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Abstract

In the past decade, the field of LC-MS based metabolomics has transformed from an obscure 

specialty into a major “-omics” platform for studying metabolic processes and biomolecular 

characterization. However, as a whole the field is still very fractured, as the nature of the 

instrumentation and of the information produced by the platform essentially creates incompatible 

“islands” of datasets. This lack of data coherency results in the inability to accumulate a critical 

mass of metabolomics data that has enabled other –omics platforms to make impactful discoveries 

and meaningful advances. As such, we have developed a novel algorithm, called Disparate 

Metabolomics Data Reassembler (DIMEDR), which attempts to bridge the inconsistencies 

between incongruent LC-MS metabolomics datasets of the same biological sample type. A 

single “primary” dataset is postprocessed via traditional means of peak identification, alignment, 

and grouping. DIMEDR utilizes this primary dataset as a progenitor template by which data 

from subsequent disparate datasets are reassembled and integrated into a unified framework 

that maximizes spectral feature similarity across all samples. This is accomplished by a novel 

procedure for universal retention time correction and comparison via identification of ubiquitous 

features in the initial primary dataset, which are subsequently utilized as endogenous internal 

standards during integration. For demonstration purposes, two human and two mouse urine 

metabolomics datasets from four unrelated studies acquired over 4 years were unified via 

DIMEDR, which enabled meaningful analysis across otherwise incomparable and unrelated 

datasets.
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Introduction:

In the past decade, metabolomics has risen to become a crucial platform for in-depth 

analysis of metabolic processes and small molecule characterization in biological systems. 

The US National Institutes of Health’s establishment of six Regional Comprehensive 

Metabolomics Resource Cores, the UK Medical Research Council’s National Phenome 

Center, as well as investments in metabolomics core facilities by countries all over the 

world 1 attests to the immense potential of the field for making transformative discoveries 

in biological research. However, little progress has been made towards building the critical 

mass of harmonized data that has enabled other “-omics” platforms, namely genomics and 

the GenBank database, to make truly meaningful discoveries and impactful advances. This 

is largely due to the nature of the instrumentation and of the information produced by 

the platform resulting in “islands” of datasets that are often incomparable to one another. 

Bridging these islands to create more harmonized data frameworks is an essential step 

towards the field’s maturation.

Much of the field’s growth can be attributed to advances in high performance liquid 

chromatography (LC) coupled with high resolution mass spectrometry (MS). The 

proliferation of these new technologies has enabled the development of high-throughput 

analytical workflows that offer an unprecedented level of comprehensive quantitative insight 

into the metabolome. However, these new analytical techniques, and the rapid pace of 

technological progress itself, has drawbacks with respect to data coherence. While liquid 

chromatography has vastly simplified sample preparation procedures (to the point where 

“dilute-and-shoot” methods have been advocated) 2, especially in comparison to established 

separation technologies such as gas chromatography, fundamental properties of LC make 

retention times highly variable. This variability is so great, even within the same laboratory, 

that retention time values are effectively irreproducible when considered as a means for 

aiding compound identification 3. This, coupled with a lack of best practice standards 

for LC method development, makes quantitatively meaningful intra- and inter-laboratory 

comparisons of retention times nearly impossible. While inter-instrument data coherence 

for mass spectrometers is less of an issue, the plethora of technologies promulgated by 

mass spectrometry manufacturers in recent years (MSALL, SWATH, MMDF, MSn) 4 further 

muddies the water in regard to data standardization and compatibility. Thus, the rapid pace 

of development in both the instrumentation and methodologies creates a moving target for 

standardization and impedes data coherency.

