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Identification of gene regulatory networks
affected across drug-resistant epilepsies

Liesbeth François 1,2,7 , Alessia Romagnolo 2,7, Mark J. Luinenburg 2,
Jasper J. Anink2, Patrice Godard1, Marek Rajman1, Jonathan van Eyll 1,
Angelika Mühlebner2,3, Andrew Skelton1, James D. Mills2,4,5,
Stefanie Dedeurwaerdere1,8 & Eleonora Aronica 2,6,8

Epilepsy is a chronic and heterogenous disease characterized by recurrent
unprovoked seizures, that are commonly resistant to antiseizure medications.
This study applies a transcriptome network-based approach across epilepsies
aiming to improve understanding of molecular disease pathobiology, recog-
nize affected biological mechanisms and apply causal reasoning to identify
therapeutic hypotheses. This study included themost common drug-resistant
epilepsies (DREs), such as temporal lobe epilepsy with hippocampal sclerosis
(TLE-HS), and mTOR pathway-related malformations of cortical development
(mTORopathies). This systematic comparison characterized the global mole-
cular signature of epilepsies, elucidating the key underlying mechanisms of
disease pathology including neurotransmission and synaptic plasticity, brain
extracellular matrix and energy metabolism. In addition, specific dysregula-
tions in neuroinflammation and oligodendrocyte function were observed in
TLE-HS and mTORopathies, respectively. The aforementioned mechanisms
are proposed as molecular hallmarks of DRE with the identified upstream
regulators offering opportunities for drug-target discovery and development.

Epilepsy is typically defined as a chronic disease characterized by
recurrent unprovoked seizures1. However, the concept of epilepsy is
evolving and it is recognized that besides seizures patients are also
affected by cognitive, psychological, and social impairments2,3, as well
as increased mortality4. The heterogeneity in causes and clinical
expression of the disease leads us to more commonly use the term
epilepsies. There is an urgent need to identify therapeutic targets
and develop tailored medications that go beyond the current anti-
seizure medications (ASMs)5, both in efficacy and in addressing the
disease starting from the pathobiology. Discriminating the factors
contributing to different subtypes of drug-resistant epilepsy (DRE)
would shed light on the pathobiological mechanisms that are shared
or specific across disease types, and enable hypotheses to be

established for developing precision medicines to ensure better
patient care.

Here, we focused on some of the most common forms of DREs,
temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) and
malformations of cortical development, including focal cortical dys-
plasia type IIa and type IIb (FCD IIa and FCD IIb) and cortical tubers in
tuberous sclerosis complex (TSC). TLE-HS is characterized by selective
neuronal cell loss with concomitant astrogliosis in the hippocampus6.
FCD type II and TSC cortical tubers are characterized by hyperactiva-
tion of the mTOR-signaling pathway and collectively termed
mTORopathies7. Furthermore, both pathologies are characterized by
common histopathological hallmarks such as cortical dyslamination,
dysmorphic neurons, and large immature cells called balloon cells in
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FCD IIb (absent in FCD IIa) or giant cells in TSC cortical tubers8,9.
Despite the large research efforts to elucidate the molecular
mechanisms underlying epilepsies, the molecular profile contributing
to the epileptogenicity in TLE-HS and the mTORopathies is not com-
pletely understood.

Discovering disease pathways has the potential to reveal drug-
gable targets that could restore impaired gene expression back to
homeostasis. The network-based system analysis Causal Reasoning
Analytical Framework for Target discovery (CRAFT) previously iden-
tified epilepsy-specific gene coexpression modules (i.e. sets of coex-
pressed genes) in a pilocarpine mouse model, allowing the
identification of therapeutic candidates10. Here, gene coexpression
modules allowed for the assembly of an unbiased, global model of the
pathobiology based on the assumption that biological pathways are
dysregulated in the disease state. CRAFT identifies potential upstream
regulators by predicting the interaction between cell membrane
receptor proteins (CMPs), transcription factors (TFs), and downstream
target genes10.

To our knowledge, available transcriptomics datasets for epilepsy
are often limited to one pathology, lacking comparison across epi-
lepsies, and are low in sample number11–17. Therefore, further investi-
gation of a larger cohort involving different pathologies can extend
our understanding of the pathobiological mechanisms that underly
epilepsy.

This study enabled the construction of the global molecular sig-
nature of epilepsies by comparing disease transcriptional profiles, and
identifiedkeyunderlyingmechanisms shared across epilepsies that are
involved in neurotransmission and synaptic plasticity, immune
response, brain extracellular matrix (ECM), and energy metabolism. In
addition, specific dysregulations in neuroinflammation and neuronal
support, and myelination were identified in TLE-HS and mTORo-
pathies, respectively. We propose that these mechanisms are the
putative molecular hallmarks of DRE and may be active players in
disease progression. The upstream regulators identified here by causal
reasoning offer hypotheses to test their effect on disease and, poten-
tially, generate opportunities for drug-target discovery.

Results
This study provided a data-driven framework for the systematic
identification of dysregulated biological pathways in the disease state
and to categorize global epilepsy mechanisms across DREs. The
identification of impaired transcriptional coregulations in and across
different epilepsy pathologies combined with predicted mechanistic
regulatory hypotheses can be leveraged experimentally to test their
therapeutic potential.

Transcriptional differentiation between cohorts by tissue type
and disease
In total, 28,366 expressed genes (mapped reads ≥6 counts in at least
20% of samples within each cohort) were detected across the cohorts.
First, to obtain a global understanding of the transcriptional landscape
and assess potential differentiation between clinical cohorts, sample
clustering was explored using both unsupervised hierarchical clus-
tering and supervised discriminant analysis on principal components
to identify discriminatory features between cohorts.

The unsupervised hierarchical clustering showed that the TLE-HS
cohort could be distinguished from the mTORopathies cohort, and
further, there was no clear separation within the latter (Fig. 1a). Dis-
criminant features associated with tissue on the first component
(cortex vs hippocampus) and disease status on the second component
(epilepsy vs healthy) were identified (Fig. 1b, c). However, as the epi-
lepsy condition is partly defined by the brain area of seizures origin,
the effect of tissue and disease could not be assessed independently.
Figure 1d shows the prior and posterior assignment of individuals to

the cohorts which indicated a good reassignment rate for TLE-HS. A
lower reassignment rate for themTORopathies, specifically for FCD IIa
patient samples, where only half of the individuals were reassigned to
their cohort (Fig. 1d), indicated difficulty in discriminating between
these populations when taking all six cohorts together.

A focused analysis was performed on the three mTORopathies
cohorts to explore their transcriptional similarity. The first dis-
criminant component and reassignment proportion suggest a gradual
change in gene expressionprofile in individuals diagnosedwith FCD IIa
that were reassigned to FCD IIb but not TSC (Fig. 1e). Similarly, more
overlap was found between TSC and FCD IIb thanwith FCD IIa (Fig. 1e).
Based on these results, all three pathologies will be considered as an
additional meta-cohort to explore potential shared regulations
between mTORopathies.

