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SUMMARY

A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is 

the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage 

laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to 

query changes in protein expression in single MNs from postmortem ALS and control tissues. 

In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic 

transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 

2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS 

MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of 

cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these 

data provide insights into proteome-level changes associated with TDP-43 proteinopathy and 

begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding 

single-cell protein dynamics in human neurologic diseases.

In Brief

Guise and Misal et al. report the unbiased single-cell proteomic analysis of ALS motor 

neurons directly captured from human tissues to explore disease-associated protein dynamics 
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across TDP43-pathological strata. This study highlights both important technical challenges 

accompanying single-cell omics studies and emerging avenues for exploring human disease 

biology with nanoPOTS.

Graphical Abstract

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease (NDD) 

commonly characterized by loss of spinalcord somatic motor neurons (MN) and motor 

function. Approved pharmacologic treatments for ALS impart either only modest effects 

on disease progression1–3 (riluzole, edaravone, sodium phenylbutyrate/taurursodiol) or are 

limited to specific genetic subpopulations4 (tofersen). Furthermore, there is a lack of 

biomarkers of specific MN pathologies, causing a significant hindrance to the clinical 

development of investigational drugs. New molecular insights are essential to these critical 

unmet needs.

Substantial evidence implicates transactive response DNA-binding protein 43 (TDP-43) 

dysregulation in MN disease pathogenesis. Neuronal cytoplasmic inclusions (NCIs) of 

ubiquitinated, phosphorylated C-terminal TDP-43 fragments are a neuropathologic hallmark 

of a majority of ALS subtypes,5–7 and the TARDBP gene itself harbors mutations in ~3% 

of ALS.8 Prior studies link TDP-43 perturbations with widespread alterations in mRNA 
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and cryptic exon (CE) expression9–14; however, the contributions of individual CE-inclusion 

events to ALS pathophysiology and the protein-level impacts of TDP-43 loss of function 

(LOF) in MNs remain to be elucidated. Increased knowledge of protein-level dysregulation 

in MNs will augment understanding of disease biology with potential to uncover new and 

cell-type-specific ALS biomarker and/or therapeutic candidates.

To date, proteome studies have primarily focused on bulk tissue/pooled cell populations 

in ALS15–18 where measurements of MN-relevant targets are readily obscured by cellular 

heterogeneity.19 While single-cell genomic and transcriptomic analyses benefit from signal 

amplification,20 protein-level characterization has remained challenging. Nonetheless, recent 

advances in trace sample proteomics have begun to address this gap, enabling quantitative 

protein abundance measurements in single MNs.21,22

Here, we present an unbiased survey of single-cell protein expression profiles in human 

spinal MNs directly sampled from ALS tissues via laser-capture microdissection and 

analyzed via nanoPOTS19 coupled with ultrasensitive mass spectrometry-based detection. 

A pilot study of single-MN proteomes readily revealed disease-state differentiability 

and deficiencies in proteins with roles in oxidative phosphorylation, mRNA splicing, 

translation, and vesicular transport. In a follow-up experiment incorporating TDP-43-

focused stratification of single-MN proteomes, we found conserved reductions in metabolic, 

RNA regulatory, and endolysosomal trafficking proteins in MNs with and without 

TDP-43+ NCIs. Our single-cell datasets support losses in STMN2 consistent with 

existing literature11,13 and prominent deficiencies in endolysosomal trafficking components 

(retromer, ESCRT-III [endosomal sorting complexes required for transport III], GARP/

EARP [Golgi- and endosome-associated retrograde protein]) in ALS MNs prior to 

appearance of detectable TDP-43+ NCIs. Against a backdrop of rapid advancements in 

single-cell proteomics technologies, this report demonstrates the evolving potential for 

single-cell proteomics to augment our understanding of cell-type-specific mechanisms and 

pathologies underlying ALS and other NDDs.

RESULTS AND DISCUSSION

Pilot study: Characterization of single-MN proteomes in human ALS

We compared protein abundances in somatic MNs individually dissected from postmortem 

thoraco-lumbar ventral spinal horns of ALS or control (CTL; no history of NDD) donors 

(Table 1). Individual MNs identified by morphology and the presence of Nissl substance 

were laser excised prior to nanoPOTS liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) analysis,19,22–24 yielding the quantification of, on average, 890 proteins (5% 

false discovery rate [FDR] ∩ ≥ 1 unique peptide) per single MN (Figure 1A; Table S1). 

ALS and CTL MNs were readily differentiated by dimensionality reduction of the top 500 

most-variable proteins (Figure 1B). The MN-associated proteins acetylcholinesterase and 

peripherin were abundantly present in 67% and 100% cells, respectively, while choline O-

acetyltransferase (ChAT) was detected infrequently in 22% cells (Table S1). In a subsequent 

experiment where cells were selected based on histologic ChAT positivity in adjacent 

sections, ChAT was detected by MS/MS in only 64% (CTL) and 36% (ALS) MNs (Table 
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S2), suggesting the possibility of diminished ChAT expression in ALS MNs and poor 

flyability of ChAT peptides in general.

Oxidative phosphorylation, mRNA splicing, translation, and retromer-mediated vesicular 
transport protein abundances are significantly reduced in ALS MNs

We identified significantly differentially abundant proteins (DAPs) in ALS MNs using 

a linear mixed model accounting for the within-donor correlation structure. This model 

identified 298 high-confidence DAPs (|log2(ALS/CTL)| ≥ 1.5 ∩ adjusted p value [p-adj] < 

0.05) in ALS vs. CTL MNs (Figure 1C; Table S1B). We further explored the impact of 

incorporating additional potential covariates (donor age, sex, postmortem interval [PMI]) 

into the model (Figure 1D), resulting in retention of 7 DAPs supporting pathway-level 

dysregulation of cellular respiration (CYCS) and mRNA splicing (SNRPD1, SNRPD3), 

transport (CAPRIN1), and translation (EEF1A1) (Figure 1E).

To examine the functional relationships between DAPs, we constructed a protein-protein 

interaction (PPI) network (Figure 1E) and report significant deficiencies in protein 

complexes with critical roles in cellular metabolism, RNA processing, and proteostasis, 

including diminished ribosomal protein and elongation factor abundances (Figures 1E 

and S1A). While consistent with previous observations of ALS-associated translational 

dysregulation,25,26 it is important to note that downregulation of translation and losses 

in mitochondrial respiration are also associated with cellular response to hypoxic 

conditions.27,28 While several studies have suggested that ischemia and hypoxia are involved 

in the pathogenesis of ALS,29–33 the possibility remains that changes in protein abundance 

are influenced by perimortem hypoxic/ischemic tissue insults or antemortem interventions 

that may elevate levels of HIF1α and other hypoxia-induced proteins.34,35 Interestingly, 

while we did not identify HIF1α in our dataset, we observed lower abundance of the 

hypoxia-upregulated protein 1 (HYOU1)36 in ALS relative to CTL MNs (Tables S1 and S4).

