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Variation in temperature of peak trait 
performance constrains adaptation of 
arthropod populations to climatic warming

Samraat Pawar    1  , Paul J. Huxley    1,2  , Thomas R. C. Smallwood3, 
Miles L. Nesbit1,4, Alex H. H. Chan    1, Marta S. Shocket5, Leah R. Johnson2, 
Dimitrios - Georgios Kontopoulos    6 & Lauren J. Cator    1 

The capacity of arthropod populations to adapt to long-term climatic 
warming is currently uncertain. Here we combine theory and extensive data 
to show that the rate of their thermal adaptation to climatic warming will be 
constrained in two fundamental ways. First, the rate of thermal adaptation 
of an arthropod population is predicted to be limited by changes in the 
temperatures at which the performance of four key life-history traits can 
peak, in a specific order of declining importance: juvenile development, 
adult fecundity, juvenile mortality and adult mortality. Second, directional 
thermal adaptation is constrained due to differences in the temperature of 
the peak performance of these four traits, with these differences expected 
to persist because of energetic allocation and life-history trade-offs. We 
compile a new global dataset of 61 diverse arthropod species which provides 
strong empirical evidence to support these predictions, demonstrating that 
contemporary populations have indeed evolved under these constraints. 
Our results provide a basis for using relatively feasible trait measurements to 
predict the adaptive capacity of diverse arthropod populations to geographic 
temperature gradients, as well as ongoing and future climatic warming.

Arthropods are highly diverse and constitute almost half of the bio-
mass of all animals on earth, fulfilling critical roles as prey, predators, 
decomposers, pollinators, pests and disease vectors in virtually every 
ecosystem1. Arthropod populations are under severe pressure due to 
pollution and land use changes, which will probably be compounded 
by ongoing climate change2–6. The ability of arthopod populations to 
adapt to climatic warming in particular has far-reaching implications 
for ecosystem functioning, agriculture and human health7–9.

The ability of a population to persist depends on its maximal or 
‘intrinsic’ growth rate (rm) in a given set of conditions10,11. The response 
of arthropod rm to environmental temperature is unimodal, with its 

peak typically occurring at a temperature (Topt) closer to the upper, 
rather than to the lower lethal limit (a left-skewed temperature depend-
ence; Fig. 1a)12–15. This temperature dependence of rm emerges from the 
thermal performance curves (TPCs) of underlying life-history traits  
(Fig. 1b)11,16,17. Previous work has focused on the effect of thermal sensitiv-
ity (‘E’ in Fig. 1b)11,18 or upper lethal thermal limit (CTmax)19–21 of traits on the 
temperature dependence of rm, providing insights into the responses of 
populations to short-term thermal fluctuations and heat waves16,22,23. How-
ever, to understand how populations will respond to long-term sustained 
climatic warming, we need to quantify the adaptive potential of Topt and 
the corresponding rm at that temperature (ropt; Fig. 1a).
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In contrast to immediate, rapid or short-term responses to changes 
in environmental temperatures (that is, phenotypic plasticity), adap-
tive genotypical shifts in thermal fitness are primarily governed by 
shifts in the Tpks (the temperatures at which trait performance peaks 
(Fig. 1b); see Table 1 for all parameter definitions) of underlying traits 
that are captured by changes in Topt

11,17. These trait-specific Tpks can 
evolve relatively rapidly under selection because they are subject to 
weaker thermodynamic constraints than thermal sensitivity (E) or 
CTmax

14,24,25. However, arthropods vary considerably in the form of their 
complex, stage-specific life histories, and a general mechanistic trait 
TPC-based approach to quantify their adaptive potential to climate 
change has proven challenging9,23,26,27.

Here we combine metabolic and life-history theories to link varia-
tion in trait Tpks to thermal fitness and adaptive potential in the face of 
long-term directional changes in temperature (for example, climatic 
warming) across diverse arthropod populations. Our approach simplifies 
the diverse complex stage-structures seen in arthropods to the tempera-
ture dependence of five life-history traits, allowing general predictions 
that can be applied across taxa. We test our predictions with a global data 
synthesis of a diverse set of 61 arthropod taxa to reveal two fundamental 
constraints on thermal adaptation across arthropod lineages.

Results
The trait-driven temperature dependence of fitness
We start with a mathematical equation for the temperature depend-
ence of rm (Fig. 1a, Methods and equation (2)) as a function of the TPCs 
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Fig. 1 | The relationship between the temperature dependence of population 
fitness and its underlying traits. In plots a and b (top and bottom), the three 
curves (gold, brown and black) represent populations adapted to three different 
temperatures. a, The temperature dependence of population growth rate rm 
(equation (2)). Thermal fitness is the peak value that rm reaches (ropt) and Topt is the 
temperature at which this peak is achieved. b, Top: illustration of the underlying 
trait TPCs modelled using the Sharpe-Schoolfield equation (Methods, equation 
(3) and Table 1), appropriate for development rate (1/α), maximum fecundity 
(bmax) and fecundity decline rate (κ). The red triangles denote the peak trait values 
(Bpk) at Tpk for each of the populations adapted to three different temperatures. 
Bottom: illustration of a trait TPC modelled using the inverse of the Sharpe-

Schoolfield equation, appropriate for juvenile mortality rate (zJ) and adult 
mortality rate (z). The blue circles denote the peak trait values (Bpk) at Tpk for each 
of the populations adapted to three different temperatures. Both upper and 
lower sets of curves were generated with arbitrary values for TPC parameters 
chosen from empirically reasonable ranges for illustration (Methods and Table 1). 
The y-axes values are not shown to keep focus on the qualitative shapes of these 
TPCs. c, Relative contributions of trait TPCs to the temperature dependence of 
rm. The greater the distance between a trait’s partial derivative (dashed curves, 
that is, ∂rm

∂θ
dθ
dT

 where θ denotes any one of the five traits) and the total derivative 
drm
dT

 (solid curve), the smaller its contribution to rm’s temperature dependence.