The rapid pace of development in LC-MS based metabolomics has also resulted in a dearth 

of informatics tools and workflows for data standardization and coherence. Efforts thus 

far have focused on analysis of single batches of experimental data for the purposes of 

identifying statistically significant analytes that may serve as biomarkers or elucidating 

biologically relevant outcomes via metabolic pathway analysis. The vast majority of existing 

bioinformatics tools and workflows for metabolomics, which include XCMS 5, MZmine 
6, MetaboAnalyst 7, Workflow4metabolomics 8, and MetaboLyzer 9, are geared towards 

this single batch oriented analysis. Several data repositories have also been developed for 

storing, organizing, and curating metabolomics datasets such as the EBI MetaboLights 10 

and NIH Metabolomics Workbench 11 resources. However, none of these efforts attempt 
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to tackle the problem of integrating multiple batches of data from numerous experiments 

to form a single coherent dataset. While such an endeavor may initially seem to have 

limited use cases, it has profound implications when considering the “big picture” of 

metabolomics and its ultimate goal of studying the totality of information contained within 

the metabolome, which necessitates an integrated database consisting of mutually coherent 

datasets. Such an endeavor exceeds the scope and resources of any single laboratory or 

institution, requiring a concerted and collaborative effort by the metabolomics community as 

a whole, which includes developing tools for increased data standardization and coherency.

With these goals in mind, Disparate Metabolomics Data Reassembler (DIMEDR) was 

developed. DIMEDR reassembles incongruent datasets that have been acquired across 

multiple unrelated experiments into a single coherent data matrix. To do so, DIMEDR 

prioritizes the identification of mutual spectral features across all datasets that are being 

reassembled, and accomplishes this by inspecting features at the individual chromatogram 

level within each dataset. In doing so, both intra- and inter-dataset biases and irregularities 

can be taken into account, which can include intra-set retention time drifts and inter-set 

shifts, and systematic inter-set m/z value biases. Initially, a user-defined primary sample set 

is selected from the sets that are being reassembled. This primary set undergoes a standard 

feature selection workflow, which includes peak picking and retention time correction. 

This is the basis for the unified data matrix template that data from all subsequent sets 

will be integrated into. Ultimately, the path towards universal harmonized metabolomics 

databases is a challenge that can only be solved through concerted community driven efforts 

that involve both logistical and informatics solutions. DIMEDR is an initial step towards 

bridging these “islands” of incompatible datasets through novel informatics methodologies, 

which will hopefully spur the field to further these goals.

Methods and Tools:

DIMEDR was written in Python utilizing a variety of open source libraries and tools. These 

include Matplotlib 12, NumPy 13, and the R statistical computing environment 14 via Rpy2 
15. DIMEDR relies on the XCMS CentWave algorithm 16 to conduct peak picking and peak 

integration via R. All code was developed in a Unix environment via Ubuntu 18.04 LTS, 

and is freely available at https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:dimedr 

along with detailed installation instructions.

General Workflow Overview:

DIMEDR’s strategy for bridging the inconsistencies between two or more incongruent LC-

MS metabolomics datasets relies on the use of persistent spectral features that are utilized as 

reference points, called endogenous anchors, for data correction and adjustment procedures. 

Initially, the user chooses a “primary” dataset, which may possess the largest sample size 

or is determined to be of the highest quality. All other datasets are designated as “target” 

sets whose data will be integrated into the unified matrix template, creating a unified matrix. 

This integration is facilitated by endogenous anchors that are initially derived from the 

primary dataset, and subsequently identified in each target set, which act as reference points 
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that enable the target spectral features to be assimilated into the primary set. Figure 1 

presents an overview of this workflow.

Data extraction procedures on the primary dataset are initially conducted, which involves 

peak extraction, retention time correction, grouping, and endogenous anchor elucidation. 

Peak picking and integration is independently conducted for each sample in the set via the 

XCMS CentWave algorithm, a widely used and well documented peak extraction algorithm 

in metabolomics. The set of peaks extracted for each sample is then sequentially analyzed 

by run order, examining for the most commonly recurrent matching peaks. This matching 

is conducted via user-defined ppm based m/z error window (e.g. 20 ppm), and a percentage 

error per unit time based retention time window (detailed in the next section). The sequential 

nature of this procedure enables retention time drift and sudden shifts (that may be the 

result of external factors that interrupt the run) to be detected and corrected for. The subset 

of matched peaks that are found to be present in a high percentage of the samples in the 

primary set (e.g. 90%) are utilized as endogenous anchors for retention time correction of all 

other peaks. These corrected peaks subsequently undergo peak grouping via a bottom-up 

consensus clustering method wherein all potential peak groups are calculated utilizing 

the same peak matching parameters for endogenous anchor elucidation, with final groups 

selected based on a voting schema (detailed in Supporting Information). The results are 

outputted into a data matrix consisting of grouped spectral features, defined by its averaged 

m/z value coupled with a corrected retention time, and their abundance values for each 

sample in the set. This matrix serves as the primary data template by which data extracted 

from every subsequent target dataset is integrated into.

