder, generalized anxiety disorder, social anxiety
disorder, panic disorder, post-traumatic stress disorder, anorexia nervosa, and alcohol use disorder.
Secondly, using a Bayesian network approach, completed partially directed acyclic graphs (CPDAG) built
on training and holdout samples were computed via a Bayesian hill-climbing algorithm to determine
symptom-level interactions of disorders most associated with insomnia [based on SHAP (SHapley
Additive exPlanations) values)] and were evaluated for stability across networks.

Results: Of 31,285 participants, 20,597 were women (65.8%); mean (standard deviation) age was 22.96
(4.52) years. The elastic net model demonstrated clinical signi�cance in predicting insomnia severity in
the training sample [R2 = .449 (.016); RMSE = 5.00 [.081]), with comparable performance in accounting
for variance explained in the holdout sample [R2 = .33; RMSE = 5.47). SHAP indicated the presence of any
psychiatric disorder was associated with higher insomnia severity, with major depressive disorder
demonstrated to be the most associated disorder. CPDAGs showed excellent �t in the holdout sample
and suggested that depressed mood, fatigue, and self-esteem were the most important depression
symptoms that presupposed insomnia. 

Conclusion: These �ndings offer insights into associations between psychiatric disorders and insomnia
among college students and encourage future investigation into the potential direction of causality
between insomnia and major depressive disorder.

Trial registration: Trial may be found on the National Institute of Health RePORTER website: Project
Number: R01MH115128-05.

Introduction
Sleep disturbance is often conceptualized as a transdiagnostic mechanism observed across a range of
psychiatric disorders [1] and, in some cases, is even included as a diagnostic criterion [2]. Unlike earlier
conceptualizations of insomnia as merely a symptom or consequence of other mental health issues, an
emerging perspective suggests that sleep and other psychiatric disorders are intricately intertwined and
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bidirectional [3]. Such implications are not unexpected given that patients who report sleep-wake
disorders, notably and most commonly, insomnia, exhibit higher rates of comorbidity, e.g., 40% of those
with insomnia report having additional disorders as compared to 16.4% of those with no sleep di�culties
[4]. Meta-analyses and reviews have found associations between sleep disturbance and most psychiatric
disorders, including all anxiety disorders, depression, alcohol use disorder, and eating disorders [5–7].
Given the interrelationships between insomnia and several psychiatric disorders, further teasing apart its
relations may help us understand important associations and their directionality.

Embracing such complexity requires a nuanced approach and the ability to aggregate disparate small
variable effects to inform clinical outcomes. Unlike traditional statistical models (e.g., linear regression),
machine learning engenders the opportunity to capture the simultaneous effect of all relevant predictors,
even accounting for complex, interactive, or non-linear effects [8]. Particularly, supervised machine
learning, such as elastic net regularization, possesses the capacity to predict outcomes of interest
whereas minimizing the adverse effects of noisy data and reducing the probability of spurious, false
positive associations [9]. Accordingly, elastic net regularization has been shown to lead to parsimonious
models with greater stability and accuracy and with higher out-of-sample predictive performance (i.e.,
increasing the generalizability of the model to new patients) relative to linear regression [10].
Consequently, such algorithms have been exempli�ed in recent studies; for example, utilizing baseline
data from a randomized controlled trial, Bard et al. [11] individually predicted functional impairment and
the relative importance of depressive and anxiety symptoms among insomnia patients. Or, for instance,
Lyall et al. [12] who employed actigraphy and mental health data from the UK Biobank to determine the
most important sleep features (e.g., sleep duration, chronotype) related to depression and whether
patients with poorer outcomes could be identi�ed. Although the advantages of employing elastic net
regularization are evident, disentangling directionality remains a challenge. Although there are
interpretability frameworks such as the seminal SHAP (Shapley Additive exPlanations), which elucidates
variable importance along with their directions [13], revealing the structure of relations and related
emergent properties persists as a formidable task.

Network analysis is one methodological approach suited for such an endeavor, given its telos of
disentangling the complex dynamics of self-reinforcing causal interactions between symptoms [14].
Broadly, in such an approach, a network comprises symptoms (nodes) and the associations between
them (edges). In other words, an edge between nodes represents a conditional dependent relationship
between two symptoms whereas keeping all other symptoms in the network constant [15]. Within this
approach, hypotheses posit symptoms as causal agents that promote the development of other
symptoms and, when unabated, go beyond a critical threshold and develop into a new harmful
equilibrium known as a psychiatric disorder [16, 17].