Identification of gene coexpression modules within epilepsy
pathologies
It is hypothesized that gene coexpression modules (‘gene modules’)
canbuild anunbiased, globalmodel of epilepsy pathobiologybasedon
the assumption that some biological pathways may be differentially
regulated in the disease state due to perturbations of gene expression
control. The workflow to annotate the identified gene modules is
described in the Materials and “Methods” section (Fig. 4). Briefly,
pathway and cell-type annotations aimed to unravel the underlying
pathobiology of the diseases. Furthermore, the differential coexpres-
sion of gene modules between disease and healthy control samples
brought to light the gene modules impacted in the disease state.
Finally, the correlation of each gene within eachmodule is assumed to
be the consequence of a common (set of) upstream transcriptional
regulator(s) activity. The causal reasoning framework, CRAFT, predicts
upstream regulators (transcriptional regulators, TFs, and miRNA, as
well as CMPs) that, based on current knowledge, could affect the
modules to form an actionable regulatory hypothesis.

This workflowwas applied to all cohorts (TLE-HS, FCD IIa, FCD IIb,
and TSC) except the FCD IIa cohort due to insufficient sample num-
bers. Figure 2 shows the change in gene coexpression (R²) highlighting
the annotated biology for the affected modules related to multiple
brain functions such as neurotransmission and synaptic plasticity,
immune response, and energy metabolism among others. No asso-
ciation to phenotype and antiseizure medications was identified for
the modules in any cohort. A summary of the results of the identified
gene modules per cohort is described in Table 1. The next paragraphs
describe the most affected gene modules and there are further details
in Supplementary Data 1–4.

TLE-HS
For TLE-HS, 37 gene modules were identified with nine modules pre-
senting a significant change in coexpression asmeasuredbyR² between
disease and healthy control patient samples, indicating that these
modules were significantly affected in TLE-HS (Fig. 2a, panel TLE-HS)
(Supplementary Data 2). For example, TLE.13.o, TLE.7.o and TLE.12.u
were themost perturbedmoduleswithmore than 50 genes permodule
with an ΔR² ranging between 0.24 and 0.32 (Supplementary Data 1).
These modules highlighted different biological function as affected in
epilepsy (immune response/neuroinflammation, extracellular matrix
function, andmRNA/protein processing) (Supplementary Data 3 and 4)
Multiple upstream regulatorswere identifiedusing the causal reasoning
framework. For TLE.13.o up to 26 module regulators were predicted,
including miRNAs (2), TF (14), and CMPs (328) (Supplementary Data 1).
For TLE.7.o up to 366 regulators were predicted, including TF (4) and
CMP (275) with no candidate regulators for TLE.12.u (Supplementary
Data 1).Overall, outof theninegenemodules identified tobeaffected in
epilepsy, transcriptional regulators and CMPs were available for six and
four gene modules, respectively.
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FCD IIb
The analysis of FCD IIb identified 28 gene modules with 22 gene
modules significantly differentially coexpressed (Fig. 2a, panel FCD IIb)
(Supplementary Data 2). Gene modules that showed significant dif-
ferential coexpression were involved in immune response, oligoden-
drocyte function, oxidative phosphorylation among others
(Supplementary Data 3 and 4). The most affected modules FCD2b.7.o
and FCD2b.14.u (ΔR² ranging between 0.49 and 0.54) captured less
than 20 genes, limiting their relevance (Supplementary Data 1). Mod-
ules FCD2b.5.o, FCD2b.6.o, and FCD2b.6.u containedbetween 240 and
330 genes with functions related to mRNA translation (FCD2b.5.o),
oxidative phosphorylation (FCD2b.6.o) and endosome function
(FCD2b.6.u) (Supplementary Data 4). Overall, six of the 28 identified
gene modules lacked functional annotation. The causal reasoning
identified multiple regulatory hypotheses. For FCD2b.5.o, one TF
(SAFB) and 19 upstreamCMPs were predicted (Supplementary Data 1).
For FCD2b.6.o, 62 transcriptional regulators (60 miRNA/2 TF) and 33
upstream CMPs were predicted. No upstream regulator could be
identified for FCD2b.6.u (Supplementary Data 1).

TSC
In TSC, 30 gene modules were identified with 23 gene modules sig-
nificantly differentially coexpressed (Fig. 2a, panel TSC) (Supple-
mentary Data 2). The strongest differential coexpression resulted for
modules TSC.11.u, TSC.13.o, TSC.13.u, and TSC.14.o containing
120–290 genes in the modules with a ΔR² ranging from 0.48 to 0.52
(Supplementary Data 1). These four modules were enriched for a
broad spectrum of different functions, such as modulation of che-
mical synaptic transmission, positive regulation of cytokine pro-
duction, postsynaptic density, and interferon signaling
(Supplementary Data 4). Like FCD IIb, not all affected modules could
be biologically annotated despite utilizing different pathway
resources (Supplementary Data 4). CRAFT identified two TFs as well
as 12 CMPs for TSC.11.u (Supplementary Data 1). For TSC.13.o, 21
transcriptional regulators (3 miRNA / 18 TF) and 380 upstream CMPs
were found. Although no upstream regulators were identified for
TSC.13.u, 68 transcriptional regulators were predicted for TSC.14.o (2
miRNA / 66 TF) as well as 392 upstream CMPs (Supplemen-
tary Data 1).
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Fig. 1 | Comparison of transcriptional profile across cohorts. a Dendrogram
based on unsupervised hierarchical clustering including all epilepsy (TLE-HS, FCD
IIa, FCD IIb, and TSC) and control (cortex and hippocampus) patient samples.
b Discriminant analysis on principal components on all cohorts identified dis-
criminating features by tissue on the first component (linear discriminant 1 – LD1)
and disease status on the second component (linear discriminant 2 – LD2).
c Discriminant analysis on principal components on mTORopathy cohorts only
(FCD IIa, FCD IIb, and TSC) identified limited separation on the first discriminant
function. d Prior and posterior cohort assignment after discriminant analysis on
principal components on all cohorts. The prior and posterior assignment of indi-
viduals to the cohort based on the discriminant functions is provided indicating

admixture between cohorts. The numbers in the heatmap indicate how many
samples of each cohort are (re)assigned to the same cohort based on the dis-
criminant functions. e, Prior and posterior cohort assignment after discriminant
analysis on principal components on mTORopathies specifically. The prior and
posterior assignment of individuals to the cohort based on the discriminant func-
tions were provided indicating admixture between cohorts. The numbers in the
heatmap indicate how many samples of each cohort are (re)assigned to the same
cohort based on the discriminant functions. FCD focal cortical dysplasia, TLE-HS
temporal lobe epilepsy with hippocampal sclerosis, TSC tuberous sclerosis com-
plex. Source data are provided as a Source Data file.
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mTORopathies
In the mTOR cohort (all FCD IIa, FCD IIb, and TSC samples), 28 gene
modules were identified but only nine gene modules were found dif-
ferentially coexpressed (Fig. 2a, panel mTORopathy) (Supplementary
Data 2). The strongest significant differential coexpression could be
identified for gene modules mTOR.1.o (393 genes), mTOR.10.o (293
genes),mTOR.10.u (257 genes), andmTOR.1.o (3 genes) with R² ranging

