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A cluster of blood-based protein
biomarkers associated with decreased
cerebral blood flow relates to future
cardiovascular events in patients with
cardiovascular disease
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Abstract

Biological processes underlying decreased cerebral blood flow (CBF) in patients with cardiovascular disease (CVD) are

largely unknown. We hypothesized that identification of protein clusters associated with lower CBF in patients with

CVD may explain underlying processes. In 428 participants (74% cardiovascular diseases; 26% reference participants)

from the Heart-Brain Connection Study, we assessed the relationship between 92 plasma proteins from the OlinkV
R

cardiovascular III panel and normal-appearing grey matter CBF, using affinity propagation and hierarchical clustering

algorithms, and generated a Biomarker Compound Score (BCS). The BCS was related to cardiovascular risk and

observed cardiovascular events within 2-year follow-up using Spearman correlation and logistic regression. Thirteen

proteins were associated with CBF (qSpearman range: �0.10 to �0.19, pFDR-corrected <0.05), and formed one cluster. The

cluster primarily reflected extracellular matrix organization processes. The BCS was higher in patients with CVD

compared to reference participants (pFDR-corrected <0.05) and was associated with cardiovascular risk (qSpearman 0.42,

p< 0.001) and cardiovascular events (OR 2.05, p< 0.01). In conclusion, we identified a cluster of plasma proteins related

to CBF, reflecting extracellular matrix organization processes, that is also related to future cardiovascular events in

patients with CVD, representing potential targets to preserve CBF and mitigate cardiovascular risk in patients with CVD.
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Introduction

Patients with cardiovascular disease (CVD) are at risk
for structural and functional brain damage, likely
involving cerebral hemodynamic disturbances, includ-
ing a gradual decline in cerebral blood flow (CBF).1

Within the Heart Brain Connection (HBC) study we
explore the role of hemodynamic disturbances in
patients with CVD by relating CBF to vascular brain
injury and cognitive functioning in three exemplar con-
ditions for hemodynamic impairment at different levels
of the heart-brain axis,2 namely heart failure (HF),
carotid occlusive disease (COD), and vascular cognitive
impairment (VCI).

Studying factors underlying cellular and molecular
processes affecting CBF may provide leads on the bio-
logical mechanisms of the adverse consequences of
CVD on the brain. For example, endothelial dysfunc-
tion was previously suggested as a possible contribut-
ing factor to reduced CBF in the marginally perfused
white matter.3 Also, oxidative stress and inflammation
processes have been related to CBF.3 However, the
exact biological processes underlying decreased CBF
in CVD are largely unknown.

Biological processes that are involved in decreased
CBF may be reflected in levels of circulating blood-
based protein biomarkers. Even though recent studies
have examined single proteins related to reduced CBF,
e.g. matrix metalloproteinase-2 (MMP2) originating
from the microglia and the endothelium based on a
rodent model,4 no comprehensive protein studies with
large panels have yet been done in this context. To
identify biological processes involved, interactions
between circulating proteins should be considered.
This could be done by addressing them in a cluster-
based way,5–7 since several proteins can be involved
in the same biological process and one protein can be
involved in several different biological processes.
Exploring relations of multiple proteins with decreased
CBF simultaneously may provide a broader perspective
on mechanisms at play.

Therefore, to provide leads on biological mechanisms
affecting CBF in patients with CVD, we evaluated pro-
tein biomarkers from the OlinkVR cardiovascular III
panel8 of participants from the HBC study. This panel
comprises 92 proteins which were selected in collabora-
tion with experts from the cardiovascular field. It
contains proteins that are known to be related to car-
diovascular risk (e.g. GDF-15 and ST-29–11) as well as
some exploratory proteins with potential as new cardio-
vascular markers. We hypothesized that clustering of
proteins in relation to CBF and to each other offers
indications on key biological processes involved in
decreased CBF in CVD. We tested this hypothesis in
patients with CVD with hemodynamic disturbance at

different levels of the heart-brain axis and reference par-
ticipants, by exploring relationships of proteins from the
panel with decreased CBF, as well as relationships
between proteins based on prior knowledge using
data-driven cluster analyses. Additionally, to test the
clinical relevance of our findings, we compared a bio-
marker compound score (BCS) derived from the plasma
protein cluster between participant groups and explored
how the BCS related to cardiovascular risk and
observed cardiovascular events within two-year
follow-up.