Insomnia as a node or a set of nodes has appeared in many prior cross-sectional network analyses,
providing snapshots of associations between symptoms. Extant studies include examining insomnia's
network structure itself [18–24] but also the relationships between single disorders, such as major
depressive disorder (MDD) [25–28], post-traumatic stress disorder (PTSD) [29], psychosis [30], and
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schizophrenia [31], or between transdiagnostic factors, such as hyperarousal [32] or personality traits
[33]. However, cross-sectional networks have also been developed between insomnia and multiple
disorders, most commonly between MDD and generalized anxiety disorder (GAD) [11, 34–39] or with the
further addition of PTSD [40], but also between prolonged grief disorder (PGD) and PTSD [41]. Most
studies utilized the Graphical Gaussian Model (GGM), in other words, an undirected network of partial
correlation coe�cients, along with the graphical LASSO (Least Absolute Shrinkage and Selection
Operator [42]), as a regularization technique to avoid spurious, false-positive edges. However, as pointed
out by Williams and Rast [43] and further highlighted by McNally et al. [44], graphical LASSO was
developed and optimized for high-dimensional settings with more variables than the number of
participants, which often is not the case in typical network structures thus leading to unwarranted
sparsity. Moreover, despite efforts, the conventional GGM approach employed in such studies make little
inferences on directionality.

Conversely, Bayesian network analysis, such as directed acyclic graphs (DAGs), allows for estimating
directed networks built on cross-sectional data. Although DAGs cannot con�rm temporal precedence,
such methods can provide preliminary clues to identify the direction of probabilistic dependence between
edges [45]. In other words, if an edge originates from node X and connects to node Y (i.e., X → Y), node
Y's presence suggests or predicts node X's presence more strongly than vice versa. Whereas the node
considered the "parent" (X) might be present without its "offspring" (Y), the presence of the offspring
indicates the presence of the parent. However, the assertion of causality is predicated on multiple
conditions: these include, the absence of any bidirectional causal relations (such as X causing Y and Y
causing X) or causal loops (such as X causing Y, Y causing Z, and Z causing X); and second, the absence
of any signi�cant variables missing from the dataset [44]. To our knowledge, two studies on insomnia
and common comorbidities have taken such a Bayesian approach. In one of these studies, Zhang et al.
[46] elucidated associations between insomnia and depression and health-related behaviors (e.g., internet
use, physical inactivity, smoking, alcohol consumption) among adolescents in China. In the other study,
Yu et al. [47] examined the relationships between sleep disturbance and mental health (e.g., anxiety,
depression, loneliness, well-being, health attitudes) among adults in China. However, whether such
associations can be generalized to other demographic groups or other psychiatric disorders requires
further evaluation.

The current exploratory study thus aims to �ll these gaps by examining the associations among
insomnia and MDD, GAD, social anxiety disorder (SAD), panic disorder (PD), PTSD, anorexia nervosa (AN),
and alcohol use disorder (AUD) among a nationally representative sample of treatment-seeking U.S.
college students. Moreover, the present investigation extends a study by McCallum et al. [5], which used
simple regression to examine the associations between sleep and nine mental health disorders. Often, the
reliability and replicability of parameter estimates in cross-sectional network analyses are not considered
and are, at the least, questionable [e.g., 48, 49–51]. In other words, echoing Epskamp et al. [15], the
number of participants in network studies is typically insu�cient to estimate the parameters included in
the network accurately. Consequently, we used supervised machine learning to predict insomnia severity
and network psychometrics to assess the directionality between comorbidities while also increasing
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power (cf. N = 3620). Furthermore, per recommendations by Bard and colleagues [11], we utilized causal
search algorithms to elucidate the dynamics involved between insomnia and multiple psychiatric
disorders. To do so, in line with Neal and Neal [52], who demonstrated the validity implications of
in/exclusion of nodes when estimating networks and respective calls to action in needing conceptional
justi�cation of to-be modeled set of variables [52, 53]. The current investigation employed a
straightforward, statistical approach to selecting edges in a graphical model. First, supervised machine
learning determined the best subset of psychiatric disorders that led to optimal performance in predicting
insomnia severity. Second, DAGs characterized the structure, relations, potential importance, and direction
amongst the subset identi�ed by supervised machine learning. Third, inspired by Bard et al. [11], who
randomly partitioned their data into training and holdout samples to evaluate the replicability of their
GGMs, we advanced such an approach to test the replicability of the resultant DAGs by computing
structural distances between training and holdout samples to supplement traditional bootstrapped
stability tests.