Data extraction of subsequent target datasets is conducted independently for each set, and 

is reliant on the endogenous anchors elucidated from the primary dataset extraction. Similar 

to the previous workflow, XCMS CentWave based peak picking and integration is first 

conducted for each sample in a target set. The extracted peak set for each sample is 

analyzed for the presence of endogenous anchors (via m/z value and retention time matching 

procedures identical to the previous workflow), and retention time corrections are made 

utilizing the subset of endogenous anchors found in each sample. All corrected peaks are 

then matched to the primary dataset spectral feature list, and its data incorporated into 

the unified matrix template. As with the primary extraction workflow, this procedure is 

conducted sequentially for the purposes of correcting for retention time drifts and shifts. 

Once all samples in the target set have been analyzed, the subset of peaks that were matched 

to a primary spectral feature are re-analyzed for systemic data errors such as m/z value 

biasing and post-correction retention time shifts that are endemic to the target set as a whole. 

These results are utilized to make additional corrections to the target data to maximize the 

identification of matching features.

The final step of analysis is the incorporation of novel spectral features not found in the 

primary dataset into the unified data matrix. The unmatched corrected peaks that remain 

after analysis of each target set are pooled, and undergo peak grouping identical to the initial 

formation of the primary spectral feature groups. These novel features are then appended 

to the unified matrix. The final result, illustrated in Figure 2, is a unified matrix that 
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incorporates data from multiple disjoint metabolomics datasets, enabling analysis across 

biological samples from independent experiments.

Endogenous Anchor Elucidation and Retention Time Correction:

The most difficult hurdle in disparate dataset integration is overcoming the high degree of 

variability and fluctuation exhibited by retention time measurements. 17 DIMEDR attempts 

to address this challenge by identifying persistent spectral features in the primary dataset 

that are utilized as endogenous anchors. These endogenous anchors facilitate universal 

retention time correction both within the primary set as well as in all target sets and enables 

the datasets to be unified in a coherent manner. Initial endogenous anchor elucidation in the 

primary dataset involves robust methodologies for calculating retention time error windows 

and identifying and correcting for retention time drifts and shifts. Subsequent retention time 

correction procedures utilizing relative retention times based on these endogenous anchors is 

conducted on both primary and target datasets.

Endogenous anchor elucidation begins with identifying persistent spectral features in the 

primary dataset. Extracted peaks for each sample are analyzed sequentially according to 

their run order. In the first sample, all extracted peaks are initially treated as progenitor 

endogenous anchors. An attempt is then made to find a matching peak in the second sample 

for each progenitor anchor, forming endogenous anchors that consist of matched peak sets. 

Peak matching relies on user defined thresholds for determining similar m/z values (e.g. < 

20 ppm), and retention times as determined by the time differential as a function of the 

current chromatographic run time. For two given retention times, a maximum error per unit 

run time threshold ((eR), and a maximum allowable retention time differential (Rmax), the 

error per unit run time calculated between two retention times (RX, RY) must fulfill:

eR > RX − RY
CF

CF =
4/eR, max RX, RY < 4/eR

max RX, RY , max RX, RY > 4/eR and min RX, RY < Rmax

Rmax/eR, min RX, RY > Rmax

The correction factor (CF) for the calculation includes an adjustment term at the very 

beginning of the chromatographic run time, but also prevents the absolute retention time 

difference from exceeding a user defined threshold (Rmax). Nonmatching peaks in the second 

sample are also treated as progenitor endogenous anchors. This procedure is sequentially 

repeated for the extracted peaks in each subsequent sample, resulting in the expansion of 

existing endogenous anchor matched peak sets and the formation of new ones. However, 

a matched peak set is discarded if the maximum threshold for missingness is exceeded. 