Methods

Study population

We tested our hypothesis with retrospective analysis in
a prospectively enrolled cohort of individuals who par-
ticipated in the HBC study, a study with a follow-up
measurement after two years. The HBC study includes
patients with different manifestations of CVD with
hemodynamic disturbance at different levels of the
heart-brain axis, including heart failure (HF), carotid
occlusive disease (COD), and vascular cognitive impair-
ment (VCI), and a reference group. Participants were
recruited from cardiology, memory, and neurology out-
patient clinics in four university medical centers in the
Netherlands. Reference participants were recruited via
advertising leaflets and among spouses of participants.
The rationale, design, and inclusion criteria of the HBC
study have been described elsewhere.2 For the current
study, we included participants from the HBC study
who had both available CBF measurements (3T
pseudo-continuous arterial spin labeling (pCASL) on
magnetic resonance imaging (MRI)), and an available
cardiovascular protein biomarker panel at the baseline
visit. We excluded participants with pCASL scans of
suboptimal quality (i.e., incomplete pCASL-sequence,
artefacts) (n¼ 111). All participants provided written
informed consent. The Medical Ethics Review
Committee of the Leiden University Medical Center
provided central approval. Local medical ethical com-
mittees of all sites approved the local performance of
the study. The Heart-Brain Study is performed in
accordance with the declaration of Helsinki (version
2013) and the Dutch Medical Research Involving
Human Subjects Act (WMO).

MRI protocol and preprocessing

Brain MRIs were acquired on Philips Ingenia, Achieva
and Gemini 3 T MRI scanners.2 Normal appearing
gray matter CBF was measured with pCASL (multi-
slice 2D echo-planar imaging [EPI] acquisition with
background suppression; labeling duration¼ 1800
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milliseconds; post-labeling delay¼ 1800 milliseconds;
single-shot EPI readout; resolution¼ 3� 3�
7mm3).2,12 pCASL data were processed using the auto-
mated Iris pipeline for CBF quantification.13

Quantification of pCASL data into CBF maps was
based on a single- compartment model after the sub-
traction of labeled images from control images.12 To

scale the signal intensities of the subtracted pCASL
images to absolute CBF units, a separately acquired
proton density weighted image was used. The quantifi-
cation further included motion-correction of the raw

pCASL data14 and partial volume correction (PVC).
CBF was quantified in normal-appearing gray matter
only. To obtain the normal-appearing gray matter
mask for each participant, first a binary gray matter

segmentation was obtained. Subsequently, PVC-
uncorrected pCASL images of all participants were
visually inspected.12 Images with suboptimal quality
(i.e., motion artefacts, incomplete ASL-sequence, or
labeling errors) and images with dominant vascular

artefacts and little tissue perfusion signal were not
used for further analyses.15 As a sensitivity check of
the pCASL data we additionally used phase contrast
flow measures divided by total brain volume (in ml/

100 g/min) for total CBF (methods have been described
previously in more detail).16

Definition of clinical characteristics

Clinical characteristics and vascular risk factors were
registered by trained physicians or research nurses
using a standardized interview and physical examina-
tion. Hypertension was defined as the use of antihyper-
tensive drugs, as systolic blood pressure �140mmHg,

a diastolic blood pressure �90mmHg, or the presence
in medical history. Obesity was defined as a body mass
index of �30. Diabetes, previous stroke, and previous
myocardial infarction were defined as presence in med-

ical history.
We defined cardiovascular risk based on the validat-

ed and integrated Systematic COronary Risk Evaluation

(SCORE),17 defined as a composite of sex; age; total
cholesterol; systolic blood pressure; and smoking
status. We defined cardiovascular events as a composite
of cardiac death; myocardial infarction; stroke; and ter-

minal heart failure within 2-year follow-up.

Assessment of blood-based cardiovascular

biomarkers

Participants provided blood samples which were col-
lected into ethylenediaminetetraacetic acid (EDTA)
plasma vacutainer tubes at the same day as the assess-
ment of the clinical characteristics. Cardiovascular pro-

tein biomarker values were measured in whole blood

samples with a multiplex immunoassay using the
OlinkVR Proteomics Cardiovascular III panel.8 This
panel comprises 92 CVD-related protein biomarkers,
selected by experts from the cardiovascular field. Raw
biomarker values were converted to OlinkVR ’s arbitrary
unit, Normalized Protein eXpression (NPX), a relative
unit on a log2-scale. The proteins included in the
OlinkVR Cardiovascular III panel can be found in
Supplemental Table S1.