Evaluating the broad dynamic range of protein detection in single MNs and targeted 
investigation of proteins below the limit of detection

Comparison of median MS1 protein intensities measured in single MNs revealed proteins 

ranging from high-abundance structural neurofilament proteins (NfPs; NEFH, NEFM, 

NEFL) to lower-abundance membrane-associated synaptic proteins (LIN7C) (Figure 2A). 

Interestingly, GFAP was the most readily detected protein in both ALS and CTL MNs 

(Figure 2A) despite being a known astrocytic protein.37 Several scenarios could account for 

this observation, including the following: (1) astroglial projections captured along with MN 

cell bodies upon excision, either from the xy-plane cell periphery or greater z depths, or (2) 

protein contamination from tissue shearing during cryogenic sectioning. Cellular material 

carried along the blade as it traverses the tissue block may be deposited atop cells of 

interest and become inseparable from underlying tissue during fixation. In both scenarios, 

GFAP mimics behavior of “common contaminant” proteins often found in abundance in 

proteomic samples (e.g., keratins, albumins) due to sample handling or culture conditions.38 

It is, however, important to note that while both scenarios explain detection of GFAP in 

single MNs, neither accounts for its elevated abundance in ALS MNs; instead, increased 

GFAP abundance more likely reflects a true tissue-level difference in which the local 
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environment surrounding an ALS MN may be more densely populated with astrocytes than 

that surrounding a healthy MN.

Though downshifted in MS1 intensity, the relative protein rank orders in ALS MNs 

largely paralleled their counterparts in CTLs, highlighting proteins at the lower end of the 

abundance range in CTL samples that fall below the limit of detection in ALS samples, such 

as Stathmin-2 (STMN2) (Figure 2A). Presence-absence comparison of single-cell proteomes 

identified 127 proteins uniquely present in CTL and 140 proteins uniquely present in 

ALS MNs (Figures 2B and 2C). Gene Ontology (GO) and pathway analyses of condition-

unique protein sets identified significant enrichment in RNA-processing-/splicing-associated 

proteins in CTL and innate immune signaling components in ALS (Figures S1B–S1C). 

Consistent with this observation, TDP-43 PPIs were significantly over-represented within 

the unique-to-CTL population relative to their frequency both in the human proteome39 and 

on the edge of significance (p = 0.06) for the unique-to-ALS protein set (Figures 2C and 

2D).

TDP-43 is an RNA-binding protein whose cytoplasmic inclusions in neurons (NCIs) 

represent a distinguishing pathological feature of ALS.40 An intriguing possibility is 

that sequestration of interactors alongside TDP-43 within insoluble NCIs limits their 

accessibility for trypsin digestion—and subsequent detection—reflecting their functional 

unavailability in ALS MNs. These interactors include proteins with critical roles in mRNA 

processing/splicing (SNRNP200, NHP2L1, SRSF4, PRPF4, SART3, EIF4G3), splice target 

protein products (STMN2), and stress-granule-associated proteins (LSM12, LSM14A, FUS, 

and G3BP1). G3BP1 was recently shown to co-localize with cytoplasmic, mutant TDP-43 in 

ribonucleoprotein condensates in a cellular ALS model.41

A recently identified target of TDP-43, STMN2 is aberrantly spliced in human ALS 

MNs, resulting in the suppression of canonical STMN2 RNA and protein and inhibited 

axonal regeneration following injury.11,13 To evaluate whether STMN2 expression and 

splicing might be altered in our cohort of ALS MNs, we detected STMN2 RNA via 

in situ hybridization (Figure 2E) and report significantly decreased STMN2 RNA levels 

in ALS vs. CTL MNs (Figure 2F), consistent with less frequent MS-based detection of 

STMN2 protein in ALS MNs (Figure 2A). We further observed that expression of cryptic 

STMN2 is concomitant with the sparse detection of canonical STMN2 expression (and vice 

versa) bisected single MNs analyzed (Figure 2F), suggesting that STMN2 protein losses 

observed by single-cell proteomic analysis are likely the result of STMN2 mis-splicing 

events. Interestingly, we observed loss of canonical STMN2 RNA expression in MNs 

lacking apparent TDP-43+ NCIs (Figure 2D, ALS#7, bottom), implicating TDP-43 LOF in 

STMN2 mis-splicing and suggesting functional deficiency prior to TDP-43-mislocalization 

and formation of histologically evident NCIs.

MN stratification by TDP-43+ NCIs to enable pseudolon-gitudinal assessment of protein 
dynamics in postmortem tissues

As postmortem CNS tissues often represent patients with end-stage ALS, we hypothesized 

that MNs representative of advanced NDD could be overrepresented in our pilot experiment. 

To test the hypothesis that MNs at earlier vs. advanced stages of neurodegeneration 
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might show different proteomic profiles, we generated a second, larger single-cell dataset 

consisting of MNs stratified by TDP-43+ NCI burden (Figures 3A and S3A). Using TDP-43 

immunohistochemistry in adjacent histologic sections (Figure 3A), we classified MNs using 

a qualitative staging system, CTL: control MNs with normal appearing TDP-43; NON: 

ALS MNs with no overt TDP-43+ NCIs; MLD: ALS MNs with mild TDP-43+ NCIs; 

MOD: ALS MNs with moderate TDP-43+ NCIs; and SEV: ALS MNs with severe TDP-43+ 

NCIs (Figures 3A and S2A), using an in-house-developed antibody targeting the C-terminal 

domain of TDP-43 that robustly detects NCIs in human ALS and TDP-43-mutant mouse 

(TAR4/4) CNS tissues (Figure S2B). It is important to recognize several limitations of 

this approach, including (1) subjectivity in manual assignment of TDP-43 strata, (2) the 

assumption that larger or more prominent TDP-43+ NCIs imply a more advanced disease 

state, and (3) inclusion formation follows a simple and non-reversible trajectory.

Target sample sizes were determined based on post hoc analyses of pilot dataset protein 

variability measurements (Figure S3) and modeled impacts on effect sizes for single-cell 

data.42 We captured 25 MNs from each ALS donor (n = 3), yielding between 13 and 

29 MNs per stratified TDP-43 class (Figure S4A). It is important to note per-donor 

differences in the distributions of MNs across TDP-43 strata (Figure S4A); ALS#1 and 

ALS#3 appear more closely matched, while ALS#4 likely has greater influence in MLD 

group comparisons. In line with the TDP-43-agnostic pilot data, we observed decreased 

frequency of STMN2 detection in ALS MNs, including in normal-appearing ALS MNs 

lacking TDP-43+ NCIs (Figure 3B). Together, these data may suggest that mis-splicing and 

diminished STMN2 translation are early events relative to the accumulation of TDP-43+ 

NCIs.