Methods

Participants
The current study is a secondary analysis of 39,194 treatment-seeking participants across 26 U.S.
colleges and universities who participated in screening for an ongoing randomized controlled trial
investigating the effectiveness of a transdiagnostic, coached mobile mental health intervention that uses
population-level screening for engaging college students in tailored services for preventing and treating
anxiety, depression, and eating disorders (clinicaltrial.gov; ID: NCT04162847). Participants were eligible
for the screen if they were ≥ 18 years of age, enrolled at one of the 26 participating universities, provided
informed consent to participate, and passed a one-item attention check. See Fitzsimmons-Craft et al. [54]
for a more detailed description of the eligibility criteria. Participants were excluded for only previewing the
survey (n = 1), not responding to (n = 5,513) or denying (n = 503) the consent for screening, being under 18
years old (n = 63), or not reporting their age (n = 1,154), not being an undergraduate student (n = 629) or
their year in school had not been reported (n = 46). The �nal sample consisted of a national sample of
31,285 undergraduate students. All data for the present study were collected prior to selection for the
randomized controlled trial or intervention delivery.

Procedures
Students enrolled at participating universities received an email invitation to complete a brief survey on
health and well-being between October 2019 and November 2021. Emails were sent to either the entire
student population or a random subset of the student population and either to undergraduate students
from all years (17 schools) or only years 1 or 2 (9 schools). Emails informed students that, based on their
responses, they may be eligible for a subsequent study involving random assignment to conditions
designed to support mental health. Emails included a link to an online screening survey via Qualtrics.
Participating students were entered into a ra�e to win one of several $100 gift cards. The study was
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approved by the institutional review board of all authors’ universities and administrators at each
participating school.

Measures
All models were based on data captured pre-intervention delivery and included insomnia, MDD, GAD,
PTSD, SAD, PD, AN, and AUD.

Insomnia was assessed using the Insomnia Severity Index [ISI; 55]. The ISI has seven questions with 5-
point Likert scale responses, which are summed to produce a total score between 0 and 28, with higher
scores indicating greater insomnia severity. Cronbach alpha was .884. Its internal consistency, concurrent
validity, and sensitivity to clinical improvements in insomnia patients are well established [56].

Major depressive disorder was assessed using the Patient Health Questionnaire-9 [PHQ; 57]. Participants
reported frequency of depressive symptoms over the past two weeks on 9 items with four-point scales
ranging from 0 (“Not at all”) to 3 (“Nearly every day”). The total score ranges from 0 to 27. Cronbach
alpha was .877. Participants screened positive for probable MDD if they scored 10 or higher, maintaining
a sensitivity of .88 and speci�city of .85 [58].

PTSD was assessed using the Primary Care PTSD Screen [PC-PTSD; 59], which has total scores ranging
from 0 to 4. Participants screened positive for probable PTSD if they scored three or higher, which
demonstrated a sensitivity of .78 and speci�city of .89 [59]. Cronbach alpha was .806.

GAD was assessed using the Generalized Anxiety Disorder Questionnaire-IV [GADQ; 60], maintaining a .82
speci�city and .89 sensitivity, and has a total score ranging from 0 to 12. SAD was assessed using the
Social Phobia Diagnostic Questionnaire [SPDQ; 61], maintaining a .85 speci�city and .82 sensitivity, and
has a total score ranging from 0 to 27 [61]. PD was assessed using the Panic Disorder Self-Report [PDSR;
62], maintaining a 1.00 speci�city and .89 sensitivity, and has a total score ranging from 0 to 24
[62].Cronbach alpha was .856, .97, and .959, respectively. These measures all assessed full diagnostic
criteria based on the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (American
Psychiatric Association, 2013). Participants screened positive for a disorder if they endorsed all
diagnostic criteria. GADQ, SPDQ, and PDSR demonstrate strong test-retest reliability, good convergent
and discriminant validity, and a kappa agreement of .67, .66, and .93, with structured interviews,
respectively.

Anorexia nervosa (AN) was assessed by the Weight and Shape Concerns Scale [WCS; 63]. Total scores
for the weight/shape concerns scale range from 0 to 100. Participants screened positive for probable AN
if they scored 59 or higher and had a current body mass index ≤ 18.45, based on self-reported height and
weight. Cronbach alpha was .797. These criteria have been used in prior online screening studies [64].

AUD was assessed using the Alcohol Use Disorders Identi�cation Test Consumption [AUDIT; 65]. The
instrument contains three questions about alcohol consumption with 4-point Likert scale responses,
which are summed to obtain a total score ranging from 0 to 12. Cronbach’s alpha was .85. To identify
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probable AUD, we used the cutoff of 4 or higher for participants assigned male at birth and 3 or higher for
participants assigned female or intersex. This system had .88 sensitivity and .75 speci�city for males and
.87 sensitivity and .85 speci�city for females [66].