from 0.33 to 0.35 (Supplementary Data 1). Due to the limited size of
mTOR.1.u, only the remaining three modules will be described further
here. Functional annotation of these modules related to RNA splicing,
response to topologically incorrect protein folding, and extracellular
matrix organization (Supplementary Data 4). CRAFT could not identify
any upstream regulators for gene module mTOR.10.o, whereas for
mTOR.1.o it identified 41 potential transcriptional regulators (4miRNA /
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37 TF) and 384 upstream CMPs. Similarly, for mTOR.10.u, 51 transcrip-
tional regulators (49 miRNA / 2 TF) and 25 upstream CMPs were iden-
tified (Supplementary Data 1).

Identified affected gene module and regulators may provide
opportunities to modulate these networks and restore their homeo-
static gene expression profile. Figure 2a shows the identification of
neurotransmission and synaptic plasticity, immune response, brain
ECM, energy metabolism, neuronal support, and myelination affected
in epilepsy. To enable a global understanding of the regulation of
pathobiology of epilepsy, the next section discusses the overall com-
parison of these identified modules and their regulators.

Connecting gene modules across epilepsy cohorts identifies
shared biology
The gene coexpression module analysis identified modules related to
similar biological functions across the different epilepsy patient
cohorts. Here, systematic comparison based on all identified modules
was performed to enable a global and objective understanding of
conserved or disease-specific modules. Unsupervised clustering of
gene modules based on the inclusion index identified clusters of gene
modules that were functionally annotated to infer their potential
shared biology. These clusters are termed regulomes to better capture
the functional role of cluster of gene modules as global regulatory
pathways in the epilepsy pathobiology. In this context, a regulome
refers to the transcriptional regulation that may depend on the
pathological state of the tissue18. Finally, the shared predicted TFs by
the individual CRAFT analyses were listed as candidate regulators with
potential to act across epilepsies.

Differential coexpression and conservation was used to measure
activity states across the different pathologies enabling the regulomes
to be separated into four different categories: constitutive, enhanced,
activated, and pathology-specific regulomes. Constitutive regulomes
show no change between the control and epilepsy patient samples.
Enhanced regulomes are conserved in cohorts but showed significant
increased activity in epilepsy. Activated regulomes are only present
and active in epilepsy. Finally, some gene modules did not present a
strong overlapwith genemodules from any other epilepsy conditions;
however, as thesemodulesweredifferentially coexpressed in a specific

epilepsy cohort, these were referred to as pathology-specific
regulomes.

The analysis revealed 29 regulomes total varying in size from two
to 10 gene modules (Fig. 2b, Supplementary Data 5). Here, regulomes
(n = 14) with a consistent functional annotation across multiple path-
way databases and effect in epilepsy were identified and selected
(Fig. 2b). Based on the classification described above, regulomes
related to neurotransmission and synaptic plasticity, immune
response, brain ECM, energy metabolism and oligodendrocyte func-
tion are highlighted (Fig. 2b).

Immune response and neuroinflammation
The discrimination between clusters enriched for immune response
pathways and neuroinflammation relies on the pathway annotations.
Neuroinflammation concerns theprocessmediatedby resident central
nervous system glia (microglia and astrocytes) and endothelial cells19,
whereas immune response is defined as the reaction of the body
against the impaired homeostasis involving the recruitment of
immune cells leading to a systemic response19. Although regulomes
can show a stronger association with one or another, differentiation
between immune response and neuroinflammation regulomes is not
absolute and they are presented here together.

The first regulome enriched for immune response and neuroin-
flammation belongs to the enhanced regulomes capturing modules
TLE.10.o, TLE.19.o, TSC.3.o, TSC.13.o, and mTOR.13.o (Fig. 2b, Sup-
plementary Fig. 1). The enrichment for the intersecting genes showed
enrichment for immune response; antigen presentation by MHC class
I: cross-presentation (MetaBase), neutrophil degranulation (Reac-
tome), positive regulation of cell activation and immunoglobulin
binding (GO) (Supplementary Data 4 and 5). Cell-type marker enrich-
ment from PanglaoDB identified significant overlapwithmarkers from
macrophages and microglia (Supplementary Data 4 and 5). These
immune response-related gene modules showed a differentiated
effect across the different cohorts, with significant increase in gene
coexpression detected in TLE (TLE.10.o) and TSC (TSC.3.o and
TSC.13.o). In contrast, module TLE.19.o and mTOR.13.o showed no
activation in the TLE-HS and mTORopathy cohorts (Supplementary
Fig. 1a). Conservation statistics also differed between the cohorts. For

Fig. 2 | Overview of the gene modules per epilepsy cohorts (TLE-HS, FCD IIb,
TSC, and mTORopathies). a Overall comparison of the different gene modules
indicating the change in R² between epilepsy patient samples and healthy control
samples for each analyzed epilepsy cohort. Gene modules were annotated when
differentially coexpressed by their main inferred biological function. b Circular
heatmap showing identified regulomes derived from the systematic comparison of
all identifiedmodules by the differentmetrics. Fromoutside to the inside: the gene
module names were shown, the effect on disease based on differential R² (blue),

conservation in epilepsy cohorts (red), and conservation in healthy control (pur-
ple). Labels of regulomes lacking functional annotation were colored in gray, reg-
ulomes with consistent functional annotation were labeled in black. The
highlighted regulomes in blue, purple, and yellow represent the ‘enhanced’, ‘acti-
vated’, and ‘pathology-specific’ regulomes, respectively, that were selected. FCD
focal cortical dysplasia, TLE-HS temporal lobe epilepsywith hippocampal sclerosis,
TSC tuberous sclerosis complex. Source data are provided as a Source Data file.