Beyond STMN2, we observed robust, significant protein abundance differences in ALS 

MNs lacking TDP-43+ NCIs relative to healthy CTL MNs (Figure S4Bi) and trends 

toward more subtle abundance alterations between NON and MLD ALS MNs (Figure 

S4Bii), though the latter did not meet pre-specified significance thresholds. Interestingly, 

stratum-to-stratum comparisons identified no significant DAPs across MLD, MOD, and 

SEV ALS MN groups (Figure S4B; Tables S4, S5, and S6). We observed substantial overlap 

in DAPs identified in the TDP-43 agnostic pilot (Figures 1C–1E; Table S1) with those 

identified in normal-appearing ALS vs. CTL MNs (Figures 3C–3G; Table S2). Additional 

analyses revealed 485 significant DAPs common across individual TDP-43 strata vs. CTL 

comparisons (Figures 3D and 3E), suggesting that deficiencies in proteins associated 

with oxidative phosphorylation, mRNA splicing, translation, and endolysosomal transport 

observed in normal-appearing ALS MNs persist across TDP-43 inclusion strata (Figures 1E 

and 3C–3F).

Endolysosomal sorting complex component abundances exhibit strong inverse 
correlations with increasing presence of cytoplasmic TDP-43 inclusions

Using TDP-43+ NCI stratification assignments, pseudotemporal profiles for individual 

proteins were determined both using the combined dataset and individually per donor based 

on Spearman correlation scores (Rs) (Table S6), identifying a subset of proteins whose 
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abundance values were significantly (p-adj < 0.05) correlated or anti-correlated (Figure 4A; 

Tables S4C and S4D) with increasing TDP-43+ NCI status.

Included in the significantly anti-correlated subset are NfPs (Figures 4B and S4C), following 

a pattern consistent with increased neuroaxonal stress/degeneration with greater TDP-43 

burden. Release of cytoskeletal NfPs in response to axonal damage has been suggested 

across a broad range of NDDs, including multiple sclerosis, Alzheimer’s disease (AD), 

frontotemporal dementia, Lewy body disease, traumatic brain injury, Parkinson’s disease 

(PD), and Huntington’s disease.43 Multiple cross-sectional NDD studies have demonstrated 

elevation of NEFL in peripheral biofluids of affected individuals and correlation with 

measures of cognitive decline, brain volume, and survival.44–47 Interestingly, while NfPs 

were significantly anti-correlated with TDP-43+ NCI burden, they were not the strongest 

correlators. In addition to NDD-associated pathway enrichments driven by metabolic 

and proteasomal proteins, we observed significant over-representation of endocytic, 

endolysosomal sorting, and retrograde trafficking proteins (Figure 4C) among strong 

negative correlators (≥95th percentile; RS ≥ 0.62).

Separation of strong negative correlators based on physical PPIs revealed core components 

of the retromer (VPS26B/SNX6/SNX12), ESCRT-III (VPS4B, CHMP4B), and GARP/

EARP (VPS52) complexes (Figure 4Cii). Remaining members of the heteropentameric 

retromer complex (VPS26A, VPS29, and VPS35) and components of the CORVET/HOPS 

(class C core vacuole/endosome tethering/homotypic fusion and protein sorting) tethering 

and sorting complexes (VPS18) and GARP/EARP transport complexes (VPS51, VPS52) 

also showed strong inverse correlations with TDP-43+ NCI burden, with conservation of 

correlation significance across all ALS donors profiled (Figure 4D; Table S6). To evaluate 

the possibility that correlations are driven by inclusion of the CTL group, we performed the 

correlation analysis across only ALS MNs (Table S6). Notably, we observed that SNX6, 

SNX12, VPS4B, and VPS18 retain negative correlation with TDP43+ NCI burden when 

CTL datapoints are excluded (Table S6).

The retromer complex is responsible for endosomal recycling of transmembrane protein 

cargoes to the plasma membrane, trans-Golgi network, or lysosomes,48 and dysregulation 

of VPS35 has been linked to AD49–52 and PD53–55 pathogenesis. Consistent with our 

observation of declining retromer abundance with increasing TDP43+ NCI burden, VPS35 

mRNA deficiency has been shown to track with stereotyped neurodegeneration across 

AD brain regions, with increased VPS35 downregulation in the comparatively vulnerable 

entorhinal cortex relative to the more resistant dentate gyrus.56 VPS35 LOF was recently 

shown to induce insoluble pTDP-43 accumulation in murine nervous tissues,57 and 

several reports have linked retromer and/or endosome dysfunction to human ALS51,58 

and disruption of TDP-43 processing/NCI formation.59–61 VPS35 mRNA deficiencies 

were further documented in human cortical tissues from a cohort of frontotemporal 

lobar degeneration (FTLD) donors harboring progranulin mutations. FTLD shares many 

pathological hallmarks with ALS, including profound TDP-43 pathology and NCI 

accumulation,5,7 and it has been suggested that ALS and FTLD may represent two different 

manifestations of TDP-43-accumulation-driven NDD.62
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The retromer core has been nominated as a potential therapeutic target in multiple NDD 

contexts,52,55 and adeno-associated virus (AAV)-mediated replacement of VPS35 was 

sufficient to reduce accumulation of C-terminal APP fragments in mouse models.51 Virally 

encoded VPS35 was capable of binding VPS26 and VPS29, indicating that exogenous 

VPS35 replacement can restore retromer core assembly.51 Consequently, therapies designed 

to restore retromer component functions have the potential to ameliorate the proteotoxic 

effects of protein accumulation in vulnerable neuronal populations51 across a spectrum of 

NDD proteinopathies, including ALS.

Stress granule protein abundances correlate inversely with TDP-43+ NCI burden

The stress granule and aggresome proteins G3BP1, USP10, and ATXN2 were also 

inversely correlated with increasing TDP-43+ NCI burden (Figure 4Cii; Table S6). The 

ubiquitin-specific protease USP10 has previously been shown to promote TDP-43+ stress 

granule clearance and TDP-43+ aggresome formation following proteasome inhibition, 

while depletion of USP10 increased insoluble cytoplasmic TDP-43 cleavage products.63 The 

repeat-expansion-containing protein ATXN2 (Ataxin 2) is decreased in abundance and co-

localizes with pTDP-43 in NCIs and with dystrophic neurites in FTLD-TDP hippocampi,64 

and intermediate-length ATXN2 repeat expansions are associated with increased ALS 

risk.65,66

Neuronal and astrocyte proteins increased in MNs with TDP-43+ NCIs

Fifteen DAPs increased in ALS MNs demonstrated significant positive correlations with 

the extent of TDP-43+ NCIs (Figures 4A, S4D, and S4E), including GFAP and SYNM. 