Statistical Analysis

Pre-processing
The total data were randomly partitioned into a 70% split as a training set and a 30% holdout set to
evaluate the �nal models in completely unseen new cases. Missing values for the included variables in
our sample were low (< 7%). Nonetheless, to tackle missing data for all analyses, a machine learning
approach for imputation was employed, speci�cally utilizing nonparametric missing value imputation via
random forests facilitated by the R package mice [67]. Imputations were aggregated across 10 multiple
imputed datasets, each with 100 iterations, to minimize biased error calculations and produce stable
estimates. Random forest imputations were done separately for the training and holdout sets. Minimal
recoding adjustments were made before each imputation to maintain the inherent relationships between
variables (as recommended by van Ginkel et al. [68]). Moreover, to prevent “data leakage” of variable
distributions between sets, all pre-processing steps were done separately for training and holdout sets.
Topological overlap between node pairs was also screened for and removed if found via the “goldbricker”
function within the R package networktools [69].

Supervised machine learning (Elastic net regularization)

Elastic net development
Elastic net regularization is a form of conventional regression that combines both ridge and lasso norms
to provide a penalization term to balance stability and parsimony. Accordingly, elastic net regularization
was employed to constrain coe�cients among collinear variables and minimize model over�tting, with
the lambda hyperparameter determining the magnitude and the alpha hyperparameter regulating the
balance between the two norms [9]. Tuning of alpha and lambda was conducted using resampling grid
search and selected using repeated 10-fold cross-validation to minimize biased estimates of the true error
and assess the stability of model performance [70]. 10-fold cross-validation partitions the sample into 10
subsets, 9 of which are used in the training process and then tested on the remaining subset [71]. This
process is iterated for the remaining 10 subsets, building new models until each of the 10 subsets is used
only once in the training and testing data. This procedure then repeats the 10 folds by 10 repeats for a
total of 10 models. The �nal model is then averaged to produce a single estimate. Final alpha and
lambda values were selected based on the smallest value of root mean square error (RMSE) and was
used to estimate model coe�cients.

In the current study, the elastic net model considered seven disorders (MDD, GAD, PTSD, SAD, PD, AUD,
AN) as binary predictors (i.e., presence vs absence) and insomnia as a continuous outcome (i.e., total ISI
score). Imbalance within the outcome was also addressed by applying the Synthetic Minority Over-
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Sampling Technique for Regression with Gaussian Noise [SMOGN; 72], which randomly undersamples
high-frequency cases and oversamples rare cases using SmoteR and Gaussian Noise to generate a more
balanced proportion of cases within the continuous outcome and improve prediction accuracy.
Imbalance occurs when machine learning models favor predictions from high-frequency cases and
ignore rare cases, given preferences for high accuracy, even if purely by chance. All analyses were
conducted in R using version 4.3.1 using the caret package [73].

Elastic net evaluation
The cross-validated elastic net model built from the training sample was evaluated by being applied to
individuals within the holdout sample to predict insomnia severity. Importantly, individuals within the
holdout sample were not utilized as part of the development and tuning of the elastic net model. RMSE
determined the accuracy of the model, i.e., the magnitude of the error. Lower values represent higher
accuracy. The coe�cient of determination (R2) was also used given evidence of R2 being the most
informative metric within regression-based supervised machine learning [74]. R2 determined predictability,
i.e., the proportion of variance within the outcome explained by the elastic net model. Values are
interpreted as percentages and range from 0 to 1, with higher values representing higher predictability.
The current study adopted the benchmark set by Uher et al. [75] who found an R2 of 6.3 or higher inferred
clinical signi�cance.

Elastic net feature importance
Methods for explainable arti�cial intelligence were run using SHAP (Shapley Additive exPlanation) values
[13] to facilitate interpretability of the elastic net model. SHAP values assign a value to each feature that
represents the average contribution of that feature across all possible combinations of features. The
average SHAP value across all participants is 0, but the average absolute SHAP value informs about
relative predictor importance.