Table 1 | Summary table of gene module identification, annotation, and causal reasoning predictions within each epilepsy
cohort

Pathology Module genesa Modulesb DCc Functional annotationd CRAFT (TF/CMP)e TF/miRNAf CMPg

TLE-HS 4481 37 9 28 20/17 1581 508

FCD IIb 9928 28 22 24 21/17 918 456

TSC 9453 30 23 26 17/17 1051 489

mTOR 7466 26 9 23 16/14 1069 463

CMP cell membrane receptor protein, FCD focal cortical dysplasia,miRNAmicroRNA,mTOR pathway-relatedmalformations of cortical development, TF transcription factor, TLE-HS temporal lobe
epilepsy with hippocampal sclerosis, TSC tuberous sclerosis complex.
aNumber of genes assigned to modules.
bNumber of identified modules.
cNumber of significantly differentially coexpressed modules per analysis.
dNumber of modules for which functional annotation is available.
eNumber of modules for which a direct TF or indirect CMP is available.
fNumber of predicted transcriptional regulators, including both TFs and miRNA.
gNumber of predicted CMPs.
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TLE-HS the regulome was conserved in hippocampus controls but not
in cortex controls. Similarly, module TLE.19.o was not conserved in
FCD IIb whereas module TLE.10.o was not conserved in either FCD IIa
or IIb. The TSC modules showed no conservation of coexpression in
control cortex indicating the activated status of this particular reg-
ulome in the disease state, in alignment with the strong observed
differential coexpression. mTOR.13.o showed conservation in control
and all epilepsy cohorts but, similarly, no change in coexpression
comparing disease and control cohorts (Supplementary Data 3).
Finally, several common transcriptional regulators, such as SPI1, ETS1,
STAT1, IRF8, and NF-kB were consistently predicted to activate their
downstream genes, with the single exception of STAT3 which showed
inhibition of module TSC.3.o andmTOR.13.o while activating modules
mTLE.10.o, mTLE.19.o, and TSC.13.o (Supplementary Fig. 1b).

A pathology-specific regulome (module TLE.20.o) was identified
related to immune response; IL-1 signaling pathway and innate
immune response to contact allergens (MetaBase), interleukin-4 and
interleukin-13 signaling and interleukin-10 signaling (Reactome) and
inflammatory response (GO) (Supplementary Data 4 and 5). In addi-
tion, this gene module was enriched for cell-type markers related to
microglia (PanglaoDB) (SupplementaryData 4 and 5). Although several
gene modules across different cohorts were related to microglia
function, TLE.20.o has a limited gene overlap with any of the other

identified gene modules in the FCD IIb, mTOR or TSC cohorts (Sup-
plementary Data 1, 4, and 5). This specific module showed a stronger
and significant coregulation in brain tissues from TLE patients versus
control post-mortem samples (Supplementary Fig. 1c).

Neuronal support and myelination
The neuronal support and myelination regulome includes FCD2b.4.o,
FCD2b.14.o, mTOR.2.o, TSC.4.o, TLE.4.o, and TLE.17.o (Fig. 2b, Sup-
plementary Fig. 1). However, only mTORopathies gene modules
FCD2b.14.o, mTOR.2.o and TSC.4.o were significantly perturbed,
except FCD2b.4.o and TLE-HS modules, TLE.4.o and TLE.17.o (Fig. 3a).
Therefore, this neuronal support and myelination regulome was
assigned as pathology-specific. The following annotations triacylgly-
cerol metabolism (MetaBase), G alpha (i) signaling events (Reactome),
ensheathment of neurons and actin binding (GO) were identified as
enriched in each module (Supplementary Data 4 and 5). In addition,
the intersecting genes showed significant overlap with oligoden-
drocyte cell-type markers (PanglaoDB) (Supplementary Data 4 and 5).
The regulations of all gene modules were conserved in both control
and disease samples but enhanced in the disease state. The two most
common upstream transcriptional regulators identified by CRAFT
were SOX10 which activated the modules and miR-488-5p which
inhibited the expression of genes belonging to the gene modules

Patient cohorts:
Control cortex
Control 
hippocampus

FCD IIb

TLE-HS

mTOR

TSC

Node type:
Module (differential coexpression P-value > 0.05)

Module (differential coexpression P-value ≤ 0.05)

Regulator

Line type:

Inhibition
Activation

Intersect

a b

FCD2b.4.o

FCD2b.4.o mTOR.2.o

TLE.17.o

TSC.4.o

FCD2b.14.o

TLE.4.o
miR−488−5p

SOX10

FCD IIb
*

2 10

*
3

1

2
GFAP/SOX10

OLIG2/SOX10

TSC

9

*
1

2

MAP2/SOX10

8

*
*1 2

3

GFAP/SOX10

MAP2/SOX10

7

*

1
OLIG2/SOX10

Control-wm

6

Control-ctx

5

CA1

4

OLIG2/SOX10

gcl

HS

3

1

2

GFAP/SOX10

HLA-DR/SOX10

Control-hippo CA1

21

gcl

SOX10Control-hippo
c

50 μm 50 μm 50 μm

50 μm

50 μm 50 μm 50 μm

50 μm50 μm50 μm

*
*
*

FCD2b.14.o

TSC.4.o

mTOR.2.o

TLE.4.o

TLE.17.o

0.0 0.4 0.8 1.2

R
²

P-value ≤ 0.05

Fig. 3 | Genemodules differential coexpression for multiple regulomes related
to pathological mechanisms. Network showing the gene overlap size between
different gene modules and upstream transcriptional regulators. Cellular expres-
sion pattern of SOX10 immunoreactivity (IR) assessed in TLE-HS, FCD IIb, and TSC
(n = 3 biological replicates per cohorts, n = 2 technical replicates). a The ridgeplots
showed the distribution of gene modules coexpression (R²) for epilepsy and con-
trol patient cohorts within neuronal support and myelination regulome. Statistical
significance of differential coexpression was assessed using a two-sided permuta-
tion test (mTOR.2.o p-value = 3.6 × 10−2, TSC.4.o p-value = 1.1 × 10−2, FCD2b.14.o p-
value = 2.09 × 10−2).bNeuronal support andmyelination networkwith indicationof
differential coexpression of the relevant gene modules. SOX10 and miR-488-5p
were predicted as common transcriptional regulators showing activation or inhi-
bition effect on the gene modules. c Cellular expression pattern of SOX10 immu-
noreactivity (IR) in hippocampal sclerosis (HS), focal cortical dysplasia type IIb
(FCD IIb), and tuberous sclerosis complex (TSC). Panels 1–2 (control hippocampus;
gcl, granule cell layer) and panels 3–4 (hippocampal sclerosis, HS): nuclear
expression of SOX10 was restricted to oligodendroglial cells; insert 1 in panel 3:

SOX10 (red)was not detectable inGFAP (blue) positive cells (astrocytes); insert 2 in
panel 3: SOX10 (red) was not detectable in HLA-DR (blue) positive cells (microglial
cells); insert in panel 4: SOX10 (red) co-localized with OLIG2 (blue) positive cells.
Panels 5–6 (control cortex, 5 and white matter, 6), panels 7–8 (FCD IIb), and panels
9–10 (TSC): nuclear expression of SOX10 was restricted to oligodendroglial cells;
insert 1 in panels 7–8: SOX10 positive cells surrounding negative balloon cells
(asterisks). Insert 2 in panel 7: SOX10 (red) co-localized with OLIG2 (blue) positive
cells; insert 1 in panel 8: SOX10 (red) was not detectable in GFAP (blue) positive
cells; insert 3 in panel 8: SOX10 (red) was not detectable in MAP2 (blue) positive
cells. Insert 1 in panels 9 and 10: SOX10 positive cells surrounding a negative dys-
morphic neuron (asterisk in 1 in panel 9) and a negative giant cell (asterisk in 3
in panel 10); insert 2 inpanel 10: SOX10 (red) co-localizedwithOLIG2 (blue)positive
cells. Scale bars: 50 µm. FCD focal cortical dysplasia, GFAP glial fibrillary acidic
protein, HLA human leukocyte antigen, TLE-HS temporal lobe epilepsy with hip-
pocampal sclerosis, TSC tuberous sclerosis complex. Source data are provided as a
Source Data file.
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(Fig. 3b). The cellular expression pattern of SOX10 immunoreactivity
(IR) was confirmed in oligodendroglial cells in TLE-HS, FCD IIb, and
TSC samples (Fig. 3c).