For instance, if the minimum threshold for a matched peak set to be considered as an 

endogenous anchor is 90%, and the primary dataset consists of 100 samples, then the 

missingness threshold is 10 samples, i.e. the spectral feature can be missing from no more 

than 10 samples.
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The sequential nature of the endogenous anchor elucidation procedure allows for systemic 

errors to be detected and corrected for. These errors may result from retention time drift 

which is endemic to liquid chromatography. An attempt is made to account for drift by 

utilizing the most recent retention time in the matched peak set according to the run order 

when matching an extracted peak in the current sample. Errors may also be due to non-ideal 

runtime conditions such as mid-run column cleaning or switching, which can cause sudden 

retention time shifts. Shifts are accounted for by simultaneously utilizing the retention time 

from the earliest extracted peak added to the spectral group to elucidate a potential match 

for the current sample. While drift based matching takes precedence, if a shift based match 

occurs when a drift based match fails, all subsequent drift based matching will reset to 

the original retention time from the earliest peak added to the group. This non-parametric 

methodology, illustrated in Figure 3, is utilized during initial endogenous anchor discovery 

in the primary dataset, as well as for anchor searching in the target datasets.

Once endogenous anchors have been acquired from the primary dataset, retention time 

correction can be conducted on all extracted peaks. The endogenous anchors identified in 

each sample act as internal standards by which retention times are calibrated to. While each 

member peak in an endogenous anchor group A will have a localized retention time for a 

given sample X (Rlocal, AX), the endogenous anchor will be represented by the mean retention 

time (R−A) in the final unified matrix. For a raw extracted peak P  in sample X, its retention 

time (Rlocal, PX) is reinterpreted as the signed difference of a nearby endogenous anchor (via 

its localized retention time), and then recalculated using the endogenous anchor’s mean 

retention time:

Rcorrected, PX = R−A + Rlocal, AX − Rlocal, PX

Corrected retention times are calculated for the n closest endogenous anchors for peak P , 

with n calculated as half the total number of available endogenous anchors available for 

sample X. The final corrected retention time for peak P  is the mean of these calculated 

retention times after excluding outliers via 1.5 interquartile range based filtering. This 

procedure is conducted for each extracted peak in every sample in the primary set, as well as 

in each sample for target sets once endogenous anchors have been identified.

Inter-Set Systemic Error Correction Procedures:

Inherent to any experimental metabolomics dataset are systemic errors that result from 

real-world factors that cannot be accounted, much less controlled for. These errors, which 

may arise from a combination of factors such as instrument miscalibration and human error, 

can vary in intensity and prevalence from experiment to experiment, even when conducted 

by the same laboratory. Though the result of these errors can be profound and immediately 

noticeable, its effects to the data may be subtle. However, even these subtleties can have a 

major impact when considering the high sensitivity nature of the metabolomics platform, 

contributing to the inter-experimental incompatibility of the resulting data. When integrating 

data from target datasets into the unified matrix, DIMEDR attempts to identify set specific 

systemic errors in the m/z values and retention times and correct for them to maximize the 
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number of shared inter-set spectral features in the final unified data. Figure 4 illustrates this 

integration procedure.

Systemic errors are characterized for a target dataset after an initial analysis of its extracted 

peaks for matches to primary spectral feature groups. These first-pass matches, which 

are conducted on extracted peaks that have already undergone endogenous anchor based 

retention time correction, are matched based on primary dataset derived m/z and retention 

time parameters. For a given primary feature (F), its n matches for the target set (ti) are 

re-examined to derive an averaged m/z value (M− F, target) and retention time (R−F, target) that is 

more representative for the set being analyzed:

M− F, target =
∑i = 1

n Mti
n , R−F, target =

∑i = 1
n Rti

n

These localized parameters, which are derived for each primary dataset spectral feature 

group, are used to find second-pass matches in the remaining unmatched peaks in the target 

set. In doing so, set-specific biases in the m/z values and retention times can be accounted 

for.