We determined glial:neuronal abundance ratios using reported cell-type-specific proteomic 

measurements67 to identify proteins consistent with astrocyte co-capture with MNs68 and 

which may indicate increased astrocyte activity/reactivity in degenerating MNs (Figures 

4E and 4F). CNTNAP2 (contactin-associated protein 2) was the most neuron-enriched 

protein positively correlated with increasing presence of TDP-43+ NCIs. CNTNAP2 is a 

transmembrane neurexin localized in channel-rich axonal juxtaparanodes with important 

roles in mediating cell:cell interactions69,70 and axonal excitability.71 Notably, CNTNAP2 

extracellular domain peptides have also been detected in human cerebrospinal fluid (CSF),72 

including in CSF from patients with ALS and FTLD.73

Comparison to ALS proteomic and transcriptomic studies

Mitochondrial dysfunction and impaired translation have been previously implicated in 

ALS disease by bulk proteomic studies of CNS tissues from ALS/FTLD donors.15–

17,74,75 Reminiscent of these findings, reduced stability of transcripts encoding many 

oxidative phosphorylation and ribosomal proteins has been reported in ALS patient-derived 

fibroblasts, iPSCs, and CNS tissues.76 Transcriptome data from human FTLD cortical cells 

lacking nuclear TDP-43 identified numerous differentially expressed transcripts, including 

TDP-43 splice targets12,14; we identified proteins corresponding to 24% (16/66) of these 

TDP-43 targets, with 75% (12/16) showing significantly altered abundance (reduced: 

CADPS, CAMK2B, CYFIP2, EIF4G3, EPB41L1, HP1BP3, IMMT, KIF3A, PRUNE2, 

STXBP1, SYNE1, UQCRC2; increased: ARHGEF11) in ALS MNs lacking TDP-43+ NCIs. 

Interestingly, transcriptomic studies of laser-captured lumbar MNs in bulbar-onset ALS—
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which could reflect earlier stages of NDD relative to limb onset—reported widespread 

increases in mRNA abundance in ALS MNs relative to CTL MNs.68,77 The utility of 

correlating RNA with protein abundance measurements has been the topic of significant 

interest and debate in the field,78–82 ultimately suggesting their complementarity and 

that RNA:protein data must be interpreted on a case-by-case basis to shed light on the 

mechanistic regulation of a given locus.

Limitations of this study

As a nascent field, we expect single-cell proteomic approaches to render even greater 

insights into disease biology as technologies mature. In this initial application of single-

cell proteomics to ALS MNs, we encountered several challenges. Notably, MN proteome 

coverage was low at ~2,500 proteins, an estimated ~20%–25% of the human proteome.83 

Although we measured clear, consistent, and biologically relevant abundance differences 

in ~500 proteins in ALS vs. CTL MNs, these challenges clearly limit the discovery of 

low-abundance proteins potentially altered in NDD. Furthermore, due to our methodology’s 

low throughput and technical reliance on manual cell selection, only 135 MNs from 6 

ALS donors were analyzed in in total. While per-group sample sizes were significantly 

increased in our TDP-43-focused experiment relative to the pilot based on measured (Figure 

S3) and modeled42 protein variability in CTL cells, we found comparisons across MNs 

with more prominent TDP-43+ NCIs insufficiently powered. It is not difficult to imagine 

that widespread alterations in protein abundances early in NDD cascades could exacerbate 

proteome variability at later stages, even among cells appearing similar with respect to 

histologically detected TDP-43.

We sought to stratify MNs based on TDP-43+ NCIs and consensus assignment to individual 

strata, and it is critical to acknowledge the qualitative/subjective nature of this method when 

interpreting these data. We operated under an assumption that TDP-43 staining observed in 

one-half of an MN is representative of total TDP-43 burden, which may not always be the 

case. Recent advancements in antibody-stained tissue processing methods will provide an 

improved means of capturing the exact material used for phenotypic stratification, especially 

in conjunction with data-driven cell selection and classification algorithms to further limit 

potential biases.

In addition to stratification via TDP-43 immunoreactivity, future studies may benefit from 

incorporation of MS-based measures of C-terminal, phosphorylated TDP-43 species as 

additional indicators of TDP-43 LOF. While we did detect unmodified TDP-43 peptides 

(Tables S1 and S2), evidence was insufficient to conclude that there were differences in 

TDP-43 between ALS and CTL MNs, which may be attributable to several factors: (1) 

the hyperphosphorylated C terminus of TDP-43, relatively lacking in tryptic cleavage sites 

(lysine, arginine), may be more amenable to digestion with cyanogen bromide84 (cleaving 

at methionine) than trypsin, which is widely used in bottom-up proteomics workflows for 

its consistent, efficient digestion of a majority of protein species and safety of use; (2) our 

study focused on unmodified proteoforms rather than phosphopeptides; and (3) conceivably, 

TDP-43+ protein inclusions/aggregates may not be fully accessible to enzymatic digestion. 

Future studies enriching for phosphorylations and/or employing complementary digestion or 
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targeted detection methods represent alternative methodologies for cell stratification in the 

context of proteinopathies.

Autopsy tissues provide a cross-sectional sample of cells at an advanced stage of 

human disease. Like other deep molecular phenotyping technologies, single-cell proteomic 

trajectory analyses may soon be capable of delineating molecular stages of disease 

progression without true longitudinal tissue sampling. We employed immunohistochemical 

assays in adjacent frozen sections to stratify MNs across four phenotypic stages based on 

the presence of TDP-43+ NCIs, operating under the assumption that greater histologically 

evident inclusion burden indicates more advanced NDD. With our approach and sampling 

depth, we were unable to delineate cell trajectories de novo using the CellTrails85 

algorithm (data not shown), which may be related to the small number of MNs and 

relatively few associated features in our single-cell proteomics dataset compared to single-

cell RNA sequencing (RNA-seq) studies.86 Alternatively, we identified DAPs with the 

strongest Spearman correlations with TDP-43+ NCI strata as candidates that may play 

important mechanistic roles in ALS. However, our assumption of the direct relationship 

between an MN’s neurodegenerative progression and observable TDP-43+ NCIs does not 

account for the effects of oligomer toxicity or the potential neuroprotective roles of large 

aggregates.87,88

A further limitation stems from our study’s reliance on banked human autopsy specimens, 

which imparts additional variability in sample handling outside our control. Tissue banking 

protocols vary site to site, and while we ensured that ALS and CTL tissues originated from 

the same site and tried to match samples based on available demographic information, we 

were limited by sample availability and noted PMI variation in ALS vs. CTL donors (Figure 

1D; Table S7). In postmortem tissue studies, it is also not possible to fully deconvolute 

the effects of perimortem insults including tissue hypoxia89,90 from those of disease. In an 

ideal situation with greater sample sizes, incorporating correction for donor characteristics 

is undeniably the preferred method for high-confidence detection of DAPs in a dataset 

consisting of multiple samples from multiple individuals.

