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Abstract
Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, 
resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods 
and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which 
involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant 
adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed 
of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria 
were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supple-
mented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations 
were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings 
is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of 
the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part 
of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for 
the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth 
and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence 
parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll 
of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance 
and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has 
potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.
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Introduction

Plant-associated microorganisms play a decisive role in 
plant growth (biomass production) and stress tolerance 
[15, 17, 58]. In the last decades, intensive agriculture has 
significantly impacted the community structure of soil 
microorganisms which forms a natural reservoir of micro-
organisms for the plant. Thus, in modern agriculture, more 
attention is being paid to plant biotization with microor-
ganisms that are capable of increasing mineral uptake by 
plants (as biofertilisers), fine-tunning plant metabolism (as 
bioregulators) and resistance to abiotic and biotic stress 
(as bioprotectors) and thus play a beneficial role in plant 
adaptation to the environment [11, 22, 25].

Arbuscular mycorrhizal fungi (AMF) are commonly 
known to provide many benefits to the plant. AMF improve 
growth and nutritional quality of crops [4, 48] and protect 
plants against environmental stress such as pathogens and 
abiotic environmental conditions [40, 56]. Widespread 
occurrence of mycorrhizal symbiosis and the obligatory 
nature of this plant (fungus association for many plant 
species) have long directed the attention of the scientific 
community to the practical use of mycorrhiza in protection 
of endangered plants, in phytostabilization of toxic wastes 
and in sustainable agriculture to improve food security [8, 
39, 54].

In recent years, more attention has been paid to the use 
of multi-microorganismal inocula that include AMF and 
other groups of symbiotic organisms [7]. This approach 
provides the plant with microorganisms possessing a vari-
ety of plant growth-promoting traits. It has been demon-
strated that AMF can be used effectively in co-inoculation 
mainly with endophytic fungi, endophytic bacteria and 
soil bacteria [7, 18, 56]. The effects of such practises dif-
fer in between studies. Plant growth was affected either 
positively or negatively compared to the inoculation with 
a single microorganism. This is quite understandable since 
successful biotization relies on appropriately selected 
microorganisms used for inoculation of a given plant cul-
tivar. Mutual interactions between the microorganisms and 
the plant host seem to determine the efficiency of plant 
growth promotion [51].

Bacteria associated with AMF spores have been 
recently investigated on several occasions [1, 3, 9, 16, 29, 
41, 53] and represent different taxa including Proteobac-
teria (Achromobacter, Agrobacterium, Aquitalea, Bosea, 
Burkholderia, Cellvibrio, Cupriavidus, Desulfovibrio, 
Duganella, Ensifer, Enterobacter, Herbaspirillum, Ide-
onella, Lysobacter, Massilia, Methylibium, Mitsuaria, 
Proteus, Pseudomonas, Ralstonia, Rheinheimera, Rhizo-
bium, Sinorhizobium), Actinobacteria (Amycolatopsis, 
Arthrobacter, Curtobacterium, Gordonia, Leifsonia, 

Mycobacterium, Nocardia, Propionibacterium, Strep-
tomyces) Firmicutes (Bacillus, Brevibacillus, Paeniba-
cillus) and Bacteroidetes (Flexibacter). Although the 
first reports of bacteria in AMF spores date back to over 
50 years ago [31, 32], their role in plant-microorganism 
interactions is still poorly recognised. Bacteria associ-
ated with AMF spores, Bacillus subtilis, Pseudomonas 
diminuta, Enterobacter hormaechei, Bacillus sp., Bacillus 
thuringiensis and Paenibacillus rhizosphaerae have been 
shown to be able to inhibit the growth of pathogens and to 
activate the development of hyphae of Gigaspora [9, 16]. 
Functional analysis of 43 bacterial strains isolated from 
spores of Gigaspora margarita revealed that about 30% 
of them stimulated spore germination, nearly 60% solu-
bilised phosphorus, 15% degraded chitin and three taxa, 
Curtobacterium, Ensifer and Bacillus, improved growth 
of alfalfa [29]. According to some authors, certain plant 
growth-promoting functions provided by AMF may be 
related to mycorrhiza-associated bacteria [16, 53]. Keep-
ing in mind the multiple benefits provided to plants by 
AMF or AMF spore-associated bacteria, inocula based on 
both groups of microorganisms can be used for sustainable 
crop production.