These aggregate matches undergo additional analysis to extrapolate localized m/z biases for 

unmatched primary spectral feature groups. Initially, the m/z bias offset for each primary 

spectral feature (F) with target matches is calculated (in ppm) as a function of the primary 

averaged m/z value (M− F, primary) and the target averaged m/z value (M− F, target) which now 

includes the second-pass matches:

Mbias, F = M− F, primary − M− F, target

M− F, primary
· 106

In considering m/z bias as a function of the m/z value itself, the localization procedure 

involves calculating an inferenced bias offset for an unmatched primary spectral feature (U) 

by averaging the m/z biases for the subset of w existing matched primary spectral features 

(Mbias, Fi) within a small range (e.g. +/−10 m/z) of the unmatched primary spectral feature:

Mbias, U =
∑i = 1

w Mbias, Fi
w

This extrapolated bias (Mbias, U) is then utilized to find de novo first-pass matches for the 

primary spectral feature. Second-pass matches are subsequently found via averaging of the 

first-pass match m/z values and retention times as described previously.

As a final measure of maximizing coherency between the target and primary datasets, all 

remaining unmatched peaks undergo m/z bias correction utilizing the totality of target peaks 

that have been matched to primary spectral features. This correction procedure is identical 

to the de novo matching procedure as previously described, wherein existing matches are 

utilized to extrapolate potential bias in the m/z values of unmatched peaks, and is calculated 
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utilizing matched features that are within a 10 m/z range of the peak being corrected. This 

m/z bias detection and adjustment procedure is crucial for the final stage of the DIMEDR 

workflow, wherein unmatched peaks across all target sets undergo peak grouping to form 

novel spectral features that were not found in the primary dataset.

Analysis of Experimental Data:

For demonstration purposes, DIMEDR was used to integrate data from four unrelated 

studies consisting of two human and two mouse urine metabolomics datasets acquired 

over 4 years. The human datasets originate from a radiobiology study consisting of 304 

human urine samples collected from 95 patients undergoing total body irradiation (TBI) 

at the Memorial Sloan Kettering Cancer Center, NYC18 and a colorectal cancer (CRC) 

recurrence study consisting of 40 human urine samples collected from 40 patients at 

the Georgetown Lombardi Cancer Center, DC19. The mouse datasets originate from a 

radiobiology study consisting of 21 urine samples collected from C57BL/6N 8–10 week old 

male mice, and a lipopolysaccharide (LPS) exposure study consisting of 24 urine samples 

from C57BL/6N 8–10 week old male mice, both conducted at the Georgetown University 

Medical Center20. All 389 samples were stored, prepared, and analyzed at the Georgetown 

Lombardi Cancer Center Proteomics and Metabolomics Shared Resource between 2010 to 

2014. All urine samples were stored at −80°C and analyzed utilizing Ultra Performance 

Liquid Chromatography coupled to time-of-flight mass spectrometry utilizing a Waters 

Corporation QTOF Premier. Samples were run in both positive and negative ionization 

modes, however only the positive mode data was analyzed.

DIMEDR was able to integrate data from all datasets into a single unified matrix consisting 

of 35091 spectral features across 389 biological samples. The TBI dataset was designated 

as primary due to its high sample count, and an endogenous anchor threshold of 90% (i.e. 

a spectral feature found in at least 274 of the 304 TBI samples) was used, resulting in 

108 elucidated anchors. An average of 62 anchors per sample were found in the human 

CRC dataset, but only 20 anchors per sample in the mouse LPS and radiation datasets. A 

total of 23,066 spectral features were extracted from the initial primary dataset analysis and 

unified matrix template construction, with an additional 12,025 novel features found in the 

3 target datasets. Figure 5 is a visual representation of the unified matrix, with each feature 

represented as either a red (primary) or a blue (novel) marker, and plotted according to its 

m/z value and retention time. The intensity and size of each marker is a function of the 

fraction of all samples in which it was found to be present. The scale for novel feature 

presence for this analysis is limited to a maximum of 0.2185 as this represents the fraction of 

samples that are from target sets.