Table 1 | Definitions of model parameters

Parameter Units Description

rm d−1 Maximal population growth rate

α d Egg to adult development time

bmax eggs female−1 d−1 Maximum fecundity rate

κ d−1 Fecundity loss rate

z d−1 Adult mortality rate

zJ d−1 Mortality rate averaged across 
juvenile stages

B measurement unit of trait Trait value at a given temperature

B0 measurement unit of trait Normalization constant for trait 
value at Tref

Tpk °C or K Temperature at which trait 
performance peaks

Bpk Measurement unit of trait Trait performance achieved at Tpk

Topt °C or K Temperature at which rm peaks

ropt d−1 rm achieved at Topt

E eV Activation energy, also called 
thermal sensitivity

ED eV Deactivation energy

k eV K−1 Universal Boltzmann constant 
(8.617 × 10−5)

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 8 | March 2024 | 500–510 502

Article https://doi.org/10.1038/s41559-023-02301-8

for five key life-history traits (Fig. 1)17: juvenile-to-adult development 
time, α; juvenile mortality rate, zJ; maximum fecundity, bmax; fecundity 
decline with age, κ; and adult mortality rate, z. This equation predicts 
that the temperature dependence of rm increases as a population 
adapts to warmer temperatures (that is, thermal fitness rises with Topt;  
Fig. 1a). This ‘hotter-is-better’ pattern is consistent with the findings 
of empirical studies on arthropods as well as other ectotherms13,28. In 
our theory, this pattern arises through thermodynamic constraints on 
life-history traits built into the Sharpe-Schoolfield equation for TPCs 
(Methods and equation (3)), which focuses on a single rate-limiting 
enzyme underlying metabolic rate29. While previous theoretical work 
has sought to understand the evolutionary basis and consequences of 
the hotter-is-better phenomenon13,19,23,25,28,30, to the best of our knowl-
edge, this is presumably the first time that the contributions of underly-
ing traits to it have been quantified. We note that our results do not rely 
on the specific form or underlying thermodynamic assumptions of the 
Sharpe-Schoolfield equation; as such, any TPC model that encodes the 
hotter-is-better pattern, commonly observed across biological traits 
(Supplementary Results Section 1.1; ref. 11) will yield qualitatively the 
same results.

A hierarchy of traits driving thermal fitness. We next performed a 
trait sensitivity analysis to dissect how trait TPCs shape the temperature 
dependence of rm (Fig. 1c). It shows that populations will grow (rm will be 
positive) as long as the negative fitness impact of an increase in juvenile 
and adult mortality rate (zj and z) with temperature is counteracted 
by an increase in development and maximum fecundity rate (α and 
bmax). So, for example, rm rises above 0 at ~9 °C (Fig. 1a) because at this 
point zj and z fall below, and α and bmax rise above a particular threshold 
(Fig. 1c). Similarly, the decline of rm beyond Topt is determined by how 
rapidly each of the underlying trait values change with temperature 
beyond that point (determined by their respective EDs). More crucially, 
this trait sensitivity analysis reveals a hierarchy in the importance of 
life-history traits in driving both the location of thermal fitness along 

the temperature gradient (that is, Topt) and its height (that is, the ther-
mal fitness achieved) (Fig. 1c): the TPC of development time (α) has 
the greatest influence followed by maximum fecundity (bmax), juvenile 
mortality (zJ), adult mortality (z) and fecundity loss rate (κ), with each 
of the latter three having a particularly weak effect ~5 °C around Topt  
(Fig. 1c). It is only at extreme temperatures (Fig. 1c, T < 10 °C and 
T > 35 °C) that juvenile mortality (zj) in particular exerts a strong influ-
ence on the temperature dependence of rm, consistent with past empiri-
cal work31. Thus, the influence of the five traits on thermal fitness can 
be ordered as α > bmax > zJ > z > κ. This hierarchy is expected to be a 
general result, consistent with the type of life-stage structure typical 
of arthropod, and especially insect, species where the juvenile stages 
altogether are both more abundant and longer-lived than adults16,23.

The trait hierarchy shapes thermal fitness
Next we focused on trait Tpks as key targets of selection leading to ther-
mal adaptation, that is, maximization of thermal fitness in a given 
constant thermal environment. We calculated thermal selection gra-
dients and strength of selection on each trait’s Tpk (Fig. 2). For the range 
of environmental temperatures we consider (0 °C to 35 °C), Topt varies 
by ~12 °C (~16 °C to 28 °C). Every trait’s thermal selection gradient is 
necessarily asymptotic (Fig. 2e–h) because, even if the Tpk of that trait 
keeps increasing with environmental temperature, all the other traits 
still decline with temperature beyond their respective Tpk (Fig. 1b). 
These calculations predict that selection is strongest on the tempera-
ture of peak performance of development time (α), followed by those 
of the other traits in the same order (Tα

pk > Tbmax
pk > TzJ

pk > Tz
pk ), in line 

with our trait sensitivity analysis (Fig. 1c). We excluded κ from  
this analysis because it has a very weak influence on rm (Fig. 1c), and 
TPC data for it are also lacking (Methods). Supplementary Results 
Section 1.7 shows that our results are indeed robust to variation in κ’s 
temperature dependence.