The aims of this study were to test the possibility of 
improving the efficiency of AMF-based inocula for bioti-
zation of the red raspberry by supplementing different 
compositions of AMF with bacteria isolated from AMF 
spores. We investigated how these multi-microorganismal 
inocula affect (1) plant growth in laboratory and green-
house conditions and (2) the physiological response of 
plant to temporary water shortage. As a model plant, the 
red raspberry (Rubus idaeus L.) was selected. This is an 
important crop species with growing consumer interest. 
Its fruits are desirable for their taste and nutritional prop-
erties, [10]. These properties result in a high demand for 
raspberry fruit worldwide.

Materials and Methods

Experimental Design

The investigations were carried out in three steps. In the 
first step, the bacterial components for the inoculum were 
isolated and selected based on the plant growth-promoting 
properties. In the second step, AMF inoculum supplemented 
with selected bacteria was used to inoculate raspberries in 
laboratory experiments. In the third step, the efficiency of 
the selected AMF and bacterial supplement for AMF was 
verified in semi-industrial scale raspberry production in a 
polytunnel.
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Isolation and Identification of Bacteria from Spores

Bacteria were isolated from the spores of arbuscular mycor-
rhizal fungi. Roots of plants were collected from raspberry 
(five plants) and blackberry (one plant) plantations and used 
for inoculum preparation in the pot (16 pots) culture system 
(in association with Plantago lanceolata) as described in 
Orłowska et al. [36]. Sixteen samples of air-dried rhizos-
phere (5 g) soil from trap cultures were used for AMF iden-
tification. The obtained spores were divided into groups 
according to their morphological features and subsequently 
identified according to their SSU rRNA sequence. AML1 
(5′-ATC​AAC​TTT​GAT​GGT​AGG​ATAGA-3′) and AML2 
(5′-GAA​CCC​AAA​CAC​TTT​GGT​TTC C-3′) [28] primers 
were used for nested PCR followed by a Strata Clone PCR 
Cloning Kit (Agilent, USA). Amplicons were purified and 
then sequenced (Sanger sequencing) bidirectionally by Mac-
rogen Europe (The Netherlands). Sequences were compared 
with sequences available in the NCBI (National Centre for 
Biotechnology Information).

Spore-associated bacteria isolation was carried out from 
approximately 200 AMF spores. Spores were suspended in 
1 mL sterile 0.9% NaCl in a 1.5-mL tube and shaken for 
1 min using a vortex. Subsequently, spores were washed 
aseptically in 0.9% NaCl 15 times (centrifugation at 1500 × g 
for 1 min) [5] and crushed with a micro pestle. The suspen-
sion was heated at 80 °C for 10 min in order to isolate spore-
forming bacteria. Then, 100 µL of suspension was plated in 
five replicates on five different media: TSB and NA (Tryp-
tic Soy Broth and Nutrient Agar—for heterotrophic bacte-
ria isolation), WAM (Waksman’s Agar Medium—aimed at 
actinobacteria), Winogradsky Culture Agar (N-free medium 
aimed at nitrogen-fixing bacteria) and minimal medium with 
chitin as carbon source (for chitinolytic bacteria). Plates 
were incubated at 28 °C in darkness for 7 days. Emerging 
bacteria were transferred into new media. Bacteria selected 
for the inoculum were identified based on the sequence of 
16S rDNA region. DNA was isolated with a DNA Mini Kit 
(Syngen). 27F (5′-GAG​TTT​GAT​CCT​GGC​TCA​G-3′) and 
1492R (5′-GGT​TAC​CTT​GTT​ACG​ACT​T-3′) primers were 
used for PCR [52]. Bacterial amplicons were sequenced and 
analysed as described for fungi.