Bayesian networks (directed acrylic graphs)

Network estimation
DAG analyses were run via the hill-climbing algorithm from the R package, “bnlearn” [76] to determine the
directionality and conditional dependencies among predictors. DAGs return a network comprising
symptoms (nodes) and the relations between them (edges). To create the DAG, a bootstrap function
computes the structural aspect of a network by adding edges, removing them, and reversing their
direction to optimize a goodness-of-�t score (i.e., Bayesian Information Criterion [BIC]). This step
determines whether an edge exists; however, it does not calculate the weights of the edges. To do so, we
randomly restarted the process with different candidate edges linking different symptom pairs, perturbing
the system. To ensure robustness, we used 50 restarts [as per Briganti et al., 45]) and 100 permutations
[as implemented by McNally et al. 77, 78]. In the current study, we employed a Bayesian network via a
completed partially directed acrylic graph (CPDAG), a type of Markov equivalence class that encodes
identical conditional dependencies between DAGs and accounts for drawbacks of equivalent separate
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DAGs [79]. Insomnia was included in the DAG analyses as a single-sum score derived from the ISI
representing insomnia severity, while item 3 from the PHQ [insomnia/hypersomnia] was removed to
prevent multicollinearity.

Network stability
To verify the stability of the resultant network, we bootstrapped 10,000 samples, computed a network for
each sample, and averaged all 10,000 networks to obtain the �nal resultant network. Following the
reasoning of Briganti et al. [45], we �rst determined the structure of the network and then ascertained the
direction of each edge. The bnlearn program computes a BIC value for each edge. The thickness of an
edge corresponds to its absolute BIC value and, hence, its importance to model �t. The larger the absolute
BIC value, the more damaging it would be to the model �t if one were to remove the edge from the
network. Accordingly, high absolute BIC values indicate how important an edge is to the model that best
characterizes the data structure. In line with Sachs et al. [80], if an edge ran from symptom X to symptom
Y in at least 85% of the bootstrapped networks, this edge appeared in the �nal, averaged network. After
which, if an edge ran from symptom X to symptom Y in at least 51% of the bootstrapped networks, its
direction was depicted using an arrow pointing from node X to node Y. Accordingly, such signi�cance
thresholds promoted the stability of the �nal, averaged network and led to sparse networks that ensure
genuine edges. Lastly, we then computed the identical network but had edge thickness re�ect the
probability that the depicted direction of the edge occurred.

Network con�rmatory analysis
In summary, three steps were taken to ensure model stability: (1) random perturbations to avoid local
maxima and optimize goodness-of-�t index (i.e., BIC values); (2) bootstrapping 10,000 different DAGs to
determine strength and direction of the edges; (3) using signi�cance thresholds outlined in Sachs et al.
[80]. As a fourth step, a con�rmatory analysis was run repeating steps one through three within the
holdout sample and comparing structural distances to determine replicability. To compare the similarity
between the training and holdout CPDAGs, Structural Hamming Distances (SHD) were used, which
quanti�es the number of changes between nodes, arcs, and the directions that must be made to a
network for it to turn into the one that it is being compared [81]. In other words, calculating the true
positive, false positive, and false negative arcs by comparing the training network to the holdout network,
considered the "true" standard network. This allowed for testing whether the network estimation was
roughly consistent across both data subsets, further suggesting replicability and con�dence that results
were not false positive or false negative.

Results

Sample characteristics
Screening sample characteristics for the entire sample are presented in Table 1. Most participants
identi�ed as female (63.4%), heterosexual (72.7%), white (65.7%), and non-Hispanic (67.5%).
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Table 1
Sample distribution across demographic characteristics

    n %

Sex (at birth) Male 9950 31.8%

Female 20597 65.8%

Gender Male 9798 31.3%

Female 19823 63.4%

Other 1664 5.3%

Sexual orientation Heterosexual 22759 72.7%

Lesbian/Gay 1002 3.2%

Bisexual 3453 11.0%

Other 3211 10.3%

Race White 20563 65.7%

Black or African American 1992 6.4%

American Indian or Alaskan Native 164 0.5%

Asian 4236 13.5%

Native Hawaiian or Paci�c Islander 83 0.3%

Multiracial 1790 5.7%

Ethnicity Non-Hispanic 18673 67.5%

Hispanic 3143 29.3%

Parental education Bachelor's degree or higher 21126 67.%

Less than bachelor's degree 9160 29.3%

Financial di�culty Not Very Hard 13075 41.8%

Somewhat Hard 9570 30.59%

Hard 4913 15.70%

Very hard 2833 9.1%

Year in school Undergraduate 1 12807 40.9%

Undergraduate 2 9014 28.8%

Note. N = 31,285.
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    n %

Undergraduate 3 5007 16.0%

Undergraduate 4 3725 11.9%

Undergraduate 5 732 2.3%

School sector Public 26783 85.6%

Private 4502 14.4%

Note. N = 31,285.