We note that our selection gradient analysis predicts the ordering 
of strength of selection on traits, ignoring covariances between them. 
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Fig. 2 | Thermal selection gradients for four key arthropod life-history traits. 
a–d, Change in the TPC of rm with changes in Tpks of each of the four traits relative 
to all the others (ΔTpk). The solid blue line indicates the scenario in which all traits 
peak at the same temperature (ΔTpk = 0). ΔTpk ranges from −10 °C (light lines, 
the focal trait peaks 10 °C cooler than the other traits) to +15 °C (dark lines, the 
focal trait peaks at 15 °C). e–h, The corresponding selection gradients for each 
trait (Methods). The solid black line represents rm. The solid blue line represents 

ΔTpk = 0; any increase or decrease in rm to the right or left of this point represents 
potential increase or decrease in thermal fitness that could be gained or lost by 
increasing or decreasing the Tpk of that trait relative to the others. Both sets of 
plots (a–d and e–h) are ordered by decreasing strength of selection on the trait, 
that is, by the temperature at which the selection gradient begins to asymptote 
(vertical arrows in e–h) (Methods).
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Covariances between traits, which we address in more detail below, 
potentially reflect trade-offs between them and would change the 
shape of the selection gradients (for example, making them unimodal 
instead of asymptotic) but not the qualitative ordering seen in Fig. 2.

We next tested the theoretical prediction that the trait TPCs 
underlying thermal fitness evolve hierarchically using an extensive 
data synthesis that covers 61 different arthropod species (Fig. 3a and 
Methods). Although this empirical data synthesis largely exhausts the 
data available in the literature, this relatively small number of species 
highlights the relative paucity of data on arthropod thermal traits. 
Nevertheless, our synthesis provides TPC data for an unprecedented 
diversity of arthropod lineages and allows us to test the generality of 
our results.

We first tested for the predicted existence of a hierarchical ordering 
of within-species trait Tpks. We found that the empirical patterns are 
remarkably consistent with the prediction that taxa evolve to optimize 
their fitness by maximizing the Tpk of traits in a specific order (Fig. 2). 
First, development rate almost always exhibits a higher Tpk than peak 
fecundity, adult mortality rate or juvenile mortality rate (in all but three 
species; Fig. 3a). Second, in the 22 species for which we were able to find 
data for all four traits, the ordering of Tpks in 55% is exactly as predicted 

(Tα
pk > Tbmax

pk > TzJ
pk > Tz

pk). The probability of observing this ordering of 
trait Tpks by random chance is negligible. The match to our theoretical 
predictions is even stronger if we ignore the data on the trait under 
weakest selection (adult mortality rate), in which case 68% of the 44 
species with data on all three of the more strongly selected traits—devel-
opment, peak fecundity and juvenile mortality rate—show the expected 
ordering of Tpks. Also, as expected from ecological metabolic the-
ory11,15,25, the thermal sensitivity parameters (activation energy, E) of 
trait TPCs are relatively constrained across species, emphasizing the 
primacy of evolution of trait Tpks relative to thermal sensitivity in driving 
thermal adaptation in arthropods (Fig. 3b). Our empirically supported 
theoretical predictions of a qualitative ordering of the strength of 
thermal selection on life-history traits are consistent with and reconcile 
previously scattered empirical results reporting that development rate 
is more important relative to other traits for ectotherm thermal fit-
ness31–34, and that it tends to peak at higher temperatures relative to 
other traits in ectotherms adapting to warmer temperatures10,35. Overall, 
our results provide a key insight: when populations are confronted with 
long-term (across-generation) climatic warming, we expect the Tpks of 
development rate and the maximum fecundity to shift first and set an 
upper limit on their thermal adaptation rate.
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Fig. 3 | Empirical patterns in arthropod trait peak temperatures and thermal 
sensitivities. a, Peak temperatures. b, Thermal sensitivities. Each species- 
(n = 61 examined over 61 independent experiments) and trait-specific thermal 
response dataset was fitted to the appropriate TPC equation (equation (3) or its 
inverse; Fig. 1a,b) using NLLS employing the rTPC pipeline34,64. Bootstrapping 
(residual resampling) was used to calculate 95% prediction bounds for each TPC, 

which also yielded the confidence intervals (error bars) around each median 
Tpk estimate (symbols). Species for whom the full complement of trait data 
necessary for evaluating the rm model (Methods, equation (2)) are denoted with 
asterisks (n = 22 out of n = 44 featured here). Species that did not have data for α 
(n = 10) or only had α (n = 7) are included in Supplementary Fig. 1.
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To investigate the long-term across-species (macro)evolution of 
trait Tpks, we then performed a phylogenetic analysis. The results  
(Fig. 4a) again support the predicted hierarchy of selection on trait Tpks 
(Fig. 2). The high phylogenetic heritabilities in Fig. 4b imply that adap-
tive shifts in trait Tpks within lineages have not overcome differences 
across lineages even through long-term evolution. This may be ascribed 
to systematic differences in metabolic architecture between arthropod 
lineages36, but further work linking genomic and thermal metabolic 
architectures is needed23. TzJ