Statistical analysis

To identify indications on key biological processes
involved in decreased CBF in CVD, we conducted a
comprehensive step-by-step analysis.

Step I - Confirm relationships between CBF, CVD, and

cardiovascular risk. CBF and cardiovascular risk
(SCORE) in the four participant groups were com-
pared using a Welch’s one-way ANOVA test with
Games-Howell post-hoc tests. A pFDR-corrected< 0.05
was considered statistically significant. The association
between CBF and cardiovascular risk (SCORE) was
assessed with a Spearman’s correlation analysis,
p< 0.05 was considered statistically significant.

Step II – Identify cluster of biomarkers and reflected biological

processes associated with CBF. To identify biological
mechanisms involved in the pathophysiology of
reduced CBF, we applied a modified version of a pre-
viously published cluster-based methodology for data-
driven prioritization of biomarkers and adapted it to
the current research question.5,7 First, we identified
associations between each of the 92 cardiovascular pro-
teins involved in the Olink cardiovascular III panel and
CBF with Spearman’s correlation analyses. Given the
exploratory nature of this research, we aimed to reduce
the risk of false negatives. Therefore, we chose an
FDR-correction for multiple testing rather than a
more conservative Bonferroni p-value correction.
PFDR-corrected< 0.05 were considered significant. The
thus identified proteins were then analyzed in a
cluster-based way, both using prior biological knowl-
edge on interactions between proteins captured in the
STRING database,18 as well as in an unsupervised
data-driven way, using affinity propagation and
agglomerative clustering algorithms based on the
OlinkVR NPX values.19

In STRING,18 the names of the proteins that corre-
lated significantly with CBF were entered in the
‘Multiple proteins’ section of the tool. Next, we used
the affinity propagation algorithm to identify the opti-
mal number of clusters, after which we performed
agglomerative clustering based on the Pearson’s corre-
lation matrix, which was constructed based on the
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OlinkVR NPX values. Since the choice of number of

clusters in agglomerative clustering is arbitrary, we

used the affinity propagation algorithm to substantiate

the choice of the number of clusters, as mentioned

above. If a biomarker was clustered together with the

proteins involved in the STRING cluster(s) in 500

bootstrapped subsample replicates of the data, we

added this biomarker to the cluster(s). Of note, several

biomedical factors (such as age and sex) might be asso-

ciated with both CBF and blood-based biomarkers.

Adding these biomedical factors to the analyses as

potential confounders might lead to overadjustment,

if a biomarker would be in a causal path between a

factor and the outcome CBF. Hence, in this first step

we used unadjusted analyses.
Second, to give biological meaning to the biomarker

cluster(s) by identifying reflected biological processes, we

performed a pathway analysis using the Reactome path-

way analysis tool.20 Reactome uses Fisher’s exact test to

identify enriched pathways within the cluster(s).20

Pathways with p< 0.05 and pFDR-corrected< 0.05 were

considered statistically significant enriched.
Third, to create a variable that captures the values of

the biomarker cluster(s) in one score per cluster for fur-

ther analyses, we calculated a Biomarker Compound

Score (BCS). The BCS was constructed by minimizing

the summed L2-error with the individual biomarkers.

A differential evolution algorithm 21 from the Python

SciPy library22 was used for this purpose.
We performed a Spearman correlation analysis to

test the association between the BCS and CBF across

and within participant groups (HF, COD, VCI and

reference participants).

Step III - Determine the association between the BCS,

cardiovascular risk and cardiovascular events. The BCS

was compared between the four participant groups

using a Welch’s one-way ANOVA test with Games-

Howell post-hoc tests. pFDR-corrected< 0.05 was con-

sidered statistically significant. Additionally, we

tested the association between the BCS and cardiovas-

cular risk (SCORE) with a Spearman’s correlation

analysis, p< 0.05 was considered statistically signifi-

cant. Lastly, we tested the association between CBF

and BCS and cardiovascular events across all partic-

ipants, adjusted for cardiovascular risk (SCORE),

using logistic regression analyses.
Shapiro-Wilk tests were performed to test for nor-

mality. The ggstatsplot R package was used for graph-

ical visualizations of the results.23 We used the STROBE

cohort checklist when writing our report.24 The data

that support the findings of this study are available

from the corresponding author on reasonable request,

within the privacy legislation of the Netherlands and

after permission of the Heart-Brain Connection steering

committee.