To derive as much information as possible from rare and precious human tissues where 

knowledge of donor case histories and comorbidities is incomplete, we elected to perform 

analyses by (1) correcting for the within-donor correlations between MNs from the same 

individual and (2) with additional correction for donor-specific age, sex, and PMI data91 

(Figures 1C and 1D). Not surprisingly, we observed a striking reduction in DAPs identified 

with full covariate inclusion (Figures 1C and 1D). While only 7 proteins survived this 

stringent correction, these high-confidence DAPs confer additional support for pathway-

level dysregulation of cellular respiration, RNA splicing, and protein translation in ALS 

MNs (Figures 1C–1E). We further show conservation of protein abundance correlations in 

TDP-43-stratified MNs at the level of individual donors and upon exclusion of CTL samples 

(Figures S4C–S4E; Table S6) in addition to pooled donor analyses (Figure 4). Ultimately, 

collection of a larger dataset of single-cell measurements from additional subjects will be 

necessary for increased confidence in DAPs reported in this present study and is the focus 

of ongoing efforts to build on this demonstration of single-cell proteomics applied to human 

disease tissues.
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Conclusion

Herein, we have presented unbiased proteomic studies of single somatic MNs from 

postmortem ALS donor spinal cords. Trace sample protein processing using nanoPOTS 

(1) rendered identification of >2,700 proteins and quantitative comparison of >1,300 

proteins in our pilot study, (2) enabled disease-state differentiation of single MNs, and (3) 

revealed reductions in protein abundances suggesting impairments in cell energetics, protein 

translation, proteostasis, and trafficking mechanisms, including an emphasis on Golgi-

lysosome trafficking. In a follow-up experiment where MNs were stratified by TDP-43 

neuropathology, we observed similar complements of DAPs in MNs lacking TDP-43+ 

NCIs, suggesting that impairments in cellular energetic and proteostatic mechanisms occur 

early with respect to inclusion formation. Specifically, we report declining expression of 

retromer components accompanying increasing presence of TDP-43+ NCIs and propose 

retromer-complex-mediated endolysosomal sorting as a potential point of future mechanistic 

research in the formation or clearance of TDP-43 inclusions in ALS MNs (Figure S5). We 

further confirmed loss of canonical STMN2 transcripts and protein in ALS MNs concurrent 

with early TDP-43 pathology, indicative of loss of TDP-43-mediated splicing functions prior 

to formation of large TDP-43+ NCIs. Our study begins to show the potential of single-cell 

proteomics to augment the study of human neurologic diseases and provide insights into 

temporal dynamics of disease progression directly from human tissues.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Edward D. Plowey 

(ed.plowey@biogen.com).

Materials availability—Custom BaseScope probes targeting Stathmin 2 that were 

generated for this study are available through the Advanced Cellular Diagnostics catalog.

Data and code availability

• Data reported in this paper are available upon request form the lead contact. 

Mass spectrometry data generated in this study have been deposited to 

ProteomeXchange (PXD042799) and MassIVE (MSV000092119).

• Custom code is available on GitHub (https://doi.org/10.5281/zenodo.10268532).

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Postmortem human tissue specimens were provided by the University of Miami Brain Bank 

under requisition ID B2AE76. Subject details are summarized in Table 1. Human tissue 

samples sourced from the University of Miami Brain Endowment Bank were collected under 
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informed consent outlined in Brain Endowment Bank IRB Protocol Number 19920358 

(CR0001775) approved by the University of Miami Institutional Review Board.

METHOD DETAILS

Case selection—ALS and CTL cases were selected from a cohort of frozen thoraco-

lumbar spinal cord tissue samples from the University of Miami Brain Bank (Table S7). 

Spinal cord tissues were divided into ~3mm sub-blocks. Two to seven sub-blocks were 

generated per sample, depending on initial tissue dimensions. Sub-blocks were generated 

by allowing the tissue to thaw slightly to avoid fracturing, then sliced into sub-blocks 

using a razor blade. Sub-blocks were immediately transferred to histology cassettes on dry 

ice and stored at −80°C. One ~3mm sub-block per donor was embedded in pre-chilled 

2.5% carboxymethylcellulose solution (2.5% (w/v) carboxymethylcellulose (Sigma, Cat. 

No. 419273–100G, Lot. No. MKCG5725) in dH2O) in cryomolds on dry ice and allowed 

to freeze fully at −80°C. Subsequently, 5um sections were collected on positively-charged 

histology slides (Fisher Superfrost) and post-fixed by immersion in 10% Neutral Buffered 

Formalin (Fisher Scientific) for 15 min followed by two 10-min washes in 1X phosphate 

buffered saline (PBS) (Abcam, Ref. #ab128983). All sections were collected using a Leica 

CM1520 cryostat (CMMS ID XX-99339) using a Leica high-profile microtome blade at 

an internal cryostat temperature of −23C. Fixed slides were allowed to air dry following 

PBS rinse and stored at room temperature prior to staining. For tissue evaluation and 

case selection, haematoxylin and eosin (H&E) staining was performed on a single frozen 

section per donor using an automated Leica Spectra staining protocol (H&E no oven) and 

coverslipped using an automated coverslipper (TissueTek). Brightfield images of stained 

tissues were collected of all tissues at 20× on 3DHIS-TECH Panoramic slide scanner. In 

addition to evaluation of tissue quality, samples were selected to minimize differences in age 

at time of autopsy and postmortem interval (PMI) across sample groups.

Tissue sectioning and laser capture microdissection—Zeiss PEN membrane slides 

(Zeiss, Ref # 415190–9041-000, Lot # 000671–19) and Superfrost PlusGold slides (Fisher, 

Ref # 15–188-48, Lot # 19906–665158) were exposed to UV light for 30 min in a laminar 

flow hood to promote tissue adhesion. Spinal cord blocks were transferred from the −80°C 

freezer to the cryostat (−23°C) and allowed to equilibrate in temperature for 20 min 12-μm-

thick sections were collected by cryosectioning in the following order: (1) one 12 μm section 

on a Superfrost PlusGold slide; (2) ten adjacent 12 μm sections (two per slide) on five PEN 

membrane slides; (3) one 12 μm section on a Superfrost PlusGold slide.