pk has the weakest heritability, suggesting a 
stronger role of plasticity relative to other traits, possibly due to com-
plementary shifts in stage-specific mortality patterns (note that zJ is 
mortality rate across juvenile life stages). We found weak evidence that 
Tα
pk has probably evolved more slowly than Tbmax

pk  (Fig. 4c). This is consist-
ent with the strongest stabilizing selection over long macroevolutionary 
timescales being on Tα

pk. This pattern of stabilizing selection operating 
over large timescales (millions of years) does not preclude directional, 
microevolutionary changes in Tpks within lineages over shorter 
few-generation timescales as has been observed (for example, in  
Drosophila37). We found that the inferred rate for Tα

pk is ~5 °C per million 
years (√∼ 25∘C2 ; note the y-axis scale in Fig. 4c). As such, judging 
whether this rate is fast or slow needs points of reference and is work 
for future empirical studies. Here again, we note that these macroevo-
lutionary rates of trait Tpks represent averaging across lineages that have 
experienced thermally changing (for example, high latitudes) as well 
as stable (for example, tropics) environmental temperatures.

Physiological mismatches constrain population fitness
As mentioned above, covariances between traits are important for 
understanding thermal adaptation14,31,38. Therefore, we next considered 
the role of trade-offs and covariances between the Tpks of life-history 
traits in constraining optimization of thermal fitness. Our theory pre-
dicts that at a given temperature, the simultaneous maximization of 
multiple trait Tpks should increase thermal fitness exponentially  
(Fig. 5a). That is, thermal fitness is exponentially higher if the Tpks of 
all traits increase in concert in a warmer environment. For example,  

if the development rate Tpk increases, the emergent thermal fitness will 
be higher if the Tpks of all other traits increase with it than if they did 
not. This result, along with our selection gradient analysis (Fig. 2), pre-
dicts that selection should favour not just a maximization of Tα

pk relative 
to the Tpks of other traits, but also a minimization of the differences 
(that is, ‘physiological mismatches’) among the trait Tpks. However, the 
constraints of a fixed energy budget would limit such evolutionary 
optimization, imposing life-history trade-offs. For example, at a given 
temperature, the available energy can be allocated, for example, to 
maximize development or fecundity rate, but not both39,40. This expec-
tation is supported by our empirical data, which show that there are 
substantial physiological mismatches in traits across diverse extant 
arthropod taxa (Fig. 3a), indicating constrained maximization of their 
Tpks. For example, the four species with the highest Tpks for develop-
ment rate (Helicoverpa armigera, Tetranychus mcdanieli, Aedes aegypti 
and Scapsipedus icipe) have as much as a ~20 °C mismatch with the Tpks 
of juvenile mortality and adult mortality rates (which are at the low end 
of the selection strength hierarchy; Fig. 2).

At the same time, our phylogenetic analysis reveals significant cor-
related evolution between Tα

pk and the three other trait Tpks (Fig. 4d; median 
correlation coefficients ~0.5). This is consistent with the expectation that 
evolution should minimize mismatches among Tpks (Fig. 5) to the extent 
possible despite underlying trade-offs. This positively correlated evolution 
of trait Tpks probably also reflects the fact that despite differences in 
genomic architecture across arthropods, these four life-history traits 
share core metabolic pathways, with development in particular most 
directly linked to fecundity36,41,42. For example, in Drosophila melanogaster, 
selection for longer development time has been found to increase early 
fecundity and decrease late fecundity without notably affecting longevity 
(hence, mortality rate)31. More systematic comparative experimental work 
is needed to better quantify patterns in the thermal performance of 
life-history traits across the arthropod tree of life.

It is worth noting that these patterns of correlated evolution of trait 
Tpk are counter to the temperature–size rule43 that body size decreases 
with temperature due to accelerated development. On the basis of this 
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rule, we would instead predict a weak positive or even negative correla-
tion between Tα

pk and Tbmax
pk . This is because of a life-history trade-off: on 

the one hand, a larger body size increases maximal fecundity (bmax) and 
reduces mortality rate, thus increasing fitness44; on the other hand, 
growing for a longer duration (higher α) increases the mortality realized 
across juvenile stages and decreases the number of generations com-
pleted within a year or season, decreasing fitness. Indeed, many studies 
have found selection on larval development rate to reduce juvenile 
mortality and generation time, counterbalancing the positive fitness 
effect of increasing body size on fecundity45–47. This apparent contradic-
tion between the prediction of the size–temperature rule and the mac-
roevolutionary patterns we report here can be reconciled by the fact 
that the size–temperature rule operates at shorter timescales, poten-
tially affording phenotypic plasticity to populations facing sudden 

temperature changes. Future climate change will probably not only 
entail directional warming but also increases in frequency and magni-
tude of thermal fluctuations (extreme events). Further theoretical work 
and empirical data on population fitness (rm) are needed to determine 
the relative role of phenotypic plasticity versus rapid evolution to build 
a more complete picture of the ability of arthropod populations to 
persist under future climate change19,20,48.