Results

Population characteristics

A total of 428 participants were included in this study

(Supplemental Figure S1). Participants were on average

67.2� 8.6 years old, 37% was female, 28% of the partic-
ipants had a diagnosis of heart failure, 17% of COD,

29% of VCI, and 26% were from the reference group. Of

all patients, 330 had hypertension (80%), 71 were current

smokers (17%) (Table 1). Participants that were exclud-

ed because of ASL-MRI images with suboptimal quality
(i.e., motion artefacts, incomplete ASL-sequence, or

labeling errors) and images with dominant vascular arte-

facts and little tissue perfusion signal, were significantly

older (median age 70; IQR 64–76) than included partic-

ipants (median age 67; IQR 61, 73) (p¼ 0.002), belonged

more often to COD group (29%) than included partic-
ipants (17%), and more often had hypertension (88%)

compared to included participants (80%) (p¼ 0.04).

CBF is lower and cardiovascular risk is higher in

cardiovascular disease patients compared with

reference participants

Mean CBF across the groups was 52mL/100g/min

(SD¼ 11). There was an overall statistically significant

effect of participant group on CBF (FWelch(3, 221.76)¼
9.64, p< 0.001). Mean CBF was significantly higher
in the reference group compared to the VCI

group (pFDR-corrected¼ 0.01) and COD group

(pFDR-corrected< 0.001) (Figure 1). There was no statisti-

cally significant difference between the reference group

and the HF group.
There was also an overall statistically significant

effect of participant group on cardiovascular risk

(SCORE) (FWelch(3, 219.85)¼ 6.95, p< 0.001).

Cardiovascular risk (SCORE) was significantly

lower in the reference group compared with the

HF group (pFDR-corrected< 0.01) and VCI group
(pFDR-corrected¼ 0.04). There was no statistically signifi-

cant difference in cardiovascular risk (SCORE) between

the reference group and the COD group. Across all par-

ticipant groups, CBF was inversely associated with car-

diovascular risk (SCORE) (qSpearman¼�0.26, CI95%
[�0.35, �0.17], p< 0.001) (Supplemental Figure S2).

A protein biomarker cluster is associated with CBF

In total, eighteen of the ninety-two plasma protein bio-

markers from the panel individually correlated with

CBF (Table 2, Supplemental Figure S1). Fifteen of
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the eighteen protein biomarkers negatively correlated
with CBF (qSpearman range: �0.10 to �0.21, pFDR-

corrected< 0.05, Table 2). Three of the eighteen protein
biomarkers positively correlated with CBF (qSpearman

range 0.12 - 0.17.; pFDR-corrected< 0.05, Table 2).

To determine whether these biomarkers are part of
similar pathways, we used cluster analyses using prior-
knowledge and data-driven analyses. Plasma levels of
nine of the eighteen protein biomarkers, i.e. Heparan
Sulfate Proteoglycan 2 (HSPG2); Selectin E (SELE);
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Figure 1. Distribution of cerebral blood flow (CBF) across participant groups (Heart failure, Carotid occlusive disease, Vascular
cognitive impairment, Reference).

Table 1. Baseline characteristics.

HF, N¼ 119a COD, N¼ 74a VCI, N¼ 122a Reference, N¼ 113a

Sociodemographics

Age 69 (62, 76) 66 (59, 71) 69 (61, 74) 67 (61, 70)

Female sex 37 (31%) 20 (27%) 48 (39%) 55 (49%)

Years of education 12.0 (10.0, 16.0) 12.0 (10.0, 16.0) 13.0 (10.0, 16.0) 14.0 (11.0, 17.0)

Cardiovascular risk factors

Hypertension 103 (90%) 67 (91%) 96 (83%) 64 (59%)

Total cholesterol (mmol/l) 4.80 (4.00, 5.40) 4.70 (3.80, 5.40) 4.75 (3.98, 5.40) 5.70 (5.10, 6.20)

Diabetes 13 (11%) 10 (14%) 4 (3.3%) 1 (0.9%)

Current smoker 21 (18%) 19 (26%) 24 (20%) 7 (6.2%)

History of stroke 6 (5.0%) 38 (51%) 51 (42%) 0 (0%)

History of myocardial infarction 74 (62%) 21 (28%) 20 (16%) 7 (6.2%)

Obesity 27 (23%) 21 (28%) 19 (16%) 18 (16%)

Cardiovascular risk

SCORE 9 (5, 15) 8 (4, 11) 8 (4, 14) 7 (4, 10)

Cerebral blood flow

CBF (mean mL/100 g/min) 52 (45, 60) 46 (42, 55) 50 (44, 57) 56 (49, 63)

aMedian (IQR); n (%).