Brain extracellular matrix
Modules FCD2b.1.o,mTOR.1.o,mTLE.5.o, andmTLE.7.owere identified
in brain ECM-activated regulome. Significant enrichment was found
for cytoskeleton remodeling (MetaBase), extracellular matrix organi-
zation (Reactome), supramolecular fiber organization, and extra-
cellular matrix structural constituent (GO), as well as enrichment for
markers of Bergmann glia, the highly specialized radial astrocytes of
the cerebellar cortex (PanglaoDB) (Supplementary Data 4 and 5).
Among the gene modules involved in this regulation, mTOR.1.o,
mTLE.7.o, and FCD2b.1.o showed a significant increase in coexpression
(Fig. 4a). This regulome was not conserved in control patient samples
but became activated in the disease cohorts (Fig. 4a). Finally, a com-
mon transcriptional regulator was identified to activate regulation of
modules, namely SP1 (Fig. 4b). The cellular expression pattern of SP1
immunoreactivity (IR) was confirmed in astroglial cells in TLE-HS
samples, whereas control hippocampus only showed low expression
of SP1 in neuronal cells (Fig. 4c). Similarly, in control cortex the
expression of SP1 was low in neuronal cells and sporadic in astrocytes
within the white matter. In FCD IIb and TSC, SP1 IR was observed in
dysplastic neurons, astrocytes, and balloon cells/giant cells, whereas
microglia/macrophages showed absence of SP1 expression.

Energy metabolism
The regulome capturing energy metabolism consists of FCD2b.6.o,
mTOR.5.u, TSC.7.u, FCD2b.12.u, and mTLE.11.o (Fig. 2b). As this
regulome was affected in the epilepsy cohort only, it was classified
as activated. Functional annotation associated with this module
included oxidative phosphorylation (MetaBase), respiratory elec-
tron transport (Reactome), and generation of precursor metabo-
lites and energy (GO). However, no annotation with cell-type
markers from PanglaoDB could be identified (Supplementary
Data 4). All gene modules showed an increase in coexpression but
significance was only reached for gene modules FCD2b.6.o,
mTOR.5.u, TSC.7.u, and FCD2b.12.u (Fig. 5a). None of these gene
modules were conserved in the control cohorts (Fig. 5a). The most
common transcriptional regulator KMD1A (LSD1) was predicted to
activate gene modules FCD2b.12.u, TSC.7.u, and mTOR.5.u
(Fig. 5b). Cellular expression patterns of KDM1A IR in TLE-HS, FCD
IIb, and TSC (Fig. 5c) showed restricted neuronal expression in
control hippocampus, contrary to nuclear expression in both
neurons and astrocytes in TLE-HS resected hippocampus. Similarly,
in control cortex and white matter, the expression of KDM1A was
restricted to neuronal cells, whereas FCD IIb and TSC showed
KDM1A expression in dysplastic neurons, astrocytes and balloon
cells/giant cells (Fig. 5c). As the IHC of epilepsy cohorts showed a
consistent expression of KDM1A in astrocytes, in vitro validation of
the role of KDM1A was assessed using PMA/Ionomycin stimulated
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Fig. 4 | Genemodules differential coexpression for multiple regulomes related
to pathological mechanisms. Network showing the gene overlap size between
different genemodules and upstream transcriptional regulators. Cellular expression
pattern of SP1 immunoreactivity (IR) assessed in TLE-HS, FCD IIb, and TSC (n = 3
biological replicates per cohorts, n= 2 technical replicates). aThe ridgeplots showed
the distribution of genemodules coexpression (R²) for epilepsy and control cohorts
within brain extracellular matrix regulome; mTOR.1.o, TLE.7.o, and FCD2b.1.o gene
modules showed a significant increase of R2. Statistical significance of differential
coexpression was assessed using a two-sided permutation test (TSC.13.0 p-
value = 9.99 × 10−4, TSC.3.o p-value = 4.00 × 10−3, TLE.10.o p-value = 3.28 × 10−2).
bBrain extracellularmatrix networkhighlighting thedifferentially coexpressed gene
modules. SP1 was predicted as a common transcriptional regulator showing activa-
tion effect on the gene modules. c The cellular expression pattern of SP1 IR was
assessed in TLE-HS, FCD IIb, and TSC. Panels 1–9: IHC of SP1. Panels 1–2 In control
hippocampus, SP1 expression was very low in neuronal cells (arrow in panel 2, hilar

neuron); SP1 was not detectable in GFAP-positive cells. Panels 2–4: In TLE-HS, SP1
expression in astroglial cells (arrowheads). Panels 5–6: In control cortex, very low
expressionofSP1 (panel 5); occasionally fewGFAP-positive cellswereobserved in the
whitematter (wm) (panel 6). Panels 7–8: In FCD IIb, SP1 IRwas observed in dysplastic
neurons (arrows) and GFAP-positive cells (arrowheads), including GFAP-positive
balloon cells (asterisks). SP1 expression in a NeuN dysplastic neuron (insert in
panel 7). Absence of SP1 expression in HLA-DR positive cells (microglia/macro-
phages; insert in panel 8). Panel 9: In TSC, SP1 expression in dysplastic neurons
(arrow; high-magnification of a dysplastic neuron; insert 3 in panel 9) and GFAP-
positive cells (arrowheads; insert 1 in panel 9), including giant cells (asterisks).
Absence of SP1 expression inHLA-DRpositive cells (microglia/macrophages; insert 2
in panel 9). Scale bars: 50 µm. FCD focal cortical dysplasia, GFAP glial fibrillary acidic
protein, HLA human leukocyte antigen, TLE-HS temporal lobe epilepsy with hippo-
campal sclerosis, TSC tuberous sclerosis complex. Source data are provided as a
Source Data file.
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fetal astrocytes (treatment at 3 h and 6 h). The pathway analysis of
FCD2b.12.u, TSC.7.u, and mTOR.5.u revealed not only impairment
of cell metabolism pathways including mitochondria electron
transport chain, response to oxidative stress, oxidoreductase
complex signaling, ATPase activity, and cellular respiration but also
inflammatory response pathways including IL-1 mediated signaling
pathways, NF-Kb signaling, T and B cells receptor signaling path-
ways further demonstrating the tight interplay between energy
metabolism and inflammation in epilepsy. Further details of the
enriched pathways are reported in Supplementary Data 4. Thus, we
aimed at exploring the impact of KDM1A downregulation not only
on cellular metabolism, via the expression of ROS markers and
cellular ROS production, but also on inflammation. Our in vitro
experiment revealed, KDM1A was downregulated after KDM1A
siRNA inhibition in both control and PMA/Ionomycin stimulated
cells (3 h/6 h) (Supplementary Fig. 2a). Furthermore PMA/Ionomy-
cin stimulation was confirmed by the upregulation of MMP3 and
MMP9 (Supplementary Fig. 2b). Finally, KDM1A siRNA inhibition
showed a significant upregulation of IL1b after 3 h of PMA/Iono-
mycin stimulation but no change in C3 expression (Supplementary
Fig. 2c). Furthermore, KDM1A downregulation showed no impact
on the expression of other ROS markers (Supplementary Fig. 2d)
and the production of cellular ROS (Supplementary Fig. 2e).