Plant Growth‑Promoting Properties of Isolated 
Bacteria Selection for the Inoculum

Phosphate Solubilisation

Bacteria were examined to test their inorganic phosphate sol-
ubilising potential. Bacteria were cultivated on NA (Nutrient 
Agar) medium at 30 °C in darkness for 2 days. Subsequently, 
bacteria were cultured on Pikovskaya Agar medium [38] for 
7 days at 30 °C in darkness (N = 3). Tri-calcium phosphate 

was the source of insoluble phosphate. Phosphate solubilis-
ing activity was indicated as a clearance around the micro-
organism colony.

Phytate Solubilisation

The ability of bacteria to solubilise organic phosphate was 
examined on Phytate Screening Medium (PSM; 10 g · L−1 
d-glucose, 4 g · L−1 C6H18P6O24·12Na·H2O, 2 g · L−1 CaCl2, 
5 g · L−1 NH4NO3, 0.5 g · L−1 KCl, 0.5 g · L−1 MgSO4·7H2O, 
0.01 g · L−1 FeSO4·7H2O, 0.01 g · L−1 MnSO4·H2O, 15 g 
· L−1 agar, pH 7) for 7 days at 30 °C in darkness (N = 3). 
Organic phosphate solubilising activity was indicated as a 
clearance around the microorganism colony [5].

Production of Indole Acetic Acid (IAA)

Bacteria were cultured in Luria–Bertani Broth (LBB) sup-
plemented with 1 mg · L−1 L-tryptophan (Sigma-Aldrich) at 
20 °C at 200 rpm for 24 h and then centrifuged at 7500 × g 
for 10 min. The supernatant (1 mL) was mixed with 2 mL 
Salkowski reagent (1.2% FeCl3 in 37% sulphuric acid) in 
a well plate and incubated for 30 min in darkness (N = 3) 
[23]. The production of IAA was assessed based on colour 
development (‘-’ no colour development, no production,‘ ± ’ 
pink pale, low production; ‘ + ’ light pale, production; ‘ +  + ’ 
bright purple, moderate production; ‘ +  +  + ’ dark purple, 
high production).

Siderophore Production

To assess siderophore production, the modified blue agar 
chromeazurol S (CAS) method by Schwyn and Neilands 
[44] was used. Four different solutions (1–4) were pre-
pared, mixed in the following order: 2, 3, 4, 1 and asepti-
cally poured onto plates. Solution 1: 100 mL dd H2O, 2.7 g 
FeCl3 · 6H2O, 180 µL HCl (0.56 mM), 60.5 g Chromeazurol 
S (CAS) and 72.8 mg HDTMA bromide, autoclave; Solution 
2: 800 mL dd H2O, 0.3 g KH2PO4, 0.5 g NaCl, 1 g NH4Cl, 
30.24 g PIPES (to dissolve PIPES pH was adjusted to 6.8) 
and 15 g agar, autoclave; Solution 3: 70 mL dd H2O, 2 g 
glucose, 2 g mannitol, 0.493 g MgSO4 · 7H2O, 11 mg CaCl2 
· 2H2O, 1.17 mg MnSO4 · H2O, 1.4 mg H3BO4, 0.04 mg 
CuSO4 · 5H2O, 1.2 mg ZnSO4 · 7H2O, 1 mg Na2MoO4 · 
2H2O, autoclave; Solution 4: 3 g hydrate of casein was dis-
solved in 30 mL dd H2O and filter sterilised. Bacteria were 
cultured on CAS blue agar for 14 days (N = 3). Bacteria that 
possessed the ability to produce siderophores removed iron 
from the dye complex, and the medium colour changed from 
blue to orange.
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Plant Growth Response Tests