Slides were pre-chilled on the interior surface of the cryostat prior to section collection. 

Single sections were collected on PlusGold slides, adhered to the slide by warming the 

reverse side of the slide with a finger, and then immediately refrozen on the inner cryostat 

surface. Two sections were collected at the same time onto each PEN membrane slide, 

melted onto the slide by warming the reverse side of the slide with a finger, and then 

were immediately refrozen on the inner cryostat surface. Once sections were frozen and all 

sections (A-C) for a sample were collected, tissue sections were fixed in 70% ethanol for 15 

min at room temperature and then transferred immediately to storage at −80°C in slide boxes 

with desiccant packs (Humidity Sponge).
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For TDP-43-agnostic MN captures (ALS Pilot), all sections were collected over the course 

of four days, ensuring that equal numbers of ALS and non-disease control cases were 

collected in individual sectioning sessions using the same cryostat. All sections were stored 

at −80°C prior to H&E staining, ethanol dehydration, and vacuum desiccation. Stained 

tissue sections were scanned on a Zeiss PALM MicroBeam system at 40× resolution. Motor 

neurons were selected for single cell proteomics based on morphology and presence of 

Nissl substance and if the same cell was confidently identified across two or more adjacent 

sections to allow capture of two 12um-thick excised cell cross-sections per sample. Six 

individual MNs from each case (3 ALS and 3 CTL) were selected for subsequent analysis. 

Specifically, individual MNs matched across two adjacent sections were selected from 

laminae VII/IX of the ventral horn, excised by laser capture microdissection, and collected 

in individual nanoPOTS wells prefilled with DMSO to aid in sample collection using the 

Slide Collector 48 adapter. 10MN boost samples were generated for each donor by capturing 

and combining twenty 12um-thick excised cell cross-sections to approximate the protein 

contents of ten cells (two cross-sections per cell). Nanowells were imaged at 10× resolution 

to confirm collection of each excised cell. Following collection, nanoPOTS chips were 

sealed to avoid the evaporation of the solution from the nanowells.

For TDP-43-pathology-guided MN captures (TDP-43 Pseudotime), 20um-thick frozen 

sections were collected onto Zeiss PEN membrane slides, as described above, and 

adjacent 10um-thick frozen sections were collected onto Plus Gold slides for subsequent 

chromogenic detection of TDP-43 and ChAT protein by immunohistochemistry (IHC) 

staining. Frozen human spinal cord cross sections were fixed in 10% NBF, dried, 

and stored at room temperature prior to immunostaining. Staining was conducted on 

a Ventana Ultra platform using standard chromogenic methods. For antigen retrieval 

(HIER) and permeabilization, slides were heated in a pH9 EDTA-based buffer for 10 

m at 94°C, followed by incubation with a mouse monoclonal antibody against TDP-43 

(L95A-42, Biogen) at 1:40,000 and a rabbit monoclonal antibody targeting ChAT (Clone: 

EPR16590, Abcam, Ref. ab178850) at 1:3,000. Bound anti-TDP-43 and anti-ChAT primary 

antibodies were detected using an AP-conjugated-anti-mouse and HRP-conjugated-anti-
rabbit secondary polymers with chromogenic visualization with Ventana DISCOVERY Red 

and Ventana DISCOVERY Yellow, respectively. A subset of slides was counterstained with 

haematoxylin to visualize nuclei. Stained slides were imaged at 203. Images from adjacent 

H&E-stained 20um- and TDP-43-ChAT-stained 10um-sections were manually aligned for 

identification of single MNs spanning both sections for laser capture microdissection (as 

described above) and classification of TDP-43 pathology, respectively. TDP-43 strata were 

defined along a semi-quantitative 4-point scale based on quantity and morphology of 

cytoplasmic TDP-43 protein inclusions.

NanoPOTS sample processing—Following cell capture, remaining DMSO was 

allowed to evaporate prior to adding additional processing reagents. Samples were further 

processed using the nanoPOTS workflow as described previously.19,23,92 Briefly, proteins 

were extracted with 0.1% dodecyl-β-d-maltopyranoside (DDM) and reduced with 5 mM 

dithiothreitol (DTT) followed by alkylation with 10 mM iodoacetamide (IAA). The two-step 

enzyme digestion was performed with LysC (0.25 ng) for 4 h followed by trypsin (0.25 
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ng) for an additional 16 h at 37°C. Digestion reactions were quenched with 0.1% formic 

acid (FA) and digested peptide samples were collected in 200-μm-i.d. fused silica capillaries 

using a robotic liquid handling system. The samples were stored individually at −20°C prior 

to LC-MS/MS analysis. Additional “boost” samples (10 MN equivalents) were prepared 

using pooled MNs from each case to facilitate feature identification and matching across 

single-cell analyses of the same case. Prior to injection and MS analysis, samples were 

block-randomized to minimize batch effects and impact of instrument drift during data 

acquisition.

nanoLC-MS/MS analysis—Samples were equilibrated to 4°C prior to analysis and were 

positioned for in-line loading on to an in-house-packed SPE column (5 cm x 75-μm-i.d.). 

Samples were loaded onto the column over 10 min using 100% Mobile Phase A (0.1% FA 

in water) at a flow rate of 0.5 μL/min using an UltiMate 3000 RSLCnano pump (Thermo 

Fisher) to ensure complete desalting. Peptide separation was performed by connecting the 

SPE column to an in-house-packed analytical SPE column (50 cm x 30-μm-i.d.) connected 

to a nanospray emitter by a zero-dead-volume union (Valco, Houston, TX). Peptides were 

separated by a 100-min linear gradient (8–25% mobile phase B (0.1% FA in acetonitrile) 

followed by an additional 20-min linear gradient (25–45% B) to elute hydrophobic peptides. 

For column washing, mobile phase B was increased to 90% over 5 min and held constant for 

5 min to wash the column, then was reduced to 2% over 5 min and held constant for 15 min 

to re-equilibrate the column. Post-split (50 cm x 75-μm-i.d. split column) mobile phase flow 

rates were 20 nL/min; 250 nL/min programmed flow was provided by the UltiMate 3000 

RSLCnano pump.

Peptides were injected into a Thermo Orbitrap Exploris 480 mass spectrometer by 

electrospray using in-house-pulled nanospray emitters (20-μm-i.d.). MS and MS/MS data 

were acquired by employing an electrospray potential of 2000 V at the source for ionization. 