Neurotransmission and synaptic plasticity
A second enhanced regulome captured neurotransmission and
synaptic plasticity showing enrichment for nicotine signaling (Meta-
Base), transmissionacross chemical synapse (Reactome), andchemical
synaptic transmission (GO) (Supplementary Data 4 and 5). Cell-type
marker enrichment from PanglaoDB identified significant overlapwith
markers from interneurons and neurons (Supplementary
Data 4 and 5). These neurotransmission and synaptic plasticity-related
modules showed a differentiated effect across the different patholo-
gies with a significant increase in gene coexpression in FCD IIb
(FCD2b.7.u) and TSC (TSC.10.u) (Supplementary Fig. 3a). However, the
modules are conserved in both control and epilepsy cohorts. Common
upstream regulators NRSF and CoREST have been identified as having
an inhibitory effect (Supplementary Fig. 3b). In addition, Supplemen-
tary Data 6–8 shows the differential expression results for genes
belonging to GABA (Supplementary Data 6) and glutamate receptor
(Supplementary Data 7) signaling pathways across the different
cohorts and the expression profile of KCC1 and KCC2 (Supplemen-
tary Data 8).

Discussion
Chronic DREs are highly heterogeneous but despite differences in
etiology and clinical presentations, TLE-HS andmTORopathies (FCD II
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Fig. 5 | Genemodules differential coexpression for multiple regulomes related
to pathological mechanisms. Network showing the gene overlap size between
different gene modules and upstream transcriptional regulators. Cellular expres-
sion pattern of KDM1A immunoreactivity (IR) assessed in TLE-HS, FCD IIb, and TSC
(n = 3 biological replicates per cohorts, n = 2 technical replicates). a The ridgeplots
showed the distribution of gene modules coexpression (R²) for epilepsy and con-
trol cohorts within the energy metabolism regulome. Statistical significance of
differential coexpression was assessed using a two-sided permutation test
(TSC.10.u p-value = 3.9 × 10−2, FCD2b.7.u p-value = 1.46 × 10−2).b Energymetabolism
network highlighting the differentially coexpressed gene modules. KMD1A/LSD1
was predicted as common transcriptional regulator showing activation effect on
FCD2b.12.u, TSC.7.u, and mTOR.5.u. c Cellular expression of KDM1A IR in TLE-HS,
FCD IIb, and TSC. Panels 1–11: IHC of KDM1A. Panels 1–2: In control hippocampus,
KDM1A expression was restricted to neuronal cells; KDM1A was not detectable in
GFAP-positive cells (astrocytes); Panel 1: Nuclear expression in granule cell layer
(gcl; arrows) of the dentate gyrus (DG); Panel 2: Nuclear expression in hilar neurons
(arrows). Panels 3–4: In TLE-HS, KDM1A nuclear expression in both neurons

(arrows) and astroglial cells (arrowheads). KDM1A expression in a NeuN positive
neuron (insert in 2 in panel 4). Absence of KDM1A expression in HLA-DR positive
cells (microglia/macrophages; insert 3 in panel 4). Panels 5–6: In control cortex,
KDM1A expression was restricted to neuronal cells (insert in panel 5: high-
magnification of a positive neuron); KDM1A was not detectable in GFAP-positive
cells. Panels 7–9: In FCD IIb, KDM1A IR was observed in dysplastic neurons (arrows)
and GFAP-positive cells (arrowheads; insert 1 in panel 7), including GFAP-positive
balloon cells (asterisk). KDM1A expression in a NeuN positive dysplastic neuron
(insert 2 in panel 7). Absence of KDM1A expression in HLA-DR positive cells
(microglia/macrophages; panel 9). Panels 10–11: In TSC, KDM1A IR was observed in
dysplastic neurons (arrows) and GFAP-positive cells (arrowheads), including giant
cells (asterisks). Absence of KDM1A expression in HLA-DR positive cells (microglia/
macrophages; insert 1 in panel 11). KDM1A expression in a NeuN dysplastic neuron
(insert 2 in panel 11). Scale bars: 50 µm. FCD focal cortical dysplasia, GFAP glial
fibrillary acidic protein, HLA human leukocyte antigen, TLE-HS temporal lobe epi-
lepsy with hippocampal sclerosis, TSC tuberous sclerosis complex. Source data are
provided as a Source Data file.
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and TSC) potentially share downstream molecular mechanisms
underlying drug resistance. To our knowledge, this study applies a
network-based approach across human epilepsies and independently
identify multiple dysregulated biological processes. Upstream reg-
ulators identified by CRAFT open the possibility of assessing their
ability to restore gene expression towards the healthy state. Multiple
studies have provided a proof of principle, demonstrating the mod-
ulation of gene networks may restore their homeostatic gene expres-
sion profile in the field of epilepsy and neuro-oncology10,20.

In this study, a global comparison of the transcriptional profile of
162 human brain samples showed separation according to disease and
tissue of origin. However, as the epilepsy condition is partly defined by
the brain region of seizure origin, the effect of tissue type and disease
could not be assessed independently. A more detailed assessment of
mTORopathies alignedwithwell-describedhistopathological evidence
indicates a spectrum from FCD IIa to FCD IIb to TSC cortical tubers.
The only discriminator between FCD IIa and FCD IIb is the presence of
balloon cells in FCD IIb, which appear to act as crucial drivers of
inflammation in this FCD subtype21. The low reassignment rate of FCD
IIb and TSC cortical tubers may reflect their similar histopathology
(balloon cells closely resemble giant cells in TSC) and cell signaling
abnormalities15,21. The molecular resemblance between FCD IIa, FCD
IIb, and TSC patient samples supported the creation of an additional
meta-cohort in order to identify transcriptional similarities in the
downstream analyses.