HF: heart failure; COD: carotid occlusive disease; VCI: vascular cognitive impairment; SCORE: Systematic COronary Risk Evaluation.
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Plasminogen activator, tissue type (PLAT); Matrix

metallopeptidase 9 (MMP9); Cathepsin D (CTSD);

Acid phosphatase 5, tartrare resistant (ACP5); Matrix

metallopeptidase 3 (MMP3); Platelet endothelial cell

adhesion molecule 1 (PECAM1); and Cystatin-B

(CSTB), were found to be interrelated according to

prior knowledge captured in the STRING database

(protein-protein interaction p-value< 0.001) and

formed one 9-component cluster (Figure 2).
Levels of another four out of the eighteen bio-

markers, i.e. Myoglobin (MB); Growth differentiation

factor 15 (GDF15); Peptidase inhibitor 3 (PI3) and

Table 2. Overview of the 18 significantly correlating biomarkers with cerebral blood flow.

Biomarker (abbreviation) qSpearman
a p-value pFDR-corrected

b

Negative association

Plasminogen activator, tissue type (PLAT) �0.211 <0.001 <0.001

Interleukin 1 receptor like 1 (IL1R1) �0.163 <0.001 0.004

Growth differentiation factor 15 (GDF15) �0.146 0.002 0.012

Peptidase inhibitor 3 (PI3) �0.142 0.003 0.013

Selectin E (SELE) �0.132 0.006 0.016

Cathepsin D (CTSD) �0.129 0.007 0.016

Azurocidin 1 (AZU1) �0.128 0.008 0.016

Matrix metallopeptidase 3 (MMP3) �0.122 0.012 0.017

Heparan sulfate proteoglycan 2 (HSPG2) �0.122 0.013 0.017

Matrix metallopeptidase 9 (MMP9) �0.115 0.017 0.025

Cystatin B (CSTB) �0.113 0.019 0.025

Insulin like growth factor binding protein 7 (IGFBP7) �0.113 0.020 0.025

Acid phosphatase 5, tartrate resistant (ACP5) �0.110 0.023 0.027

Myoglobin (MB) �0.101 0.037 0.039

Platelet and endothelial cell adhesion molecule 1 (PECAM1) �0.096 0.048 0.049

Positive association

Secretoglobin family 3 A member 2 (SCGB3A2) 0.124 0.010 0.018

Contactin 1 (CNTN1) 0.139 0.030 0.033

Paraoxonase 3 (PON3) 0.171 <0.001 0.003

aSpearman’s rank correlation coefficient
bFalse Discovery Rate-corrected p-values (Benjamini & Hochberg)

CNTN1CNTN1CNTN1

GDF15GDF15GDF15

PECAM1PECAM1PECAM1

IL1RL1IL1RL1IL1RL1
PON3PON3PON3

MBMBMB

CTSDCTSDCTSD

MMP3MMP3MMP3

CSTBCSTBCSTB

IGFBP7IGFBP7IGFBP7

HSPG2HSPG2HSPG2

MMP9MMP9MMP9

PI3PI3PI3

PLATPLATPLAT

SCGB3A2SCGB3A2SCGB3A2

AZU1AZU1AZU1 ACP5ACP5ACP5
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Figure 2. Thirteen of the 18 biomarkers that each significantly correlated with CBF formed one cluster according to both prior
knowledge and data-driven cluster analyses. Biomarkers that were found to be involved based on prior knowledge (with information
from the STRING database) are shown in green. Four additional biomarkers that were found to extend this cluster based on data-
driven cluster analyses are shown in blue. Line width reflects the strength of data support. Data-driven extensions are shown as
dashed lines.
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Insulin-like growth factor-binding protein 7 (IGFBP7)
were not directly interrelated with other biomarkers of
the eighteen according to prior-knowledge (STRING)
(Figure 2). However, using data-driven cluster analyses
based on the OlinkVR NPX values, we observed signifi-
cant associations (p< 0.05) between these four bio-
markers and the previously mentioned 9-component
cluster, that was interrelated based on prior knowledge,
therefore, we added these four biomarkers to the
9-component cluster, which resulted in a 13-component
cluster related to CBF (Figure 2).

