Skip to main content
. 2024 Feb 29;10(5):e26938. doi: 10.1016/j.heliyon.2024.e26938

Table 5.

Computational time.

Deep learning models Convolution Layer output Feature size Testing time milliseconds(ms)
Vgg16 4, 4, 512 8192 101549.47
Vgg19 4, 4, 512 8192 11425.91
EfficiebtnetB0 5, 5, 1280 32000 406196.04
ResNet50 5, 5, 2048 51200 609294.78
Hybrid deep Learning model (max pooling layer 2 ×2)-NN Vgg16 (2, 2, 512)
Vgg19 (2, 2, 512)
4096 30217.18
Hybrid deep learning model(average pooling layer)- Naive Bayes 30069.80
Hybrid deep learning model(average pooling layer)-Random Forest 28290.65
Hybrid deep learning model(average pooling layer)-KNN 364.87
Hybrid deep learning model(average pooling layer)-SVM (rbf) 424.26
Hybrid deep learning model(average pooling layer)-SVM (sigmoid) 38316.83
Hybrid deep learning model(average pooling layer)-SVM (linear) 171267.67
Hybrid deep learning model (average pooling layer 2 ×2)-NN 32185.88