Elastic net regularization
A total of 21,899 participants were included in the training models, and 9,386 participants were included
in the holdout models. The elastic net model derived from repeated 10-fold cross validation and run on
the full training sample was associated with an optimal alpha parameter of .1 and a lambda parameter
of .008 (via RMSE criterion). The �nal elastic net model from the training sample demonstrated clinical
signi�cance in predicting insomnia [R2 = .449 (.016), RMSE of 5.00 (.081)], with comparable variance
explained in the holdout sample (i.e., completely unseen new cases) (R2 = .33, RMSE of 5.47). Results of
the feature importance analysis are displayed in Fig. 1, in which SHAP values illustrate that MDD (SHAP 
= 3.185) was the most important feature associated with insomnia, followed by GAD (SHAP = 0.967) and
PTSD (SHAP = 0.962).[1] Across all predictors, the presence of any psychiatric disorder was associated
with higher insomnia severity, with major depressive disorder demonstrated to be the most associated
disorder.

Directed acrylic graphs
The CPDAG built on training data (N = 21,899), as displayed in Fig. 2, shows a chain of symptoms
dependent on the parent node of depressed mood, which directly predicted fatigue, anhedonia, poor self-
esteem, concentration problems, eating problems, psychomotor disturbance, suicidal ideation, and
insomnia. That is, depressed mood had no incoming edges (i.e., in-degree = 0) but had eight outgoing
edges (i.e., out-degree = 8). The most important arrows connected depressed mood to fatigue (with a
change in BIC of -4067.813) and depressed mood to poor self-esteem (with a change in BIC of
-3294.177). Accordingly, fatigue emerged as a key step in the cascading node with one incoming arrow
(i.e., in-degree = 1) and �ve direct descendants (out-degree = 5): anhedonia, poor self-esteem,
concentration problems, eating problems, and insomnia. There were seven total paths for insomnia
(depressed mood, fatigue, anhedonia, poor self-esteem, concentration problems, eating problems, and
psychomotor disturbance). In other words, all depression symptoms, except for suicidality, presupposed
insomnia. That is, insomnia was more likely when depressed mood, fatigue, anhedonia, poor self-esteem,
concentration problems, eating problems, and psychomotor disturbance were present than vice versa.
Suicidality occurred only through depressed mood, poor self-esteem, and psychomotor disturbance. This
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could have arisen from eating problems or concentration problems, and depressed mood and poor self-
esteem. Suicidality and insomnia were the only symptoms without any descendants and, thus, were not a
prerequisite for any other symptoms. Additional DAGs with arrow thickness denoting directional
probability using Sachs et al.'s [80] approach was also run. As seen in Fig. 3, descendants from depressed
mood to fatigue occurred only in 50.525% and depressed mood to self-esteem in 55.710% of the 10,000
networks.

Structural Distance
To further facilitate the stability of our �ndings, we ran a second CPDAG network (as shown in Fig. 4)
within our holdout data (N = 9386) using the same procedures within the training network and computed
structural distances between the two networks. SHD between the training and holdout CPDAGs was low
(SHD = 7), indicating an excellent �t. The parent node of depressed mood and fatigue, as a cascading
node, along with its �ve direct descendants, anhedonia, poor self-esteem, concentration problems, eating
problems, and insomnia, remained the same across networks. However, there were false positive
directions in which directions switched within the holdout network as compared to the training network, or
the “true network”. These arrows were concentration problems related to anhedonia and insomnia related
to psychomotor disturbance. Accordingly, within the holdout network, insomnia attained one direct
descendant, signifying that psychomotor disturbance was more likely when insomnia was present than
vice versa. Suicidality also gained two descendants: psychomotor disturbance and insomnia. In other
words, suicidality occurred only through depressed mood or poor self-esteem and directly predicted
insomnia and psychomotor disturbance. Thus, nodes without any descendants switched from suicidality
and insomnia to psychomotor disturbance within the holdout sample, implying that suicidality was not a
prerequisite for other symptoms.

Discussion
The present study set out to investigate the associations between insomnia and multiple psychiatric
disorders within a large sample of nationally representative treatment-seeking U.S. college students. To
do so, we implemented a three-step modeling approach using machine learning and Bayesian network
analysis to (a) determine which psychiatric disorders were associated with insomnia, (b) tease apart
symptom-level interactions of disorders most associated with insomnia, and (c) evaluate replicability for
both models.