Although the remaining five of the eighteen bio-
markers, i.e., Interleukin receptor like 1 (IL1RL1),
Azurocidin 1 (AZU1), Paraoxonase 3 (PON3),
Contactin 1 (CNTN1), Secretoglobin family 3A
member 2 (SCGB3A2) were significantly associated
with CBF, we found no relationships with respect to
other protein biomarkers (Figure 2), and therefore
excluded them from further analyses.

Within the 13-component cluster related to CBF,
we identified 15 significantly enriched pathways
(pFDR-corrected< 0.05), pointing mainly towards inflam-
mation, extracellular matrix organization, and signal
transduction processes (Table 3).

The BCS showed a significant negative association
with CBF (qSpearman¼�0.25, p< 0.001) (Supplemental

Figure S2), a stronger association than all the individ-
ual associations between the biomarkers and CBF.
Similar results were seen for the phase contrast flow

measures (qSpearman¼�0.12, CI95% [�0.21, �0.02],
p¼ 0.02). After stratification by participant group, we
identified a negative correlation between the BCS and

CBF within each of the participant groups
(Supplemental Figure S3).

The protein biomarker cluster is associated with
cardiovascular risk and events

There was an overall statistically significant effect of

participant group on the BCS (FWelch(3, 212.84)¼
22.13, p< 0.001). The BCS was significantly lower in
the reference group compared to the VCI group (pFDR-

corrected< 0.001), HF group (pFDR-corrected< 0.001), and
COD group (pFDR-corrected< 0.001) (Figure 3).

Moreover, the BCS was significantly and positively
associated with cardiovascular risk (SCORE) (qSpearman

�0.42, p< 0.001) (Supplemental Figure S4). In total,

63 cardiovascular events in 428 participants were

Table 3. Statistically enriched biological pathways reflected by the identified 13-component biomarker cluster based on the whole
genome.

Pathway

# Biomarkers in cluster/

Total # of biomarkers

in pathway (Reactome) p pFDR-corrected
a Biomarkers

Inflammation pathways

Interleukin-4 and Interleukin-13 signaling 2/211 <0.001 <0.001 MMP3, MMP3

Neutrophil degranulation 4/480 <0.001 0.008 MMP9, CTSD, CSTB, PECAM1

Senescence-Associated Secretory Phenotype 1/91 0.005 0.038 IGFBP7

Extracellular matrix organization pathways

Degradation of the extracellular matrix 4/148 <0.001 0.001 MMP9, CTSD, MMP3, HSPG2

Extracellular matrix organization 5/301 <0.001 0.001 MMP9, CTSD, PECAM1,

MMP3, HSPG2

Collagen degradation 3/64 <0.001 0.002 MMP9, CTSD, MMP3

Activation of Matrix Metalloproteinases 2/33 0.001 0.015 MMP9, MMP3

Assembly of collagen fibrils and other

multimeric structures

2/61 0.003 0.030 MMP9, MMP3

Collagen formation 2/90 0.007 0.036 MMP9, MMP3

Integrin cell surface interactions 2/85 0.006 0.036 PECAM1, HSPG2

Signal transduction pathways

ESR-mediated signaling 3/196 0.003 0.028 MMP9, CTSD, MMP3

Signaling by Interleukins 4/457 0.003 0.030 MMP9, MMP3

Signaling by Nuclear Receptors 3/273 0.006 0.036 MMP9, CTSD, MMP3

Extra-nuclear estrogen signaling 2/80 0.006 0.036 MMP9, MMP3

Transport of small molecules pathway

Intracellular oxygen transport 1/5 0.006 0.038 MB

aFalse Discovery Rate-corrected p-values

The number of biomarkers involved in the cluster and belonging to the pathway are shown, as a ratio to the known total number of biomarkers

involved in the pathway based on the Reactome pathway analysis tool. For example, 480 proteins are known to be involved in Neutrophil

degranulation, of which four are part of our 13-component cluster (MMP9, CTSD, CSTB, PECAM1), this pathway is significantly enriched

(pFDR-corrected< 0.001).
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observed during two-year follow-up (Supplemental
Table S2). We observed a nonsignificant trend between
CBF and cardiovascular events (OR¼ 0.80, CI95%¼
�0.71, 1.10, p-value¼ 0.20). However, across all
participants, the BCS was significantly associated
with events when corrected for cardiovascular risk
(SCORE) (log(OR) per SD increase in BCS¼ 0.78,
CI95% [0.28, 1.3], p< 0.01) (Supplemental Table S3).