Approximately 63% of spectral features in the CRC dataset were matched to the primary 

feature set, while roughly 30% of the features in either of the mouse datasets matched. Table 

1 provides summary statistics of the analysis. DIMEDR provides a visual representation of 

the breakdown of the unified matrix by each of its constituent datasets, as shown in Figure 

6. As in Figure 5, each marker represents a spectral feature, however in this representation 

the color intensity is normalized to the sample size for each dataset. This breakdown 

representation enables quick visual comparisons to be made between all constituent datasets. 
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From this it is easy to identify the largest contributor of novel spectral features (blue 

markers) as being from the two mouse datasets. Furthermore, by examining the distribution 

of the features it is apparent that there are qualitative similarities between the two human 

datasets, and the two mouse datasets. Overall, these results indicate a greater degree of 

concordance between the two human datasets in comparison to the two mouse sets, with the 

greatest differentiator being the high number of novel features originating from the mouse 

sets. This unified matrix can be used to explore a wide range of research topics that extends 

far beyond the scope of the original experiments that generated the constituent datasets.

Discussion:

By incorporating pragmatic approaches into a logical framework for data integration, 

DIMEDR can unify otherwise incomparable metabolomics datasets from multiple 

experiments into a single coherent data matrix. In doing so, DIMEDR extends the utility of 

metabolomics datasets beyond their original experimental design, enabling new avenues of 

research to be pursued with existing resources. This is not the first attempt at metabolomics 

data harmonization, with MetMatch 21 having many of the same m/z and retention 

time correction capabilities and even incorporating adduct deconvolution capabilities that 

DIMEDR lacks. However, DIMEDR’s scope is far broader, emphasizing the harmonization 

of large numbers of potentially disparate experimental datasets, accounting for bias at 

multiple levels of granularity (e.g. individual sample versus dataset specific).

More importantly, taking such an expansive approach can eventually lead to greater 

applications than merely the improved utilization of existing datasets. Data harmonization 

is a critical evolution of the metabolomics platform that will enable large-scale, multi-

institutional studies with heterogenous data acquisition platforms yielding fully unified 

datasets, which is currently not feasible. DIMEDR is a purely informatics driven approach 

to data integration, focusing on the reduction of confounding factors originating primarily 

from the instrumentation and intrinsic limitations of the technology. But these goals cannot 

ultimately be achieved through technical solutions alone, and they necessitate coordinated 

efforts by the metabolomics community to develop standard protocols, methodologies, and 

shared resources that work in tandem with informatics tools.

As DIMEDR represents only an initial step towards metabolomics data harmonization, 

there are indeed significant limitations to its capabilities. The most substantial shortcoming 

stems from the lack of standardization in the field, especially regarding sample preparation 

and LC separation methods. As such, DIMEDR cannot accommodate datasets that have 

been acquired using different LC methods and/or sample preparation procedures. For 

example, a dataset acquired with 30-minute LC runs cannot be compared to data with 

10-minute runs due to potential differences in operating pressure, nor can DIMEDR handle 

datasets with different gradient elution methods, or different LC techniques such as reverse 

phase versus hydrophilic interaction chromatography (HILIC). Furthermore, reliance on 

endogenous spectral feature anchors for universal data correction requires at least some 

degree of baseline similarity between the constituent datasets, and thus the best results are 

achieved when all sets originate from the same biofluid type, e.g. all urine or all blood 

serum samples, though it is not a critical restriction of the algorithm. Differences in mass 
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accuracy and sensitivity between QTOF and Orbitrap instruments also restricts DIMEDR to 

processing datasets from the same instrument type, preferably the same make and model. 

In its current version, DIMEDR cannot take advantage of biological/technical replicates, 

or diagnostic samples (e.g. QC, pooled, blank) to enhance harmonization, though internal 

standards would necessarily be incorporated as endogenous anchors if present in the primary 

dataset. However, these enhancements can be incorporated in future releases.