In this context, note also that our TPC data are all from trait meas-
urements at fixed temperatures (Supplementary Results Section 1.3, 
Source data). This means that our results (Fig. 5) probably overesti-
mate both thermal fitness and its Topt because both tend to decrease 
under thermal fluctuations48–50, especially when resource supply is 
also limiting33,34. The two key factors contributing to this phenomenon 
are physiological stress at high temperatures49 and fitness benefit 
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Fig. 5 | Physiological mismatches predict patterns of thermal fitness in extant 
arthopod taxa. a, Thermal fitness (ropt) increases with the sum of trait Tpks, which 
quantifies the simultaneous maximization (optimization) of trait TPCs. The pale 
yellow dots represent simulated thermal fitness obtained by randomly varying 
the optimal temperatures (Tpks) of all traits 5,000 times by drawing them from a 
uniform distribution between of 10−35 °C (Methods) without constraining the 
ordering of the trait Tpks. Among these, the subset of light grey dots satisfy the 
predicted hierarchy of trait selection strengths (are closer to an optimal strategy 
of Tα

pk > Tbmax
pk > T

zJ
pk > Tz

pk) (Fig. 2). The thermal fitness values for 22 species 
(Fig. 3) with sufficient trait data are overlaid on these theoretically predicted 
strategies. b,c, Thermal fitness increases with optimal temperature across a 

diverse group of arthropod taxa, that is, a hotter-is-better pattern. b, Mass-
corrected optimal rm (ropt/M−0.1) predicted by equation (2) increases with its Topt. 
The lines are OLS regression (with 95% prediction bounds) fitted to the species’ 
log-transformed mass-corrected median ropts (symbols) plotted against their 
respective median Topts. c, Consistent with our theoretical prediction, mass-
corrected optimal thermal fitness (ropt/M−0.1) increases linearly (in log scale) with 
mass-corrected development rate Tpks ((1/αpk)/M−0.27). The lines are OLS 
regression (with 95% prediction bounds) fitted to the species’ log-transformed 
mass-corrected median ropts (symbols) plotted against their respective 
mass-corrected median development rate Tpks.
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of a larger thermal safety margin (when Topt is relatively lower than 
median environmental temperature)50,51 in fluctuating environments. 
Thus more generally, extending our theoretical framework and ther-
mal fitness calculations to account for patterns of thermal exposure 
(time-dependent effects49) would probably yield important further 
insights into the constraints imposed by the evolution of trait-specific 
TPCs (Figs. 1 and 2) on the adaptive potential of arthropod populations.

Finally, to test whether arthropod traits have nevertheless 
evolved to achieve maximal fitness within the constraints imposed 
by trade-offs, we overlaid the estimated thermal fitness from the data 
synthesis onto the theoretically predicted optimal region. We find 
that real thermal fitness values of diverse arthropod taxa do indeed 
lie within our theoretically predicted ranges (Fig. 5a). Furthermore, 
this thermal life-history optimization operates under fundamental 
thermodynamic constraints, reflected in a global hotter-is-better pat-
tern of thermal fitness (Fig. 5b; note that the 22 species’ ropts are within 
the global hotter-is-better pattern). In addition, as expected, thermal 
fitness and its hotter-is-better pattern is strongly predicted by the 
(mass-corrected) value of development rate (1/α) at its Tpk (Fig. 5c; also 
see Supplementary Results Section 1.2). We also find that, as expected 
from our theoretical results, the underlying traits, and most crucially, 
development time (α), also follow a hotter-is-better pattern (Supple-
mentary Results Section 1.1). We also confirmed that these empirical 
patterns across diverse taxa are the result of long-term adaptive ther-
mal evolution by analysing data on the native thermal environments 
of these taxa (Supplementary Results Section 1.3).

The above-mentioned constraints are not necessarily the only ones 
operating. Another possible constraint is the ‘jack-of-all-temperatures’ 
pattern (also known as the ‘specialist–generalist trade-off’), that is, a 
negative correlation between performance at Tpk and thermal niche 
breadth25,52,53. To get accurate estimates of thermal niche breadth, in 
particular, numerous trait measurements are required, spanning the 
entire TPC. In addition, this constraint may apply to some traits but not 
necessarily all of them, resulting in highly complex patterns. For these 
reasons, the existence and implications of the ‘jack-of-all-temperatures’ 
constraint for arthropod fitness remain to be explored in future studies.

Conclusions
We have developed a relatively simple theoretical framework to make 
meaningful predictions about the temperature dependence of popu-
lation fitness, adaptation potential and climatic vulnerability across 
diverse arthropods. Crucially, we note that this framework, includ-
ing the key predictions it makes about the hierarchical importance 
of life-history traits (Figs. 1c and 2), is general because it captures the 
‘qualitative’ contributions of traits in complex life histories encoded in 
more complex models54. The simplicity of this framework means that it 
requires data on the TPCs of just five key life-history traits that are in fact 
relatively measurable across diverse arthropod taxa. This framework 
also allows constraints imposed by trade-offs between traits’ perfor-
mances, well known to limit fitness optimization in other contexts55, 
to be considered in the context of thermal adaptation in a nuanced yet 
general manner. In particular, our results highlight the fact that the 
differences in the environmental conditions experienced by juvenile 
and adult life stages of arthropods warrant particular consideration23 
and may hold the key to developing interventions to counteract the 
effects of warming on beneficial as well as harmful species. Our overall 
approach and this framework could thus guide conservation and risk 
assessment efforts by looking across species to identify those groups 
most vulnerable to extinction and those most likely to expand their 
distributions in the face of climate change.

