Skip to main content
. 2024 Jan 5;14(2):121–134. doi: 10.1016/j.jtcme.2023.10.004

Table 2.

The use of curcumin in treatment and suppression of lymphoma.

In vitro/In vivo Cell line/Animal model Study design Molecular target Biological mechanism Remarks Refs
In vitro
In vivo
Raji cells
Xenograft model
10 μM VEGF
Akt
MMP-2 and -9
Proliferation
Metastasis
A combination of curcumin and omacetaxine suppresses proliferation and metastasis of cancer cells
Inhibition of VEGF/Akt signaling
Down-regulation of MMP-2 and MMP-9
118
In vitro
In vivo
U937 and Raji cells
Xenograft model
0–80 μM TGF-β/Smad Proliferation A combination of curcumin and HHT inhibits proliferation of lymphoma cells
Inhibition of TGF-β/Smad axis
Increasing E-cadherin levels
Reducing N-cadherin levels
121
In vitro ut-78, HH, MJ, My-La CD4+ and My-La CD8+ cells 12–24 μM Apoptosis
DNA damage
Autophagy
Apoptosis induction
Activation of caspase cascade
DNA fragmentation
Inducing dephosphorylation of Akt
Autophagy induction
135
In vitro PEL cells 0–80 μM JAK1 and STAT3 Apoptosis
Proliferation
Apoptosis induction
Decreasing proliferation of tumor cells
Mediating loss of mitochondrial membrane potential
Cytochrome C release
Activation of caspase-3
Inhibition of JAK1 and STAT3 signaling
136
In vitro MJ, Hut78, and HH cells 5–20 μM STAT3
Bcl-2
Survivin
NF-kappaB
Caspase-3
Apoptosis Apoptosis induction
Down-regulation of STAT3, Bcl-2 and survivin
Inhibition of NF-kappaB signaling
Activation of caspase-3
112
In vivo Lymphoma bearing mice 50, 100 and 150 mg/kg IL-1α and IL-1β Inflammation Inhibiting tumorigenesis via down-regulation of IL-1α and IL-1β
Preventing inflammation
137
In vivo Lymphoma bearing mice 1.5, 3 and 4.5 mg/kg IL-6 and TNF-α
NF-kappaB
Down-regulation of IL-6 and TNF-α
Inhibition of NF-kappaB signaling
138
In vitro H-RS and Jurkat cells 2.5–100 μM STAT3 and NF-kappaB Apoptosis Apoptosis induction
Cell cycle arrest
Suppressing STAT3 and NF-kappaB molecular pathways
Down-regulation of Bcl-2, Bcl-xL, XIAP and survivin
113
In vitro CH12F3 lymphoma cells 0–6.5 μM Caspase-3 Apoptosis
DNA damage
Sensitizing cancer cells to DNA damage
Apoptosis induction in a caspase-3 dependent manner
139
In vitro Namalwa, Ramos and Raji cells 2, 10 and 20 μmol/L mTOR Cell cycle progression Cell cycle arrest at G2/M phase
Increasing sensitivity of lymphoma cells to radiation
Inhibiting mTOR phosphorylation
140
In vitro
In vivo
Lymphoma cells
NOD/SCID mice
0–40 μM
200 mg/kg
Akt/mTOR
PPARγ
Apoptosis
Cell cycle progression
Apoptosis induction
Cell cycle arrest at G2 phase
PPARγ overexpression
Inhibition of Akt/mTOR signaling
141
In vitro AS283A, KK124, Pa682PB, BML895, and CA46 cells 10 or 20 μmol/L NF-kappaB
Bax
Apoptosis Down-regulation of NF-kappaB
Overexpression of Bax
Apoptosis induction
Reducing viability of tumor cells
142
In vitro JeKo-1, Mino, SP-53, and Granta 519. JeKo-1 cells 10, 25 and 50 μM NF-kappaB Apoptosis Apoptosis induction
Cell cycle arrest at G1/S phase
Proliferation inhibition
Inhibition of NF-kappaB signaling pathway
143