Table 5.
Computational time.
Deep learning models | Convolution Layer output | Feature size | Testing time milliseconds(ms) |
---|---|---|---|
Vgg16 | 4, 4, 512 | 8192 | 101549.47 |
Vgg19 | 4, 4, 512 | 8192 | 11425.91 |
EfficiebtnetB0 | 5, 5, 1280 | 32000 | 406196.04 |
ResNet50 | 5, 5, 2048 | 51200 | 609294.78 |
Hybrid deep Learning model (max pooling layer 2 )-NN | Vgg16 (2, 2, 512) Vgg19 (2, 2, 512) |
4096 | 30217.18 |
Hybrid deep learning model(average pooling layer)- Naive Bayes | 30069.80 | ||
Hybrid deep learning model(average pooling layer)-Random Forest | 28290.65 | ||
Hybrid deep learning model(average pooling layer)-KNN | 364.87 | ||
Hybrid deep learning model(average pooling layer)-SVM (rbf) | 424.26 | ||
Hybrid deep learning model(average pooling layer)-SVM (sigmoid) | 38316.83 | ||
Hybrid deep learning model(average pooling layer)-SVM (linear) | 171267.67 | ||
Hybrid deep learning model (average pooling layer 2 )-NN | 32185.88 |