Methods
Temperature-dependent maximal population growth rate 
model
Our model for rm is based on the Euler–Lotka equation11,41,44:

∫
∞

α
e−rmxlxbxdx = 1, (1)

where α is the age at first reproduction (the time needed for develop-
ment from egg to adult, or the juvenile-to-adult development time); lx is 
age-specific survivorship (proportion of individuals that survive from 
birth to age x); and bx is the age-specific fecundity (number of offspring 
produced by an individual female of age x). This equation gives the 
expected reproductive success of a newborn individual in a popula-
tion growing at a rate rm, under the assumption that the population has 
reached a stable age distribution (that is, the proportion of individuals 
in adult and juvenile life stages is constant). Using the simplest feasible 
mortality and fecundity models (for lx and bx, respectively), we previ-
ously derived an approximation appropriate for the range of growth 
rates typically seen across arthropods17 (Table 1).

rm ≈
(κ + z) (log ( bmax

κ+z
) − αzJ)

α(κ + z) + 1 . (2)

Further details of the derivation can be found in Supplementary Infor-
mation Appendix 2, where we also show that this approximation is very 
good as long as rm is relatively small (~<0.5), which is typically where 
maximal growth rates of arthropods lie13,17.

Substituting models of the TPCs of the five life-history traits 
(Supplementary Results Section 1.5) into equation (2) gives the 
temperature dependence of rm. We model these traits’ TPCs using 
the modified Sharpe-Schoolfield equation (equation (3))25,29 or its 
inverse (Fig. 1b):

B = B0
(ED − E )e

−E
k
( 1
T
− 1

Tref
)

ED − E + Ee
ED
k
( 1

Tpk
− 1

T
)
. (3)

Here B is the value of a metabolic, ecological or life-history trait at a 
given temperature (T, in K); B0 is a normalization constant representing 
its value at some biologically meaningful reference temperature (Tref); 
E is the apparent activation energy (initial thermal sensitivity), which 
determines how fast the curve rises up as the temperature approaches 
the peak temperature, Tpk; and ED is the deactivation energy, which 
determines how fast the trait declines after the peak. The param-
eter k is the universal Boltzmann constant (8.617 × 10−5 eV K−1). The 
constant B0 also includes the effect of body size and therefore, the 
effect of stage-specific size differences, which we do not explicitly 
consider here theoretically but will consider in the data we analyse 
below (also see Discussion and Supplementary Results Section 1.1). 
Equation (3) has been used as a model for thermal performance of 
traits in numerous previous studies on arthropod population biol-
ogy because it accurately captures the temperature dependence of 
a wide range of metabolically constrained life-history traits15,33,56. For 
mortality rates (z and zJ), we used the inverse of equation (3) because 
the thermal response of mortality rate tends to be U-shaped57–59and 
is well-fitted by it56,60. Using a different unimodal function instead of 
the Sharpe-Schoolfield equation does not qualitatively change our 
results provided that it can encode a ‘hotter-is-better’ constraint30. 
Substituting the trait TPCs into equation (2) yields the TPC of rm, from 
which we numerically calculated the Topt (temperature at which the 
optimum population growth occurs) and ropt (the value of rm at Topt). 
Note that we refer to the temperature of peak rm as Topt rather than Tpk 
as we do for traits because the Tpks of those traits do not necessarily 
correspond to the thermal optimum of population fitness (optimal 
thermal fitness).

Trait sensitivity analysis
To determine how much influence individual traits’ TPCs have on rm’s 
temperature dependence, using the chain rule we can write17,57:
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drm
dT

= ∂rm
∂bmax

dbmax
dT

+ ∂rm
∂α

dα
dT

+ ∂rm
∂z

dz
dT

+ ∂rm
∂zJ

dzJ
dT

+ ∂rm
∂κ

dκ
dT

. (4)

Each summed term on the right side of this equation quantifies the 
relative contribution of the TPC of a parameter to the temperature 
dependence of rm (Fig. 1c). The trait TPCs for this calculation were 
parameterized as described above with an identical Tpk = 25 °C across 
all traits. Here again, the choice of the TPC parameters, as long as all 
the B0s are in their appropriate scale, does not change the results of 
this trait sensitivity analysis qualitatively.

Quantifying trait-specific selection gradients
To quantify the impact of changes in Tpks of different traits on rm’s 
temperature dependence (that is, the thermal selection gradient on 
each trait), we calculated the shift in optimal maximum population 
growth rate (ropt), that is, the value of rm at Topt with a unit change in each 
trait’s Tpk. For this, we re-evaluated equation (2) by varying each trait’s 
Tpk in turn while holding all other trait TPCs constant at 25 °C (approxi-
mately the median of all the values observed in the data; Fig. 3), over a 
temperature range of 0–35 °C (Fig. 2). That is, we allowed Tpk of each 
focal trait, in turn, to vary from −10 to +15 °C relative to Tpk = 25 °C, 
keeping all other trait TPCs (including their Tpks) fixed. This ensured 
that the Tpks of any given trait varied between 15 °C–40 °C, which is 
approximately the range seen in the empirical data (see below; Fig. 3). 
We denoted the difference of the focal trait’s Tpk from those of all others 
as ΔTα

pk, ΔTz
pk and so on. The strength of the directional selection gradi-

ent for each trait was calculated as the second derivative ∂
2ropt
∂Tθ

pk

2
 (where 

θ is one of the four traits)14,24,61,62. The minimum of this quantity pin-
points the temperature at which that selection gradient starts to asymp-
tote and predicts the ordering of trait Tpks that optimizes thermal 
fitness (Fig. 2). We note that this method ignores trade-offs or covari-
ances between traits, which would change the shape of the selection 
gradients (for example, making them unimodal instead of asymptotic). 
We addressed trait covariances through a phylogenetic analysis (below; 
see the results (Fig. 4) and discussion in the main text).