To build a regulatory molecular model of the pathobiology, gene
modules were identified per cohort. The application of this network-
based system analysis, developed by Srivastava et al. 10, revealed dif-
ferent numbers of affected gene modules across the cohorts, in line
with the underlying heterogenicity and structure of the population. No
association to seizure frequency could be identified in any of the
cohorts, suggesting that regulomes may capture the current reg-
ulatory networks mostly involved in the pathobiology but not directly
affected by seizure frequency. Finally, functional annotation is missing
for some modules due to absence of cell-type and pathway enrich-
ment, limiting our current understanding of these pathologies. Fur-
thermore, we acknowledge that the choice of the control material is
difficult in human studies, particularly in case of pathologies affecting
young patients, which limits the number of cases suitable for gene
expression studies. We had the privilege to obtain the human post-
mortem from young controls. Future work could explore opportu-
nities to incorporate also subjects with non-lesional epilepsy poten-
tially offering a more comprehensive insight into the shared
mechanisms unrelated to lesions.

Connecting these identifiedmechanisms across the DREs enabled
a global understanding of disease dysregulations captured by 29 reg-
ulomes. Using different metrics, their link to disease biology was
established, classifying them as constitutive if present in healthy con-
trols and patients, enhanced regulomes if showing an increased
activity in epilepsy, activated regulomeswhenonly present in epilepsy,
and finally pathology-specific regulomes. The annotation of these
impairedmechanisms identified a diverse array of functions related to
immune response, neurotransmission and synaptic plasticity, brain
ECM, neuroinflammation, neuronal support and myelination, and
energy metabolism, among others. Here, we have focused on more
mechanisms identified in the disease state only.

In the TLE-HSpatient population, a specific regulomeenriched for
microglial cell-typemarkers and associatedwith immune response and
neuroinflammation was identified in module TLE.20.o. Although the
relevance of these pathways is not only limited to TLE-HS, this parti-
cular gene set was found only to be coregulated in TLE-HS. The acti-
vation and function of microglia in combination with upregulation of
proinflammatory cytokines and innate immune response receptors are
described in TLE-HS patients and status epilepticus (SE)22. Srivastava
et al. 10. highlighted the dysregulated neuroinflammatory modules in

pilocarpine mouse model, describing the association to seizure fre-
quency, the conservation in human TLE brain, and the therapeutic
efficacy of targeting the predicted regulator, Csf1r. TLE.20.o was
shown to correspond to the microglial modules identified in the
pilocarpine mouse model (MmPIL.16.o, MmPIL.18.o, MmPil.24.o)
based human/mouse gene orthologs10. Finally, Csf1R is also predicted
as a regulator for TLE.20.o, supporting the robustness and importance
of this impairedmechanism in TLE-HS disease pathobiology. The gene
modules and correspondence across patient data and animal models
enable the construction of a translational disease framework and
identification of relevant animal models for subsequent validation.

The mTORopathies presented a specific activated regulome
associated with neuronal support and myelination. Multiple studies
have shown a link between hyperactivation of mTOR pathway and
myelin deficiency, impairment of proliferation and differentiation of
oligodendrocytes progenitor cells as well as oligodendroglial
turnover23,24. Our transcriptomic data corroborate the reported lit-
erature findings. CRAFT identified SOX10, a TF essential for the dif-
ferentiation of myelinating Schwann cells and oligodendrocytes25,
implicated in demyelinating diseases26. In addition, miR-488-5p was
predicted to inhibit oligodendrocyte-dysregulated modules, however,
limited literature is available on the role of this microRNA in the
brain27,28.

The overall comparison of gene modules across epilepsies high-
lighted the activated regulome related to brain ECM organization and
enriched for astrocytes cell-type markers. The brain ECM provides
structural and functional support to glia and neurons. Several studies
have reported the involvement of astrocytes in different epilepsy
models showing SE-induced glial cell death and subsequent enhanced
proliferation of immature astrocytes. Modified expression of multiple
ECM components affects neurotransmission, synaptic plasticity, and
remyelination in the epileptic zone29. Seizure activity has been asso-
ciated with degradation of ECM components and regulators30 while
targeting specific matrix metalloproteinases (MMPs) can reduce sei-
zure severity and frequency in a rat model of TLE31. The activity of SP1,
the CRAFT predicted regulator, was linked toMMPs in oncology and it
was also associated to multiple cellular processes via ECM
degradation32,33. Recentmolecular studies showed that SP1 plays a role
in epilepsy, neuronal injury, and maintenance of spontaneous seizure
activity34. The cellular expression pattern of SP1 IR was confirmed in
astroglial cells in TLE-HS as well as dysplastic neurons, astrocytes, and
balloon/giant cells across mTORopathy cohorts. The IR in control tis-
sues was sporadic, further supporting SP1 potential role in ECM in
epilepsy.