Given our interest in predicting insomnia outcomes, we used a broad range of mood, anxiety, eating, and
substance use disorders to predict insomnia severity using elastic net regularization. The elastic net
model accounted for 33% (R2 = .33) of the variance in insomnia, in part due to the inclusion of MDD,
which SHAP values identi�ed as the top factor most associated with insomnia. GAD and PTSD,
respectively, were also listed as secondary and tertiary predictors contributing to the model’s performance
but to a lesser degree. Findings are in parallel with Bard et al. [11], who found MDD symptoms (e.g., low
energy, depressive affect via PHQ-9) to be key features across multiple domains of sleep functioning and
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impairment as compared to anxiety [GAD-7; 82] and insomnia symptoms [SCI-9; 83]. Our results converge
with McCallum et al. [84], who found GAD, MDD, and PTSD, respectively, as the top contributors to sleep
disturbance, although �ndings switched between the �rst and secondary top contributors. Discrepancies
may be due in part to sample differences, as we utilized a representative sample of college students in
the American population as compared to McCallum et al. [5], who noted self-selection bias within their
general community Australian sample. Probable measurement error, given the usage of non-validated
self-report checklists based on DSM-5 criteria as compared to the present study, which used valid and
reliable diagnostic self-report measures with adequate kappa agreement with structured interviews (e.g.,
GAD-Q-IV, SPDQ, PDSR, PC-PTSD). But also, our analytic approaches diverge from theirs, given the
present study derived feature importance via the explanatory power of a machine learning model with all
disorders contained in the model as compared to p values from separate regressions for each disorder
tested.

DAG analyses were conducted to offer additional insight as to how MDD symptoms may have led to
insomnia. Depressed mood was found to be the most important parent symptom, directly predicting
fatigue, anhedonia, poor self-esteem, concentration problems, eating problems, psychomotor disturbance,
suicidal ideation, and insomnia. Stated differently, the presence of fatigue, anhedonia, poor self-esteem,
concentration problems, insomnia, eating problems, and psychomotor disturbance all presupposed the
presence of depressed mood more than vice versa. In a typical DAG structure, higher upstream nodes are
given greater predictive priority, whereas downstream nodes carry less activation potential and are less
likely to in�uence other symptoms in the network. These �ndings suggested that insomnia was
seemingly dependent on other downstream symptoms in the network, indicating that the occurrence of
insomnia more likely depended on the presence of MDD symptoms rather than vice versa. Notably,
network estimation related to parent nodes was consistent across both training and holdout samples,
further suggesting replicability. However, caution is warranted when inferring nodes with no descendants
(i.e., not a prerequisite for other symptoms) as discrepancies between samples were observed. Future
simulation studies are needed to determine the typical conditions when differences in network
estimations arise between data subsets and their implications on validity.

Nonetheless, our �ndings are consistent with DSM-5 guidelines on MDD [2], suggesting that depressed
mood is a hallmark feature of MDD and is one of the two symptoms required for assigning a positive
diagnosis [85]. Moreover, �ndings of depressed mood as a parent symptom aligned with extant network
reviews on MDD [50, 86–88], investigations that set out to identify the most important central symptoms
of MDD [e.g., 89, 90–92], and those associated with insomnia [24, 27, 40, 47]. Insomnia is commonly
found to be a robust risk factor for both �rst episode and recurrent depressive episodes [93].
Mechanistically speaking, Harvey [94] denoted that such associations occurred due to the presence of a
bidirectional cycle. Disturbances in mood and symptoms during the day disrupt nighttime sleep, whereas
sleep deprivation worsens mood regulation and symptoms the following day, creating a vicious cycle.
Such cycles further persist, given that individuals with mood disorders are vulnerable to disruptions in
biological rhythms and that external stressors can lead to such disruptions in biological rhythms [95].
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Accordingly, college populations may be prone to such cycles, considering their increased physiological
changes, heavy academic workload, and psychosocial stressors [96].

DAG analyses also implicated the presence of insomnia as probabilistically dependent on the presence of
both fatigue and poor self-esteem. These �ndings are in line with existing centrality �ndings of depressed
mood, fatigue, and self-esteem symptoms emerging across Western [90, 97–99] and Eastern cultures
[100–102]. Furthermore, other �ndings implicated depressed mood directly leading to fatigue [47] or
indirectly impacting insomnia through fatigue [103]. In fact, fatigue has been reported as the highest
bridge symptom linking depression and insomnia symptom communities [25, 26, 38, 104].