A significant aspect of data harmonization that DIMEDR ignores are any batch effects that 

are exhibited in the abundance values of the spectral features when comparing different 

experimental sample sets. For a given sample and spectral feature, DIMEDR outputs the raw 

abundance as extracted by the XCMS CentWave algorithm. No attempt is made to normalize 

or fill in missing values. It was a deliberate design choice during DIMEDR’s development to 

focus solely on maximizing m/z and retention time coherency. Any attempt to “normalize” 

abundance was deemed to have too many pitfalls, as the inherent nature of the metabolomics 

platform and its extreme sensitivity blurs the line between what can be safely deemed “batch 

effects” and biological significance. As such, abundance normalization must be conducted 

during statistical analysis, which many informatics workflows are already capable of.

Despite these shortcomings, DIMEDR is nonetheless an enormously capable tool for data 

integration and harmonization. DIMEDR has immediate applications in metabolomics core 

facilities and other shared resource environments where standardized procedures for sample 

preparation and instrument operation are in place. Integrating the high volume of data that 

is produced by a core facility into unified frameworks enables critical insight to be provided 

on a customer’s individual dataset that would otherwise be impossible to glean from isolated 

analysis. DIMEDR expedites this evaluation by providing summary statistics on the average 

number of novel versus incorporated primary features per sample for each target dataset, 

as well as graphs that visualize the entire dataset either as a unified matrix or broken 

down into its constituent sets. Furthermore, meta-data from this unified framework can be 

utilized by the core for quality control purposes, protocol improvement, and even expediting 

method development for recurrent spectral feature identification. This integrated approach 

can potentially accelerate intra- and inter-institutional collaborations as well by identifying 

correlations between unrelated experimental datasets from different labs.

Thus far, data harmonization has been an overlooked issue in metabolomics, with far more 

attention given to the pursuit of biologically meaningful results in individual datasets. 

Indeed, the rich datasets that are produced by the platform from even modest experiments 

provide enough “low hanging fruit” to satiate most investigators, and thus the vast majority 

of informatics tools have been designed to analyze data only at the level of a single 

experiment. While the diversity of these solutions indicates that many of the difficulties 

in analyzing individual datasets are by no means completely solved, it is nonetheless vital to 

look at the bigger picture. The ability to bridge these “islands” of datasets was the impetus 

behind DIMEDR’s development, and thereby advances a critical but often unnoticed aspect 

of the field.

Mak et al. Page 10

Anal Chem. Author manuscript; available in PMC 2024 March 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Conclusion:

One of the greatest shortcomings of metabolomics is its inability to harmonize 

metabolomics datasets into coherent unified frameworks. While not a comprehensive 

solution, DIMEDR nonetheless makes significant strides in the pursuit of this goal. 

DIMEDR can incorporate multiple experimental datasets, while taking into account the 

biases and idiosyncrasies of each set, to create a single coherent data matrix that maximizes 

the number of shared spectral features. In doing so, DIMEDR permits the exploration 

of data originating from multiple experiments at a far deeper level than traditional meta-

analysis techniques and lays the groundwork for more ambitious goals of large-scale unified 

metabolomics data frameworks.
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Figure 1. 
An overview of the Disparate Metabolomics Data Reassembler (DIMEDR) workflow for 

integrating potentially incongruent datasets originating from multiple experiments. The 

algorithm relies on an initial selection of a “primary” dataset, with all other datasets 

designated as “target” sets. The primary dataset can be the largest or, what is determined to 

be the highest quality, and serves as the template for creating the unified matrix that data 

from all other target sets will be integrated into. This is facilitated by extracting persistent 

spectral features from the primary dataset, called endogenous anchors, that are utilized as 

reference points for universal data correction. Endogenous anchors are initially identified in 

each target dataset, and subsequently used to align, identify, and integrate mutual spectral 

features that are shared with the primary dataset into the unified matrix. Novel features, 

for which retention times have also been corrected via this process, are collected across all 