Laboratory Experiment

Raspberry plant cuttings were cultured in  vitro in 
Murashige and Skoog Medium supplemented with 1.2 mg 
· L−1 α naphthalene acetic acid (NAA) and 0.3 mg · L−1 
indole-3-butyric acid (IBA) for 4 weeks and subsequently 
transferred to a mixture of garden soil (supplied by ARO, 
Poland), sand and clay (in equal volumes) supplemented 
with 40 mL·L−1 rock phosphate (Siarkopol, Poland) in 
pot cultures [56]. Prior to planting, the soil was sterilised 
at 100 °C for 1 h for 3 consecutive days and sprayed with 
sterile water for 2 weeks. During transfer, plants were 
inoculated by adding 5 mL of AMF inoculum and 2 mL 
of bacterial inoculum to the planting hole. Plants were 
grown in a greenhouse under natural day/night conditions 
with additional light during the day (12 h), approximately 
500 µmol m−2 · s−1, and were watered alternately with 
tap water and nutrient solution (Long Ashton) every 2 
to 3 days to keep the substrate humidity at the level of 
approximately 60%. Plants were subject to four different 
treatments (with 20 replicates per treatment): (1) inocula-
tion with AMF, (2) inoculation with bacteria, (3) inocula-
tion with AMF + bacteria and (4) no-inoculation (control, 
without any supplementation). Three-month-old plants 
were transferred to bigger pots (volume 1 L). Plants were 
harvested after 5 months.

The AMF inoculum was a mixture of Entrophospora 
lamellosa (Dalpé, Koske & Tews) Błaszk., Niezgoda, B.T. 
Goto & Magurno, Entrophospora sp. R.N. Ames & R.W. 
Schneid. 1979 and Rhizophagus irregularis (Błaszk., 
Wubet, Renker & Buscot) C. Walker & A. Schüßler 
prepared separately in pot cultures of Plantago lanceo-
lata L and mixed (v:v:v; 1:3:3). Approximately 5 mL of 
the inoculum, containing spores, mycelium and colo-
nised root fragments was mixed with the upper layer of 
substrates.

The bacterial inoculum was a mixture of bacteria iso-
lated from spores of AMF: Paenibacillus amylolyticus 
(Nakamura 1984) Ash et al. 1994, P. contaminans Chou 
et al. 2009, P. alginolyticus (Nakamura 1987) Shida et al. 
1997, Paenibacillus soli Park et al. 2007, Paenibacillus 
sp. 1 Ash et al. 1994, Paenibacillus sp. 2 and one bacte-
rial strain not associated with AMF spores, Stenotropho-
monas sp. Palleroni and Bradbury 1993, from culture 
collection in the Institute of Environmental Sciences of 
the Jagiellonian University. Bacteria were cultured in 
TSB (Tryptone Soy Broth) medium in natural day/night 
cycles at 120 rpm at 30 °C for 96 h. Cultures were washed 
twice with sterile 0.9% NaCl (5000 g, 5 min) suspended 
in 50 mL 0.9% NaCl and mixed.

Tunnel Experiment

Raspberry plants were cultured in vitro for 4 weeks and 
transferred to garden soil (Novarbo) in pot culture (pot vol-
ume 40 mL). Plants were grown in a phytotron room for 
6 weeks and then transferred to bigger pots (pot volume 
200 mL) with a new substrate. The substrate was a mixture 
of garden soil (supplied by ARO, Poland), sand and clay 
(in equal volumes) supplemented with 40 mL·L−1 pow-
dered rock phosphate (Siarkopol, Poland) [56]. The sub-
strate was sterilised in 100 °C for 1 h for 3 consecutive days 
and sprayed with sterile water for 2 weeks. During transfer, 
plants were inoculated by adding 5 mL of AMF inoculum 
and 2 mL of liquid bacterial inoculum to the planting hole. 
Plants were grown in greenhouse under natural day/night 
conditions and were watered with tap water every 2 days. 
Plants were inoculated in June (N = 70) and harvested in 
September.

The inoculum used for raspberry biotization was a mix-
ture of mycorrhizal fungi and bacteria associated with AMF 
spores. Mycorrhizal inoculum was a combination of four dif-
ferent AMF inocula from the collection of Institute of Envi-
ronmental Sciences at Jagiellonian University in Kraków:

1)	 Rhizoglomus intraradices,
2)	 Funneliformis mosseae (T.H. Nicolson & Gerd.) C. 

Walker & A. Schüßler,
3)	 Mix3 (was composed of R. intraradices, F. mosseae, 

F. constrictus (Trappe) C. Walker & A. Schüßler, F. 
geosporus (T.H. Nicolson & Gerd.) C. Walker & A. 
Schüßler (1:1:1:1)) and

4)	 Mix4 (composed of R. intraradices, F. mosseae, F. con-
strictus, F. geosporus (4:3:1:1)).