Quantifying effects of physiological mismatches
Given that a higher Tpk,α increases fitness and that all trait-specific selec-
tion gradients increase monotonically, the closer the Tpks of the other 
traits are to Tpk,α, the higher the ropt. We termed the distance between 
any trait’s Tpk and Tpk,α a ‘physiological mismatch’. To quantify the effect 
of the overall level of physiological mismatch across all pairwise com-
binations of Tpk,α and each of the other three traits, we used the sum of 
all Tpks as a mismatch measure, which is a consistent measure because it 
increases monotonically with a decrease in mismatch. Then to calculate 
the effects of this overall physiological mismatch on thermal fitness, 
we quantified how ropt changes with different potential life-history 
strategies (in terms of ordering of the Tpks) by randomly permuting 
their order. For this, all other TPC parameters were kept fixed (next).

TPC parameterizations
For the numerical calculation of rm’s temperature dependence, trait 
sensitivity, selection gradient analyses and physiological mismatch 
analyses (above), we parameterized the traits’ TPC equations as follows. 
First, because our theory focuses on the relative differences between 
the Tpks of traits, the exact values of E and ED do not matter as long as 
they lie within empirically reasonable values, so we fixed them across 
all traits to be E = 0.6 and ED = 4. These are approximately the median 
values found in our empirical data (Fig. 3 and Supplementary Fig. 6). 
Varying these within the range seen in our empirical data do not change 
our results qualitatively. The parameter values for B0 were varied with 
type of trait, fixing them to be approximately (rounded off) the median 
values observed in our empirical data at a Tref of 10 °C: B0,α = 25, B0,bmax = 1, 
B0,z = 0.03 and B0,zJ = 0.05 (Supplementary Figs. 7–10). In the absence 

of data on the rate of loss of fertility (κ) or its TPC, we evaluated the 
model’s predictions for a range of values of this parameter (Supple-
mentary Results Section 1.7). While the values for all these parameters 
in the real data vary considerably around their respective medians, 
these specific ones used throughout the manuscript’s theory figures 
suffice to generate qualitatively robust theoretical predictions.

Data synthesis
We performed an extensive literature search to collate existing data 
on the TPCs of individual traits across arthropod taxa. We searched for 
publications up to July 2022 using Google Scholar’s advanced search, 
using Boolean operators (for example, life history AND pest OR vec-
tor AND temper*) without language restrictions. Additional searches 
were also made by including species’ names in the search string to 
improve the detection of publications on under-represented groups. 
For some species, multiple data sets were available, so we only included 
the study that provided the most complete data (that is, the highest 
number of traits measured). Raw data and references are available in 
Source data. We excluded all field studies and also lab studies where 
traits had been measured over narrow (<10 °C) temperature ranges 
(that prevented reliable TPC model fitting; below). We also excluded 
species from our analysis of physiological mismatches if TPC data 
for at least two traits were not available for them. Values of relevant 
traits across temperatures were extracted from the text or tables, or 
were read from the figures using WebPlotDigitizer63. All data were 
converted to consistent measurement units. If juvenile mortality rate 
(zJ, individual−1 d−1) was not provided (most of the original studies), we 
divided juvenile survival proportion by development time. Similarly, 
if adult mortality rate (z) was not directly reported, we calculated it as 
the reciprocal of (typically, female) longevity (d−1). When fecundity rate 
was not directly reported, we divided lifetime reproductive output by 
longevity to obtain fecundity rate (bmax; eggs individual−1 d−1).

Finally, each species- and trait-specific thermal response dataset 
was fitted to the appropriate TPC equation (equation (3) or its inverse; 
Fig. 1a,b) using non-linear least squares (NLLS) models employed in 
the rTPC pipeline34,64. Bootstrapping (residual resampling) was used 
to calculate 95% prediction bounds for each TPC, which also yielded 
the confidence intervals around each Tpk and peak trait value (Bpk) 
estimate. Before testing for trait-level hotter-is-better patterns, trait 
Bpks were temperature- and body mass-corrected to account for how 
optimal thermal fitness (ropt) emerges from the TPCs of its under-
lying traits, which in turn depend on scaling relationships between 
body size and metabolic rate in individual organisms44. Specifically, to 
obtain the exponents for these relationships, we fitted ordinary least 
squares (OLS) models in log-log scale (that is, log(Bpk) as a function of 
log(M) + kT, where M is fresh wet mass in milligrams, k is the Boltzmann 
constant (Table 1) and T is the trait value at 273.15 K (0 °C)) to the Bpk esti-
mates (Main text Fig. 4, and Supplementary Figs. 1 and 2) and the body 
mass data (Appendix 1). We also corrected ropt to account for size scal-
ing in its underlying traits (Main text Fig. 4 and Supplementary Fig. 2).  
If fresh mass for a particular species was not provided in the original 
study, we used mass estimates from other studies on that or a closely 
related species.

Phylogenetic analyses
Phylogeny construction. To examine the macroevolutionary pat-
terns of the Tpks of the four main traits of this study (α, bmax, zJ and 
z), we first extracted the phylogenetic topology of all the species in 
our dataset from the Open Tree of Life65 (OTL; v.13.4) using the rotl 
R package66 (v.3.0.12). Given that the OTL topology (Supplementary 
Fig. 16a) included a few polytomies, we also collected publicly avail-
able nucleotide sequences (where available) of: (1) the 5’ region of the 
cytochrome c oxidase subunit I gene (COI-5P); (2) the small-subunit 
ribosomal (r)RNA gene (SSU); and (3) the large-subunit rRNA gene 
(LSU). COI-5P sequences were obtained from the Barcode of Life Data 
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System database67, whereas SSU and LSU sequences were extracted 
from the SILVA database68 (Supplementary Table 1).