Our �ndings also provide implications for treatment targets among patients with comorbidities. Results
suggested that the interrelationships of depressed mood, fatigue, and self-esteem presupposed insomnia.
Untreated insomnia or depression in patients with both disorders has been shown to maintain the risk of
relapse due to its link with mood dysregulation [94, 105]. As such, the presence of both disorders should
be assessed during population-level screening and patient management. However, and notably,
depression treatment does not synonymously equate to ameliorating insomnia, e.g., sleep-related
complaints are often the most common residual symptoms after antidepressant treatment [106],
warranting targeted insomnia treatment. Interventions for insomnia often necessitate speci�c behavioral
strategies (e.g., sleep hygiene), which are not constituted in pharmacotherapy and traditional CBT.
Studies treating either insomnia (e.g., with CBT-I) prior to depression (e.g., with escitalopram) or vice versa
have demonstrated greater improvements in insomnia and depressive symptoms compared to treatment
of depression alone [for review, see 106]. However, concomitant approaches (i.e., treating both insomnia
with CBT-I and depression with antidepressants at the same time) led to mixed results with inconclusive
signi�cant differences in improvements compared to treating depression alone [107–109]. As CBT-I has
also been shown to be effective in treating both insomnia and depressive symptoms among those who
have both, further randomized clinical trials are needed to determine if treatment combinations are better
than either approach alone, for example, evaluating treatment e�cacy comparing CBT-I and CBT for
depression to CBT-I �rst vs. CBT for depression.

The current study is not without caveats and deserves careful consideration. All analyses were based on
observational and exploratory data rather than experimental. Although Bayesian learning methods can
enable probabilistic causal inferences, networks derived from such data cannot make strong inferences
of causation from cross-sectional data. To make such inferences within the network paradigm requires
additional assumptions [e.g., 53, 110, 111, 112]. Also, our CPDAG models rested on several key
assumptions inherent to Bayesian networks, including the assumption of causal relations among
symptoms and acyclicity, and that no important variables were excluded from the network. There were
reasons to suspect that the acyclicity assumption may have been violated given the degree of potential
reverse directionality. Here, arrows that were deemed most important seemed relatively thin, indicating
that the direction of the arrow was pointing in both directions in a substantial percentage of bootstrapped
networks. For example, depressed mood and fatigue almost certainly had a bidirectional in�uence on one
another. Accordingly, the edge connecting depressed mood to fatigue pointed in that direction 50% of the
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10,000 bootstrapped networks. The direction of the association between these two variables may thus
have tipped in both directions, implying a possible 'hidden' cycle within an acyclic graph. The impact of
violating the assumption of acyclicity is unknown but, at a minimum, implies the current DAG analyses
failed to detect feedback loops. Hence, a major limitation of the present �ndings is it may only be treated
as a simpli�ed snapshot of probabilistic causal relations. Future studies could improve upon our
approach by gathering time-series data that enable DAGs to detect feedback loops to elucidate the
potential bidirectional dependencies between variables [e.g., Shin et al. 113].

The present study unravels associations related to insomnia and common comorbidities within a sample
of U.S. treatment-seeking college students. Results illuminate MDD as the most important association
with insomnia and the interrelationships of depressed mood, fatigue, and self-esteem that presupposed
insomnia. These �ndings serve as a foundation for generating hypotheses rather than conclusive, causal
evidence, emphasizing the need for further research into the intricate associations among psychiatric
disorders in college populations. The presented modeling approach to combining supervised machine
learning and Bayesian network analysis may be valuable to tease apart directionality when developing
prediction models.
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Footnotes
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1. MDD as the most important predictor did not change when elastic net models were run as a
classi�cation problem, with predictors transformed into continuous variables representing sum
scores and insomnia as a binary outcome representing caseness (i.e., presence vs absence): ROC 
= .826 (.007), Sensitivity = .746 (.010), Speci�city = .748 (.020), Accuracy = .742 (95% CI; .733, .751).

Figures
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Figure 1

SHAP feature importance

Note. To determine predictor importance, we used a gold standard explainable AI method termed SHapley
Additive explanation (SHAP). SHAP values provide a more comprehensive understanding of each
feature's contribution to the model's predictions.

Figure 2

CPDAG importance

Note. Built on train sample (N=21,899). Arrow thickness denotes a change in the Bayesian Information
Criterion (BIC; a relative measure of a model’s goodness-of-�t) arising from the proportion of the averaged
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10,000 bootstrapped networks wherein that arrow is removed from the network. In other words, the more
an arrow contributes to the model �t, the thicker it is.

Figure 3

CPDAG directional probability
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Note.  Built on train sample (N=21,899). Edge thickness signi�es directional probabilities arising from the
proportion of the averaged 10,000 bootstrapped networks wherein that arrow was pointing in that
direction, or, in other words, con�dence that the direction of prediction �ows in the direction depicted in
the graph.

Figure 4
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Replicability of CPDAG between train and holdout samples

Note: train sample (N=21,899); holdout sample (N = 9,386). Green arrows = true positives; Red arrows =
false positives; SHD = structural hamming distance. SHD assesses similarity between two CPDAGS and
represents the number of edge insertions, deletions or �ips to transform one graph to another graph.
Lower values represent higher similarity.