Each of the four inocula was prepared separately in pot 
cultures of Plantago lanceolata L. and mixed (v:v:v:v, 
2:2:1:1). Approximately 5 mL of the inoculum, containing 
spores, mycelium and colonised root fragments was mixed 
with the upper layer of the soil. The same bacterial inocu-
lum as described in the “Laboratory Experiment” section 
was used.

Photosynthetic Efficiency

Photosynthetic efficiency was determined as described in 
Strasser et al. [46]. Briefly, chlorophyll fluorescence meas-
urements were performed with a Handy Pea fluorimeter 
(Hansatech Instruments, UK). One mature leaf from each 
plant (10 replicates) was dark-adapted for 20 min in special 
clips before the measurement. Data were processed with 
BIOLYZER software (Laboratory of Bioenergetics, Geneva, 
Switzerland).
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Gas Exchange in Response to Temporary Water 
Shortage

To apply water deficit, irrigation of cultures was discon-
tinued for 7 days until the appearance of first water deficit 
symptoms in control plants (decrease in leaf turgor). Sub-
sequently, plants were watered every 2 days. Two weeks 
later, the photosynthetic rate, stomatal conductance of H2O 
and transpiration rate were measured using LCpro-SD (ADC 
BioScientific Ltd., Hoddesdon, UK). All measurements were 
performed on the second leaf of randomly selected plants 
using a 6.25 cm2 chamber equipped with a mixed Red/Blue 
LED Light Source Head. The measurements were carried 
out under the following conditions: CO2 saturated condi-
tions (600 µmol · mol−1 air), irradiance of 100 µmol (pho-
tons) · m−2 · s−1 red light intensity and a leaf temperature of 
24 °C ± 0.5 °C in five biological replications for each group.

Statistical Analysis

Statistical analysis was performed using Statistica 13 
(Tibco). Differences between experimental groups were 
considered significant at p ≤ 0.05. Data normality and vari-
ance homogeneity were assessed with Shapiro–Wilk’s and 
Levene’s tests, respectively. Differences were tested using a 

t-test or analysis of variance (ANOVA) followed by Tukey’s 
post hoc tests.

Results

Selection of Bacteria for Inoculum Components

Fifty-six bacterial strains were isolated from AMF spores 
collected from the roots and rhizosphere of raspberry and 
blackberry plants. AMF spore morphotypes were identified 
as three different taxa: Entrophospora lamellosa, Entrophos-
pora sp. and Rhizophagus irregularis (Table 1). Seventeen 
bacterial strains were isolated on TSA, 16 – on NA, 9 – on 
N-free medium, 9 – on WAM and 5 – on MM. 64% of the 
strains exhibited phytate solubilisation, whereas the ability 
to solubilise phosphate was shown in only 7% of the strains. 
Twenty-nine percent of strains were able to synthesise IAA 
and 20% to produce siderophores (Table 2). The strains that 
exhibited the highest rate of IAA production, phosphate 
and phytate solubilisation and siderophore production were 
selected for the inoculum (Table 1). Additionally, the bacte-
rial strain Stenotrophomonas sp. from the culture collection 
at the Institute of Environmental Sciences of Jagiellonian 
University were included in the inoculum.

Table 1   Molecular identification of AMF and bacteria strains

Strain UNIJAG.PL NCBI number Identification Reference sequence NCBI Similarity

Arbuscular mycorrhizal fungi
  1951BAA005 OR961069 Rhizophagus irregularis Glomus irregulare FJ009618.1 800/800 (100%)
  1951BAA011 OR961070 Entrophospora lamellosa Glomus lamellosum AJ276087.2 750/750 (100%)
  1951BAA001 OR961067 Entrophospora sp. Entrophospora etunicata MT626044.1 389/389 (100%)

Entrophospora lamellosa KX879068.1 389/389 (100%)
  1951BAA013 OR961071 Rhizophagus irregularis Glomus irregulare FJ009618.1 745/745 (100%)
  1951BAA015 OR961072 Rhizophagus irregularis Rhizophagus irregularis CP110711.1 736/736 (100%)
  1951BAA017 OR961073 Entrophospora sp. Claroideoglomus lamellosum FR773152.1 750/750 (100%)