Next we aligned the sequences with MAFFT69 (v.7.490) using the 
G-INS-i algorithm for COI-5P sequences, and the X-INS-i algorithm for 
SSU and LSU sequences. We specifically chose the latter algorithm for 
the two rRNA genes as it can take the secondary structure of RNA into 
consideration while estimating the alignment70. We then removed 
phylogenetically uninformative sites using the Noisy tool71 and merged 
the alignments of the three genes into a single concatenated alignment. 
For each gene, we identified the optimal model of nucleotide substitu-
tion with ModelTest-NG72,73 (v.0.2.0), according to the small sample 
size-corrected Akaike Information criterion74.

For phylogenetic topology inference based on the concatenated 
alignment, we employed the RAxML-NG tool75 (v.1.1.0). We constrained 
the topology search on the basis of the OTL tree, which allowed us to 
incorporate further phylogenetic information from previously pub-
lished studies. Nevertheless, because we could not obtain molecular 
sequences for all species (Supplementary Table 1), some of the polyto-
mies of the OTL tree could not be objectively resolved. To thoroughly 
account for this uncertainty in downstream analyses, we performed 
100 topology searches, each of which started from 100 random and 
100 maximum parsimony trees. This process yielded a set of 100 trees, 
in which 18 alternative topologies were represented (Supplementary 
Fig. 16b). It is worth pointing out that as few as 50 trees have been 
found to be typically sufficient for taking phylogenetic uncertainty 
into account in an analysis76.

To time-calibrate each of the 100 trees, we first queried the Time-
tree database77 to obtain reliable age information (on the basis of at 
least five studies) for as many nodes as possible. We then applied the 
‘congruification’ approach78 implemented in the geiger R package79 
(v.2.0.10). In other words, we transferred known node ages (and their 
uncertainty intervals) from the reference phylogeny (TimeTree) to 
each of the 100 target phylogenies. This information was then used 
by the treePL tool80 to estimate ages for all tree nodes on the basis of 
penalized likelihood. Supplementary Fig. 16b shows the final set of the 
100 alternative time-calibrated trees.

Investigation of the macroevolutionary patterns of Tpks. To quan-
titatively characterize the evolution of the Tpks of the four traits in this 
study, we fitted a Bayesian phylogenetic multiresponse regression 
model with the MCMCglmm R package81 (v.2.33). In particular, this 
model had all four Tpks as separate response variables with one intercept 
per response. This allowed us to simultaneously estimate both the vari-
ances and covariances among the four Tpks and, through this, detect 
any systematic correlations. Furthermore, we specified a phylogenetic 
random effect on the intercepts by integrating the phylogenetic vari-
ance–covariance matrix into the model. By doing so, we partitioned 
the variance–covariance matrix of Tpks into a phylogenetically herit-
able component and a residual component. The latter would reflect 
phylogenetically independent sources of variation in Tpk values (for 
example, plasticity, experimental noise).

Given that we had information on the uncertainty of each Tpk esti-
mate from bootstrapping, we directly incorporated this into the model, 
which makes it a ‘meta-analytic’ model. We note that this approach 
effectively ignores covariance between errors, which may have inflated 
our Type I error. However, satisfactory solutions to this problem are not 
at present available for the MCMCglmm R package82. Missing Tpk values 
for one or more traits per species were modelled as ‘missing at ran-
dom’83,84. This approach (not to be confused with ‘missing completely 
at random’) allows missing values in a response variable to be estimated 
(with some degree of uncertainty) from other covarying variables and 
from the phylogeny, provided that missingness is not systematically 
driven by a variable that is not included in the model (for example, 
body size, habitat). Lastly, we specified uninformative priors, namely 
the default normal prior for the fixed effects, a parameter expanded 

prior for the random effects covariance matrix and an inverse Gamma 
prior for the residual covariance matrix.

We fitted this model 100 times, each time with a different phyloge-
netic tree from our set and with three independent chains per tree. We 
set the chain length to 200 million generations and recorded posterior 
samples every 5,000 generations, except for the first 10% of each chain 
(that is, 20 million generations) which we discarded as burn-in. We then 
verified that the three chains per tree had statistically indistinguishable 
posterior distributions and had sufficiently explored the parameter 
space. For these, we ensured that the potential scale reduction fac-
tor value of each parameter was smaller than 1.1 and that its effective 
sample size was at least equal to 1,000.

Finally, we combined the posterior samples from the three chains 
of all 100 runs. From these, we first extracted the intercept and the 
phylogenetically heritable variance of each Tpk. The former represents 
the across-species mean, whereas the latter corresponds to the evolu-
tionary rate per million years. We additionally calculated the pairwise 
correlations between Tpks and their phylogenetic heritabilities, that 
is, the ratio of the phylogenetically heritable variance to the sum of 
phylogenetically heritable and residual variances. We summarized 
these parameters by calculating the median value and the 95% highest 
posterior density interval.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used and generated in the study can be found at https://github.
com/EcoEngLab/TraitMismatchPaper-main.git. Our global dataset on 
arthropods is also available as a Source data file and in the fully open 
VecTraits database at https://vectorbyte.crc.nd.edu/vectraits-explorer. 
Source data are provided with this paper.

Code availability
All code for reproducing the study’s analyses can be found at https://
github.com/EcoEngLab/TraitMismatchPaper-main.git.
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