target datasets, grouped, and appended to the unified matrix as well.
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Figure 2. 
The topology of a unified matrix that has been created by DIMEDR from the integration of 

disjoint datasets from multiple experiments. The template for the unified matrix is initially 

constructed from the primary dataset (Experiment 1), from which all primary spectral 

features originate. Data from all target datasets (Experiments 2–4) are integrated into this 

template, with emphasis placed on maximizing the identification of primary features in each 

sample of a target dataset. Features that do not match any of the primary spectral features 

are considered novel. These novel spectral features are pooled across all target datasets, 

analyzed, and integrated into the unified matrix as well.
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Figure 3. 
An illustrative example of DIMEDR’s endogenous anchor elucidation. Spectral features that 

have been identified to be present in a high percentage (e.g. 90%) of the samples in the 

primary dataset are utilized as endogenous anchors (A). Features that are missing in too 

many samples are not considered (B). Retention time drift is compensated for by comparing 

feature retention times sequentially according to sample run order, even if the feature is 

missing in a sample (C). Even retention time shifts, which may be caused by mid-run 

interruptions, can be accounted for by comparing to the retention time from the earliest 

sample that the feature was detected in (D).
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Figure 4. 
The workflow for primary spectral feature matching that is conducted for all target datasets. 

A first-pass matching of target spectral features is conducted based on the original m/z and 

retention time values from the primary feature set. These initial matches are then used to 

derive localized values for first-pass matched primary features that better reflect biases in the 

current target dataset, and are used to find second-pass matches. These first and second-pass 

matches are both used to make further localizations to unmatched primary spectral features 

to find de novo matches. These localization procedures are also utilized to correct novel 

target spectral features for improved coherency with the primary spectral feature set and 

eventual integration into the unified matrix.
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Figure 5. 
A visual representation of the unified matrix created from the integration of 4 datasets 

by DIMEDR. Each marker represents a spectral feature, plotted by its m/z value (X-axis) 

and retention time (Y-axis). Markers shaded in red represent primary features that were 

originally found in the primary TBI dataset. Blue shaded markers represent novel features 

that were found to be present only in the 3 target sets. The size and hue of each marker is a 

function of the fraction of the total sample count the spectral feature was found to be present 

in. As such, the upper limit of the novel feature fraction is 85 out of 389 (0.2185), which is 

reflected in the novel feature color bar.
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Figure 6. 
A visual representation breaking down the unified matrix into its 4 constituent datasets. 

Each graph consists of spectral features, represented by square markers plotted by their m/z 

(X-axis) and retention times (Y-axis), that are present for the specified dataset. As with 

Figure 5 the markers are colorized as either red (primary features) or blue (novel features), 

however the size and hue are determined by the fraction of samples contained in each 

constituent dataset, rather than the total sample count. Visual inspection reveals obvious 

similarities in both the distribution and presence of spectral features between the two human 

sets (Primary and Target 1) and also the two mouse sets (Target 2 and 3). Furthermore, it is 

apparent the vast majority of novel features originate from the mouse datasets.
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Table 1.

Summary statistics for the integration of 2 human and 2 mouse datasets via DIMEDR. The human TBI dataset 

was designated as primary due to its large sample size, with all other sets designated as targets. Based on the 

number of endogenous anchors found in the samples of the target sets coupled with the percentage of matched 

primary features, the human CRC dataset unsurprisingly bore the greatest similarity with the primary set, 

while the 2 mouse datasets yielded the largest number of unmatched novel features.

Primary Target 1 Target 2 Target 3

Description TBI CRC Radiation LPS

Sample count 304 40 21 24

Sample type Human Urine Human Urine Mouse Urine Mouse Urine

Endogenous anchors 108 total anchors 62.4 anchors/sample 
(avg)

20.4 anchors/sample 
(avg)

20.8 anchors/sample 
(avg)

% matched to primary features - 62.7% 31.8% 29.5%

Unmatched novel features (avg. 
features/sample)

- 502.25 1918.95 2335.83

Total extracted features (avg. 
features/sample)

1358.82 1348.30 2815.24 3309.92
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