Glomus etunicatum AJ852598.1 750/750 (100%)
  1951BAA003 OR961068 Entrophospora sp. Entrophospora etunicata MN726592.1 643/643 (100%)

Entrophospora lamellosa MW642179.1 643/643 (100%)
  742 OR961066 Entrophospora sp. Claroideoglomus lamellosum FR750221.1 720/720 (100%)

Glomus etunicatum AJ852598.1 720/720 (100%)
Bacterial strains isolated from AMF spores
  733.6 M OR960747 Paenibacillus amylolyticus Paenibacillus amylolyticus AB115960.1 938/938 (100%)
  734.10 M OR960748 Paenibacillus soli Paenibacillus soli JQ342903.1 897/898 (99%)
  735.19 M OR960749 Paenibacillus contaminans Paenibacillus contaminans NR_044325.1 700/700 (100%)
  736.24 M OR960750 Paenibacillus alginolyticus Paenibacillus alginolyticus HQ236042.1 903/903 (100%)
  737.30 M OR960751 Paenibacillus sp.1 Paenibacillus cineris LN890143.1 939/939 (100%)

Paenibacillus favisporus JN867753.1 939/939 (100%)
Paenibacillus rhizosphaerae GU830879.1 939/939 (100%)

  738.52 M OR960752 Paenibacillus sp.2 Paenibacillus pabuli FJ189794.1 940/940 (100%)
Paenibacillus xylanilyticus NR_029109.1 940/940 (100%)
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Bacteria Isolated from AMF Spores Improve 
AMF‑Inoculated Raspberry Growth

Non-inoculated raspberry yielded 16.7 cm in height after 
5 months of growth in the laboratory (Fig. 1a). Plants inocu-
lated with AMF spore-associated bacteria were not signifi-
cantly higher (18.2 cm) than control plants. Inoculation with 
AMF significantly increased plant height. Plants inoculated 
with the fungi yielded 22.1 cm. Co-inoculation with bacte-
ria and AMF had the best effect on plant height. The plants 
yielded 28.4 cm which was significantly better in relation 
to control plants and plants inoculated with single: AMF or 
bacteria (Fig. 1a, c).

Plant vitality was assessed based on fluorescence of 
chlorophyll a. Out of the analysed parameters describing 
the efficiency of electron transport in PSII (and energy pro-
duction), only two were significantly changed in inoculated 
plants in comparison to control. The contribution of light to 
primary photochemistry (Φ0/(1-Φ0)) was significantly higher 
in AMF-inoculated and AMF-bacteria co-inoculated plants 

compared to non-inoculated plants (Fig. 1b). However, elec-
tron transport beyond primary quinone acceptor (Ψ0/(1-Ψ0)) 
in these plants was significantly lower than in non-inoculated 
plants (Fig. 1b).

Multi‑microorganismal Inoculum Improves Plant 
Growth and Response to Temporary Water Shortage 
on a Semi‑industrial Scale

The experimental setup in the semi-industrial scale experi-
ment was simplified compared to the initial screening in the 
laboratory. In this experiment, we compared the growth of 
plants either supplemented with AMF and bacteria or not 
inoculated. At the end of the growing season, non-inoculated 
plants reached 14.4 cm in height. Inoculated plants were 
significantly higher than control plants yielding 20.6 cm 
(40% increase) (Fig. 2a). Plant inoculation increased plant 
fresh biomass (28% increase) and plant dry biomass (76% 
increase) (Fig. 2b–d).