Discussion

Using data of participants with different hemodynamic
disturbances and a reference group, we identified thir-
teen protein biomarkers related to decreased CBF.
These biomarkers formed a cluster based on a combi-
nation of prior knowledge on protein-protein interac-
tions and data-driven clustering algorithms. This
cluster of biomarkers reflects inflammation, extracellu-
lar matrix organization, and signal transduction pro-
cesses. The biomarker compound score (BCS),
calculated based on the biomarkers involved in the
cluster, is associated with cardiovascular risk. In addi-
tion, the BCS was related to future cardiovascular
events, independent of traditional cardiovascular risk
factors.

In this study we assessed the relation between a large
panel of protein biomarkers and decreased CBF in the
context of CVD. In previous studies, single proteins

that are expected to have a relationship with the out-
come were usually selected and examined univariately.
In one such study, a relationship between a marker of
endothelial dysfunction and decreased CBF was dem-
onstrated.25 With such a unimodal approach, it is pos-
sible to pick up a signal in individual protein
biomarkers, but it does not capture the network
nature that more closely resembles biology.

The method we used previously proved effective in
research on CVD, where we expanded upon prior
knowledge on protein-protein interactions to assure
biological relevance.7 Since not all existing protein-
protein interactions are already known, we used both
prior knowledge and data-driven cluster analyses based
on our OlinkVR data to suggest novel protein-protein
interactions. This combination of prior knowledge
and data-driven cluster analyses also proved effective
in previous studies, such as in cerebral small vessel
disease,7 diabetes,26 heart failure,27,28 and cancer.6,29

Of note, the mean differences in CBF between
patients and controls were modest and the relationship
between lower CBF and MACE was not statistically
significant. Yet, this is to be expected for a physiolog-
ical measure like CBF. Due to biological homeostatic
drive fundamental physiological features like CBF do
not become markedly abnormal even in disease states
and do not fully separate patients from controls, as we
see in our results, despite the CBF in the patient groups
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Figure 3. Distribution of the Biomarker Compound Score (BCS) in Normalized Protein eXpression (NPX) across participant groups
(Heart failure, Carotid occlusive disease, Vascular cognitive impairment, Reference).
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being significantly lower than controls. Nevertheless,
interindividual variation in CBF may reflect an impor-
tant biological signal, as the current findings also seem
to imply. Pathway analysis showed that the identified
biomarker network predominantly reflects inflamma-
tion, extracellular matrix organization, and signal
transduction processes. These findings are in line with
experimental studies that found a relation between
cerebral hypoperfusion and both inflammation and
extracellular matrix organization processes.3,30–32

Although the design of this study precludes us from
establishing causality, our study extends previous find-
ings by indicating that inflammation, extracellular
matrix organization and signal transduction processes
appear to be related to decreased cerebral blood flow
in humans. Such relations may be bidirectional.
Alterations in protein biomarkers may reflect processes
that contribute to lower CBF and brain injury.
Conversely, lower CBF itself may induce changes in
the levels of certain markers. Based on rodent models
it is hypothesized that cerebral hypoperfusion is asso-
ciated with several downstream events,32 including acti-
vation of inflammatory responses and induction of
signal transductions pathways, which in turn may
lead to production of MMPs that open the blood
brain barrier by disrupting tight junctions and extracel-
lular matrix. Disruption of the blood brain barrier is
considered to cause vasogenic edema which subse-
quently may accelerate brain tissue damage and vice
versa may lead to cerebral hypoperfusion. On the
other hand, the biological processes identified with
the biomarker cluster may reflect certain upstream
events that may cause reduced CBF. For example, sys-
temic inflammation may impair the normal hemody-
namic regulation of cerebral vessels due to various
factors, including endothelial dysfunction.33 Studying
causality between the identified biological processes
and reduced CBF in future studies is important for
considering these biological processes as targets for
prevention and treatment of cerebral hypoperfusion.

