Skip to main content
. 2024 Mar 11;14:5849. doi: 10.1038/s41598-024-56415-5

Table 5.

Metrics of the best performing ML models in feature selection.

AUC Accuracy Sensitivity Specificity Youden index
(a) All patients
 Linear SVM 0.859±0.005 0.800±0.005 0.416±0.013 0.958±0.006 0.374±0.013
 RBF SVM 0.865±0.007 0.856±0.004 0.621±0.013 0.953±0.003 0.575±0.013
 LASSO 0.859±0.005 0.802±0.004 0.452±0.014 0.946±0.006 0.399±0.012
 Ridge 0.858±0.005 0.796±0.005 0.449±0.014 0.939±0.007 0.388±0.012
(b) Biopsy GG > 1 patients only
 Linear SVM 0.944±0.004 0.901±0.005 0.637±0.023 0.936±0.004 0.573±0.024
 RBF SVM 0.894±0.007 0.878±0.004 0.445±0.024 0.936±0.004 0.381±0.023
 LASSO 0.930±0.005 0.895±0.005 0.613±0.024 0.933±0.005 0.545±0.023
 Ridge 0.944±0.005 0.904±0.005 0.652±0.023 0.938±0.004 0.590±0.024

The mean scores and their standard deviations of randomly selected 100 train-test splits of (a) all patients and (b) biopsy GG>1 patients only.

Significant values are in bold.