AMF AMF + bacteria Bacteria Control

Fig. 1   Height (a) and PSII efficiency of plants cultured in the green-
house—laboratory experiment (JIP-test parameters: PIabs—absorb-
ance performance index, PItotal—total performance index, Φ0/
(1-Φ0)—contribution of light reactions for primary photochemistry, 
RC/ABS—fraction of reaction centre chlorophyll per chlorophyll of 
the antennae, Ψ0/(1-Ψ0)—electron transport beyond primary qui-
none acceptor and RE/ABS—contribution of the reduction of end 
equivalents are presented relative to entirely non-inoculated plants; 

statistically significant differences between particular treatments and 
those entirely non-inoculated plants are indicated by asterisk (t-test, 
P ≤ 0.05, N = 10) (b) and photographs (c) of red raspberry inoculated 
with AMF, AMF spore-associated bacteria. For each treatment, 25 
seedlings were inoculated. Plants were grown in peat and perlite (5:1, 
v:v) and irrigated with water. Plants were harvested for analysis at the 
end of the growing season
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Inoculation was beneficial for plant vitality. Two param-
eters describing fluorescence of chlorophyll, the contribu-
tion of light to primary photochemistry and fraction of 
reaction centre chlorophyll per chlorophyll of the antennae 
were significantly higher in AMF-bacteria co-inoculated 
plants than for non-inoculated plants (Fig. 2e).

Two weeks after a temporary water shortage, gas 
exchange in plant leaves was examined to verify if inocu-
lation improved C assimilation. Photosynthetic rate, sto-
matal conductance of H2O and transpiration rate were 
improved in inoculated plants. CO2 assimilation (photo-
synthetic rate) was increased by 70%, stomatal conduct-
ance was improved over two-fold and the rate of transpira-
tion was increased by 80% (Fig. 3).

Discussion

Biotization with microorganisms may result in changes 
in plant development and physiology facilitating adapta-
tion to the environment [20]. The appropriate selection 
of microorganisms for this purpose is of utmost impor-
tance. The development of sustainable horticulture 
requires reducing usage of chemical pesticides and fer-
tilisers and improvement of plant productivity. One sym-
biotic microorganism may not fully cover the needs that 
crops require for optimal growth [21]. On the other hand, 
multi-microbial inocula may not be effective for different 
crop species and even for different cultivars of the same 

AMF + bacteria Control

Fig. 2   Parameters of plants from semi-industrial scale experiment: 
a height, b fresh weight, c dry weight, d photographic visualisation, 
e PSII efficiency (JIP-test parameters are described in Fig. 1) of red 
raspberry co-inoculated with AMF and AMF spore-associated bac-

teria. For each treatment, 70 seedlings were grown in greenhouse 
from June to September. Statistically significant differences between 
inoculated and non-inoculated plants are indicated by asterisk (t-test, 
P ≤ 0.05, N = 20)
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species [24, 34]. Therefore, better understanding of the 
compatibility between symbiotic microorganisms and 
plants is required for targeted biotization of crop plants 
[55]. In the vast majority of previously published stud-
ies, plants were inoculated with single AMF species [49], 
and their response varied from inhibition to activation of 
plant growth, depending on AMF species. The synergis-
tic effect of AMF and other factors (soil organic matter, 
insect pollination, nutrient availability) on the production 
of raspberry has also been examined on a few occasions 
[12, 13]. Gianinazzi et al. [21] showed that synergistic 
effect of AMF and soil-borne strain of Paenibacillus pro-
tected tomato against pathogenic Phytophthora parasitica. 
However, the synergistic effect of AMF and AMF spore-
associated bacteria has not been investigated.

We isolated over fifty strains of bacteria from spores 
of AMF. It has to be emphasised that these bacteria most 
probably resided either within the cell wall or on the out-
side of the spore, thus being accessible for isolation and 
cultivation. Up until now only a limited number of reports 
describe the community structure of bacteria residing 
inside spores. According to Bianciotto et al. [6] and Naito 
et al. [33], only two bacterial taxa: ‘Candidatus Glom-
eribacter gigasporarum’ and ‘Candidatus Moeniiplasma 
glomeromycotorum’ were shown to inhabit spore interior 
However, Lastovetsky et al. [27], in a recently published 
paper, have shown a larger diversity of bacteria inhabiting 
AMF spores. Only some of them showed plant growth-
promoting properties, and the best strains were selected 