Strengths of this study are the comprehensive cluster
analyses that enabled us to pick up a network that may
be involved in decreased CBF. The BCS based on inter-
related plasma proteins showed a stronger association
with decreased CBF compared to when all biomarkers
were analyzed univariately, indicating that the com-
pound score performs better than the sum of its
parts. In addition, this comprehensive, data-driven
method to compute a BCS is most likely generalizable
to other studies involving multimarker protein panels.
Next, the identified cluster and related pathways could
potentially be validated with other proteomics software
such as Ingenuity Pathway Analysis (IPA).34 For the
current research we preferred STRING’s publicly
available software in this study as opposed to

a commercial platform like IPA, also because of
STRING’s visualization capabilities. Additionally, we
studied a cohort of patients with three different types of
CVD comprising different components of the heart-
brain axis, and found similar results, which makes
our results generalizable.

Several limitations should be considered. First, a
form of selection bias was present because we excluded
participants with missing pCASL or pCASL with sub-
optimal quality or vascular artefacts. In addition, the
interpretation of CBF measures with pCASL is more
difficult in patients with CVD because of prolonged
arterial transit times. However, we performed a sensi-
tivity analysis by calculating the association between
the BCS and phase contrast flow measures and found
similar results, indicating that the limitations did not
have a major impact on the results. Second, the differ-
ences in CBF between the groups were relatively subtle
and still largely within the normal range. However, it is
conceivable that even long-term subtle changes in CBF,
and the processes associated with it, are unfavorable
for the brain. Third, although additional analysis
within participant groups showed that our findings
hold true for different hemodynamic disturbances and
the reference group, we did not have enough statistical
power to perform the cluster analysis separate per par-
ticipant group. Also, this study only includes partici-
pants who live in the Netherlands, which may limit the
generalizability of our findings to patients from other
demographic regions. Additionally, a subset of 92 pro-
teins of all proteins in the circulation was selected based
on their relationship with CVD, which may have given
rise to selection bias. However, of all the 92 proteins
from the panel, only 18 proteins were associated with
reduced CBF, the other 74 proteins were not, which
suggests that within the preselected panel, subprocesses
might be related to reduced CBF. Using the subcluster,
we performed a pathway analysis relative to the entire
proteome to provide biological meaning. We are aware
that the panel pre-selection makes the traditional meth-
ods of calculating biological enrichment suboptimal for
our research purposes. Larger protein panels without
strong pre-selection are required to achieve results
where selection bias plays a less significant role. We
hope that with this addition we have adequately
touched upon this point. Furthermore, although we
performed internal validation by using bootstrapping
in the cluster analysis, future studies with alternative
and larger biomarker panels should be performed to
validate and extend our findings. Additionally, in our
current study, we tried to identify associations within a
subset of biomarkers. We assessed direct interaction of
the proteins of interest with each other based on the
information from the STRING database without
including further proteins from the respective
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biological pathway, as these were not included in the
targeted proteomics approach. The identified cluster is
possibly part of a larger cluster that may be involved in
reduced CBF which should be considered in follow-up
studies. Lastly, regarding clinical outcome, we limited
ourselves to major adverse cardiovascular events for
proof of concept of clinical relevance; future studies
may further explore the role of the BCS for other clin-
ical outcomes, such as loss of brain health by measur-
ing neurovascular coupling, vasodilator capacity, and
collateral vessel function, but this was beyond the
scope of the current study.

We imply that clustering methods are helpful in
finding biological processes involved in decreased
CBF and suggest a role for specific processes involved
in inflammation, extracellular matrix organization, and
signal transduction. These insights can be used to
better understand the biological processes involved in
decreased CBF. In future studies, it would be interest-
ing to analyze larger biomarker panels, including both
plasma and cerebrospinal fluid biomarkers, by using
proteomics to reduce selection bias and be able to
pick up larger biomarker clusters to further unravel
the pathophysiology of decreased CBF. Importantly,
we also demonstrated an association between the pro-
tein biomarker cluster and both cardiovascular risk and
occurrence of cardiovascular events within two years.
Interestingly, the latter was independent of cardiovas-
cular risk. If our results are validated in future studies,
the protein clusters may help for further risk
stratification.

In conclusion, we identified a cluster of blood-based
biomarkers related to reduced CBF in patients with
CVD. The biomarker cluster was related to cardiovas-
cular risk and future cardiovascular events in patients
with CVD. The plasma proteins included in the cluster
reflect extracellular matrix organization, inflammation,
and signal transduction processes, suggesting the
involvement of these biological processes in the patho-
physiology of reduced CBF. If validated in future stud-
ies, these biological processes might be therapeutic
targets for preserving CBF, reduce risk of cardiovascu-
lar events and improving cognitive outcomes in people
with CVD.
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