The ion transfer tube temperature was 200°C for desolvation and the ion funnel RF level 

was 40. Full MS scans were acquired at 375–1800 m/z with an orbitrap resolution of 

120,000 (m/z 200). The AGC target and maximum injection time were set to 1E6/200 

ms. Data-dependent MS/MS spectrum acquisitions were triggered for precursor ions with 

intensities > 5E3 and charge states of +2 to +7. The scan range was defined from first mass 

to 100 m/z with a cycle time of 3 s. Monoisotopic precursor ion peaks were fragmented 

by higher energy collision-induced dissociation (HCD) with a normalized collision energy 

of 28% and with AGC target and maximum injection time set to 1E5/500 ms. Fragment 

ions were detected in the orbitrap at 30,000 resolution (m/z 200). MS/MS isolation windows 

were 1.6 Da with a mass tolerance of ±10 ppm and dynamic exclusion time was set to 90s.

Protein identification and quantitation—Raw MS data were searched against a 

protein database consisting of reviewed human proteins (20,353 reviewed protein sequences, 

UniProtKB, downloaded: July 20th, 2020) appended with common contaminants using a 

two-step database search was done with Sequest HT and Sequest HT INFERYS rescoring 

algorithms in Proteome Discoverer (version 2.5, ThermoFisher Scientific, San Jose, CA) 

specifying fully tryptic enzymatic digestion (7–30 amino acids, 2 missed cleavages). Fixed 

carbamidomethylation (C) and variable oxidation (M), deamidation (N,Q) and modification 
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of protein N-termini (acetyl, Met-loss, pGlu) were included in the search parameters as 

modifications. Precursor and fragment mass tolerances were set to 10 ppm and 0.02 Da, 

respectively. The peak matching feature detection option was enabled to allow a maximum 

chromatographic retention time shift to 10 min with a mass tolerance of 10 ppm. Peptide 

identifications were refined using a target-decoy approach followed by percolation based on 

q-values and imposing a strict FDR cut-off of 0.01 and a relaxed FDR cut-off of 0.05 at 

the PSM and peptide level. Protein abundances were determined using the precursor ions 

quantifier node based on the top three distinct peptides (unique and razor) from each protein 

and normalized to total peptide signal per single cell sample (“boost” samples were included 

in the search to facilitate protein identification via feature matching but were excluded in 

normalization and quantitative comparison steps).

In situ hybridization and immunohistochemistry staining—FFPE tissue sections 

from human spinal cord samples were evaluated for RNA quality using positive (BA-

Hs-POLR2A-3zz) and negative control (BA-dapB-3zz) BaseScope (Advanced Cellular 

Diagnostics, Inc.) probes. Expression of canonical and cryptic STMN2 transcripts was 

investigated using custom BaseScope probes (BA-Hs-STMN2–3zz-st and BA-Hs-STMN2-

intron1–1zz-st1, respectively) (Advanced Cellular Diagnostics, Inc.) in conjunction with 

detection of TDP-43 protein using a mouse antibody against TDP-43 (0.25 μg/ml, TDP-43-

L95A, Biogen) and Bond Primary Antibody Diluent (Advanced Cellular Diagnostics, 

Inc., Cat. No. AR9352) and the Bond Polymer Refine Detection Kit (Advanced Cellular 

Diagnostics, Inc., Cat No. DS9800).

RNA in situ hybridizations were performed on a Leica Bond automated platform using 

the BaseScope Reagent Kits (Advanced Cell Diagnostics, Inc.) according to manufacturer’s 

instructions. Briefly, 5um-thick FFPE tissue sections were pretreated with heat (Epitope 

retrieval (LS ER2) was carried out for 30 min at 95C) and protease (Protease IV, 

30 min at 40C) prior to probe hybridization and antibody incubation (15 min, 0.25ug/

ml). Pre-preamplifier, preamplifier, amplifier, and HRP/AP-labeled oligos were hybridized 

sequentially, followed by chromogenic detection. Samples were counterstained with 

hematoxylin. Brightfield images were collected at 40X using a 3DHistech Pannoramic 

SCAN II digital slide scanner. Scanned images were processed using a custom image 

analysis algorithms developed in Visiopharm for threshold-based detection of STMN2 and 

TDP-43 signal. MNs were annotated by training a Random Forest classifier and the resulting 

ROIs were manually inspected and adjusted prior to analysis of STMN2 and TDP-43 

signal. Resulting data were analyzed using GraphPad Prism and STMN2 RNA expression 

differences were determined using a Mann Whitney U Test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of differential protein expression between ALS and CTL MNs was performed in 

R93 as follows: proteins with 3 or more missing values in at least one condition (1,375 

out of 2,752 proteins) were excluded from downstream analysis. Data were background 

corrected and normalized by variance stabilizing transformation (vsn).94 Missing data were 

imputed following inspection of the pattern of missing data a heatmap and comparison 

of compared intensity distributions and cumulative fraction of proteins with and without 
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missing values. As data appeared to be MNAR (missing not at random) (i.e., proteins 

with missing values have, on average, low intensities), missing data were imputed via 

left-censored imputation methods (MinProb and man). Differential expression analysis was 

then conducted by application of a linear mixed model to account for the dependence 

structure among samples from the same donors (using duplicateCorrelation() function from 

limma). Proteins with an FDR-adjusted p value of <0.05 and with absolute log2 fold changes 

≥1.5 were considered significantly differentially abundant. For TDP-43 stratified samples, 

correction for individual donor contribution was evaluated by considering donor origins as 

individual variables to correct for within-donor correlations between samples from the same 

individuals. Raw protein intensity data were log2-normalized and compared across each 

stratified TDP-43 group (i.e., NON, MLD, MOD, SEV) to the control and to each other, 

accounting for donor contribution as a variable. Differential protein abundances between 

groups were determined using limma and p values were corrected for multiple hypothesis 

testing (Benjamini-Hochberg). Proteins with an FDR-adjusted p value of <0.05 and with 

absolute log2 fold changes ≥1.5 were considered significantly differentially abundant 

and were visualized via Volcano plots. Lists of significantly increased- or decreased-in-

abundance proteins were made for each TDP-43 stratum relative to the control group. Using 

these lists, we identified significantly DAPs that were common across multiple strata or 

unique to an individual stratum, as visualized using upset plots.