for plant inoculation. Six bacterial strains, which were 
selected, belonged to Paenibacillus genus. Representatives 
of this genus have been previously shown to associate with 
AMF spores [1, 29] and additionally to inhibit the growth 
of soil-borne pathogenic fungi [16]. The results of our 
laboratory experiment showed that bacteria isolated from 
AMF spores alone did not improve plant growth or vital-
ity. Co-culture with AMF was required for plant growth 
activation. AMF alone had a beneficial impact on plant 
yield, whereas supplementation with AMF and bacteria 
from AMF spores had a synergistic effect on raspberry 
growth. It was assumed that the bacteria may improve 
root colonisation by AMF,plant biomass yield was often 
related with high root colonisation by AMF [14, 45]. Other 
reports, however, did not show such a relationship [19, 
30]. Here, supplementation with bacteria did not affect 
root colonisation by AMF (data not shown). It should be 
noted though that the majority of mycorrhizal colonisation 
parameters reached over 90% in AMF inoculated plants 
not supplemented with bacteria.

In the tunnel experiment, the beneficial effect of co-inoc-
ulation with AMF and bacteria on raspberry growth and 
vitality was verified positively. Plant growth parameters 
(high, fresh weight, dry weight) were improved by 28–76%, 
and selected parameters of chlorophyll a fluorescence were 
increased. These results indicate that biotization of raspberry 
with AMF and AMF spore-associated bacteria may be an 
alternative to conventional methods in large-scale raspberry 
production.

Fig. 3   Physiological parameters of plants from semi-industrial scale 
experiment measured 2  weeks after a temporary water shortage: A 
photosynthetic rate (PN, mmol CO2·m−2·s−1), b stomatal conduct-
ance (GS, mmol H2O·m−2·s−1) and c transpiration rate (E, mmol 

H2O·m−2·s.−1) of red raspberry co-inoculated with AMF and AMF 
spore-associated bacteria. Statistically significant differences between 
inoculated and non-inoculated plants are indicated by asterisk (t-test, 
P ≤ 0.05, N = 5)
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One of the main barriers to crop production is drought. 
Therefore, methods to increase plant resistance against 
drought are of particular interest for farmers and scientists. 
Arbuscular mycorrhizal fungi, endophytic fungi and endo-
phytic bacteria have been documented as biological agents 
capable of improving drought resistance in crop plants [2, 
35, 37, 47, 57]. Plant inoculation with symbiotic microor-
ganisms often improves the absorptive surface of the roots 
and the activity of stress protective agents, osmoregulation, 
and antioxidant capacity [42, 43]. Thus, we investigated the 
effect of temporary water shortage (7 days) on basic physio-
logical parameters of biotized raspberry. Two weeks after the 
treatment, the tested physiological parameters of inoculated 
plants were clearly improved. Plant inoculation with AMF 
and spore-associated bacteria improved stomatal conduct-
ance. Increased aperture of stomata promotes more efficient 
diffusion of CO2 and H2O; hence, in our study, a significant 
increase in transpiration rate was observed in inoculated 
plants. Better diffusion of CO2 through the stomata allows 
its efficient distribution in the stroma of chloroplasts increas-
ing the intercellular carbon dioxide concentration and thus 
reducing the likelihood of photorespiration [26]. Inoculated 
plants were characterised by increased concentrations of 
intercellular CO2 (unpublished data). At the same time, we 
observed an increased proportion of active reaction centres 
and more efficient transport of electrons out of PSII in plants 
supplemented with the tested inoculum. Such functional 
remodelling of the photosynthetic apparatus increases the 
efficiency of capturing incoming radiation and the efficiency 
of linear transport of electrons [50]. The observed changes 
resulted in a significant increase in the rate of carbon dioxide 
assimilation in inoculated plants.

In conclusion, our results indicate that biotization of rasp-
berry with arbuscular mycorrhizal fungi and selected bacte-
ria isolated from spores significantly improved plant growth 
and biometric photosynthetic activity. Moreover, physi-
ological performance of inoculated plants was improved 
compared to non-inoculated plants after temporary water 
shortage, suggesting improved resistance to drought. This 
shows that biotization with AMF and bacteria isolated from 
spores has potential application in raspberry production. 
This is particularly important due to the increasing demand 
for horticultural methods that rely on plant-microorganisms 
interaction [20].
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