Interaction networks for proteins exhibiting significantly differential abundance in ALS 

vs. CTL MNs were generated in the web-based STRING application (v12)95 with 

additional filtering requiring a minimum interaction score of 0.7 and with “Experimental” 

and “Database” active interaction sources enabled. Networks were then imported into 

Cytoscape (v3.8.2)96 to allow mapping of protein abundance data onto individual nodes. For 

TDP-43 negative correlators, the physical interaction network was constructed as described 

above, with the following modifications: minimum interaction score = 0.4; “physical 

subnetwork” option enabled. Over-representation of gene ontology (GOBP), KEGG, and 

Reactome pathway terms associated with identified protein subsets were determined using 

hypergeometric tests (statistical background = whole genome) followed by Benjamini-

Hochberg correction for multiple hypothesis testing using the STRING enrichment analysis 

widget.97 Spearman correlation scores were calculated using the PerseusGUI (v1.6.5.0)98 

and GraphPad Prism based on only non-imputed abundance values forindivu(missing data 

= NaN). Fisher exact testing for TDP-43 protein-protein interaction (PPI) enrichments was 

performed on contingency tables in GraphPad Prism (2-sided test, 90% CI) using TDP-43 

PPI data from BioGRID.

Glial:neuronal abundance ratios were calculated based on published data from a 

study focused on comprehensive profiling of the mouse brain proteome across 

cell types and brain regions. Median abundance values were calculated across all 

ages/DIV stages for each cell population: astrocyte, oligodendroglial, microglial, and 

neuronal LFQ (label-free quantitation) data published in Sharma et al. 2016, Table S1 

(File ID: https://static-content.springer.com/esm/art%3A10.1038%2Fnn.4160/MediaObjects/

41593_2015_BFnn4160_MOESM38_ESM.xlsx; PXD001250; 67). Ratios per population 

were then calculated as the log2-transformed ratios of median abundance in each glial 

population vs. the median abundance in the neuronal population. A pan-glial ratio for each 
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protein was also calculated as the mean of the individual per-glial-subtype enrichment 

scores. Resulting data were analyzed using GraphPad Prism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell proteomic analysis of human ALS motor neurons directly 

captured by LMD

• ALS motor neuron deficiencies in splicing, translation, and vesicular transport 

machinery

• Stratification of single-neuron proteomes based on pathologic TDP-43 

inclusions

• Utility of trace sample proteomics in augmenting the study of human 

neurological diseases
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Figure 1. Ultrasensitive single-cell proteomic mapping of ALS motor neurons
(A) Proteins (high-confidence master proteins, HCMPs; 5% global FDR) identified across 

single MNs (n = 6/donor) laser excised from ALS or CTL donor tissues (n = 3/diagnosis).

(B) Principal-component analysis (PCA) dimensionality reduction of the top 500 most-

variable proteins measured across ALS and CTL MNs.

(C) Differential protein abundance in ALS vs. CTL MNs with correction for donor origin. 

Significant DAPs (|log2(ALS/CTL)| ≥ 1.5 ∩ p-adj < 0.05) indicated in purple.
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(D) (Left) Age and PMI distributions for ALS and CTL donors; median ± range. (Right) 

Differential protein abundance with correction for additional covariates (age, sex, PMI). 

Significant DAPs indicated in purple.

(E) PPI network of significant DAPs. Node color indicates fold change in normalized protein 

abundance; edges denote high-confidence PPIs.
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Figure 2. Absence of STMN2 protein detection in human ALS MNs parallels decreased 
abundance of Stathmin-2 (STMN2) RNA and absence of functional TDP-43 interaction partners
(A) Rank-ordered median protein intensities in single CTL or ALS MNs.

(B) Uniquely identified and overlapping proteins detected in ALS or CTL single MNs.

(C) PPI network of proteins uniquely detected in CTL (left) or ALS (right) single MNs; 

TDP-43 node added manually. Node border: magenta, BioGRID-reported direct or indirect 

TDP-43 PPIs; purple, downstream TDP-43 splice target STMN2; edges indicate STRING-

annotated physical PPIs.
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(D) Prevalence of TDP-43 interactors among proteins uniquely detected in CTL MNs, 

proteins uniquely detected in ALS MNs, or detected in the background human proteome 

(two-sided Fisher’s exact test).

(E) Dual expression of STMN2 RNA (red) and TDP-43 protein (teal) in ALS and CTL 

human spinal MNs.

(F) Quantitation of STMN2 RNA abundance in ALS (n = 5) and CTL (n = 10) donors; 

violin plots show median (dashed line), interquartile range (IQR; dotted lines), range, and 

Mann-Whitney U test p values.

(G) Cryptic and canonical STMN2 transcript visualization in adjacent ALS MN cross-

sections.
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Figure 3. Significant disruption of proteostasis, mitochondrial dysfunction, and induction of 
pro-apoptotic signaling are apparent prior to overt TDP-43 aggregation
(A) Schematic of single-MN selection for laser-capture microdissection by dual detection of 

TDP-43 and ChAT in immediately adjacent tissue sections. Captured MNs were stratified 

based on TDP-43+ NCI status.

(B) Frequency of STMN2 protein detection in single MNs across TDP-43 strata.

(C) Differential protein abundances identified across TDP-43+ NCI strata 

(NON/MLD/MOD/SEV vs. CTL). Significant DAPs (|log2(ALS/CTL)| ≥ 1.5 ∩ p-adj < 0.05) 

shown in color.
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(D and E) Shared or unique proteins across TDP-43 strata with significantly (D) decreased 

or (E) increased abundance in ALS MNs.

(F) PPI network of significant DAPs (|log2(ALS/CTL)| ≥ 1.5 ∩ p-adj < 0.05) common to 

all TDP-43 stages. Node color indicates fold change in protein abundance; edges denote 

high-confidence PPIs.
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Figure 4. Neurofilament protein and retromer complex component abundances track inversely 
with increasing TDP-43 aggregation in postmortem human MNs
(A) Volcano plot of Spearman rank correlations (Rs) for abundance of individual proteins 

vs. corresponding TDP-43 stratum; purple highlight, significantly (p-adj < 0.05, Bonferroni) 

correlated proteins; green dashed lines indicate NfP correlations.

(B) Distribution of NEFH, NEFM, and NEFL protein abundances in individual MNs across 

TDP-43+ NCI strata.
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(C) (i) Over-represented (blue highlight; p-adj < 0.05, p-adj < 0.01, Benjamini-Hochberg) 

KEGG pathways and (ii) physical protein complex assignments for the top 5% negative 

TDP-43-correlators; median ± IQR; whiskers indicate range.

(D) TDP-43-stratified protein abundances trajectories for retromer (blue), GARP/EARP 

(mauve), HOPS/CORVET (teal), and ESCRT-III (gold); median ± IQR; whiskers indicate 

range.

(E) Glial:neuronal abundance ratios for proteins with significant, positive RS.

(F) TDP-43-stratified protein abundance trajectories for SYNM and CNTNAP2; median ± 

IQR; whiskers indicate range.
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