Another activated regulome was identified related to energy
metabolism. Different studies observed deficiencies in key compo-
nents of the glycolytic metabolism and oxidative phosphorylation
(OXPHOS), potentially due to oxidative stress, slowing the tri-
carboxylic acid cycle in epilepsy35, leading to neuronal
hyperexcitability36 and generation of reactive oxygen species and/or
NOX36. Our results showed that the (dys)regulation(s) of energy
metabolism, was not conserved in healthy tissue, but only became
activated in epileptic conditions. Furthermore, the energymetabolism
regulome displayed enrichment inmultiple pathways. These pathways
included those related to both innate and adaptive immune responses,
along with the mitochondria electron transport chain, response to
oxidative stress, signaling of the oxidoreductase complex, ATPase
activity, and cellular respiration. These data further corroborate the
interplay between energy metabolism, oxidative stress, and inflam-
mation in epilepsy as ROS are an intrinsic byproduct of ATP produc-
tion leading to the activation of key proinflammatory molecules
triggering a positive feedback loop37–39. Multiple studies have
demonstrated astrocytes play a critical role in regulating metabolism
and redox signaling as well as neuroinflammation40. Astrocytes rely on
their strong antioxidant capacity and glycolytic handling to provide
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metabolic and redox precursors in their cross-talk with neurons41,42.
CRAFT identified KDM1A (LSD1), which has been reported tomodulate
OXPHOS in metabolic tissues by genome-wide binding and tran-
scriptome analyses. In addition, an imbalance in KDM1A/neuroKDM1A,
a neuron-specific alternative splicing of exon 8a, has been identified to
affect neurotransmission, synaptic plasticity43,44 and hyperexcitability
in the pilocarpine mouse model45. NeuroKDM1A null mice showed
clear reduction in number of seizures and longer latency tofirst seizure
after pilocarpine treatment45. KDM1A was predicted to activate the
energy metabolism regulome, and although lacking specific cell-type
enrichment, its cellular expression pattern in TLE-HS, FCD IIb, and TSC
consistently manifested in astrocytes and neurons. Existing literature
predominantly explores the role of KDM1A in a neuronal context,
prompting a more comprehensive examination of the underlying
molecular mechanisms of KDM1A activity in astrocytes. Furthermore,
considering the significance of astrocytes in ROS production and
immune response, the potential involvement of KDM1A in astrocyte
function was also considered46. Given the existing body of research on
KDM1A in neurons, our focus aimed to investigate its role in an alter-
native cell type. In our in vitro study the downregulation of KDM1A in
PMA/Ionomycin stimulated fetal astrocytes showed increased inflam-
matory signature upon inhibition whilst no effects could be appre-
ciated on the expression of ROSmarkers and cellular ROS production.
KDM1A plays a role in regulating gene expression by removing specific
methyl groups from lysine residues on histone proteins. The role of
KDM1A in inflammation is complex, as it can have both proin-
flammatory and anti-inflammatory effects depending on the context,
cell type, and specific molecular pathways involved47,48. The dual nat-
ure of KDM1A’s involvement in inflammation highlights the intricate
and context-dependent nature of its functions49,50. In line with its
inflammatory dual nature, KDM1A role in regulating energy metabo-
lism is controversial. Detectable ROS levels were produced as a
byproduct of KDM1A chromatin remodeling activity in osteosarcoma
cell lines51. In addition, KDM1A increased oxidative stress and ferrop-
tosis promoting renal ischemia and reperfusion injury through acti-
vation of TLR4/NOX4 pathway in mice52. However, while multiple
studies showed KDM1A pro-oxidative stress effect, KDM1A beneficial
anti-obesity effects, skeletal muscle regeneration, and the ability of
acting as a metabolic sensor for nutritional regulation of metabolic
health were reported53. Although our results were in line with the lit-
erature, exploring the complexity of KDM1A nature in a simplistic
model, like the stimulated primary astrocytes in culture, limits the
possibility of understanding the underlying molecular mechanisms of
KDM1A. Nevertheless, these findings support further investigation into
the role of KDM1A in the pathobiology of DRE to determine its ther-
apeutic potential in more complex systems is required.

Finally, altered regulomes related to neuronal function were also
identified. Previous studies have already described alterations in neu-
rotransmission related to the balance of excitation/inhibition and
immaturity hypothesis link to GABAergic dysfunction in
mTORopathies54,55. In this study we see similar alteration of the
GABAergic and glutamergic signaling. The shared regulome captured
is more broadly related to neurotransmission and synaptic plasticity
and shows a differentiated effect across the different pathologies with
a significant increase in gene coexpression in FCD IIb and TSC further
supporting the alteration of neuronal signaling in mTOR-related
pathologies56.

In this study, gene modules were used to establish a computa-
tional framework of the epilepsy pathobiology (Fig. 6). We summarize
these impaired biological mechanisms as the molecular hallmarks of
epilepsy derived from transcriptional profiles and supported by our
current understanding of epilepsy pathobiology (Fig. 7). This overview
captures the immune response and neuroinflammation regulome
enhanced in all epilepsy cohorts and is pathology-specific in TLE-HS as
well as the mTORopathy pathology-specific regulome involved in

neuronal support and myelination. The brain ECM and energy meta-
bolism regulomes activated across all epilepsy cohorts and the neu-
rotransmission and synaptic plasticity regulome were enhanced in all
epilepsy cohorts.

In this study, gene modules were used to describe the molecular
heterogenicity of DREs. This network-based system analysis revealed
multiple dysregulated coexpression modules in the disease state.
Employing the CRAFT framework allowed identification of multiple
biological regulators that can be used to assess the therapeutic effect
of a module’s activity. The systematic comparison across TLE-HS, FCD
IIa, FCD IIb, and TSC allowed the identification of impaired mechan-
isms related to neurotransmission and synaptic plasticity, immune
response and neuroinflammation, brain ECM, energymetabolism, and
neuronal support and myelination. We propose that these impaired
pathways may affect epilepsy development across the studied
pathologies, becoming the potential hallmarks of DREs, with the
identified upstream protein offering opportunities for drug-target
discovery and development.

Methods
Patients
Four distinct epilepsy pathologies were considered in this study,
namely TLE-HS, FCD IIa, FCD IIb, and TSC cortical tubers. In addition,
age- and tissue-matched control tissue samples were collected (con-
trol cortex n = 14; control hippocampus n = 13). Upon patient consent
and in accordance to the local ethics committee of the contributing
medical centers (science committee of the BioBank and Medical Ethi-
cal Committee, Amsterdam UMC - protocol number: 21-174), brain
tissues included in this study were obtained from the archives of the
Departments of Neuropathology of the AmsterdamUMC (Amsterdam,
The Netherlands) and the UMC Utrecht (Utrecht, The Netherlands)
(Supplementary Data 9). In addition, all procedures received prior
approval by the local ethics committee of the contributing medical
centers (science committee of the BioBank and Medical Ethical Com-
mittee, Amsterdam UMC - protocol number: 21-174), and were con-
ducted in accordance with the guidelines for good laboratory practice
of the European Commission and in accordance with the Declaration
of Helsinki and the Amsterdam UMC Research Code. Cortical and
hippocampal brain samples were obtained from patients undergoing
surgery for intractable epilepsy and diagnosed with FCD type II (n = 17
FCD IIa, n = 33 FCD IIb), TSC cortical tubers (n = 21), and TLE-HS
(n = 64), respectively (Table 2; more details in Supplementary Data 9).

All cases were reviewed independently by two neuropathologists
(A.E. and A.M.). Patients who underwent implantation of strip and/or
grid electrodes for chronic subdural invasive monitoring before
resection and patients who underwent previous resective epilepsy
surgery were excluded from this study. The classification of hippo-
campal sclerosis (HS) was based on analysis of microscopic examina-
tion as described by the International League Against Epilepsy6. The
diagnosis of FCD was confirmed according to the international con-
sensus classification system proposed for grading FCD9. All patients
with cortical tubers fulfilled the diagnostic criteria for TSC cortical
tubers (including genetic analysis for the detection of germline
mutations)57. All FCD type II samples underwent deep sequencing
using DNA extracted from snap-frozen surgical brain tissue targeting
13 genes (FCD panel SoVarGen, South Korea); analysis for replicated
data was performed in accordance with a previous study58 (Supple-
mentary Data 10). All the cases with a confirmed histological diagnosis
of FCD type 2 (both those with detectedmutations and those without)
and all TSC cases (a germlinemutations have been identified in all TSC
cases) were included in the mTORopathy cohort.

Control material was obtained at autopsy from age- and brain
area-matched control samples that were obtained at autopsy from
individuals without a history of seizures or other neurological disease
(Table 2; more details in Supplementary Data 9). The causes of death
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for these controls included arrhythmia, myocardial infarction, and
acute cardiorespiratory failure. All autopsies were conducted within
12 h after death. Brain tissue was frozen and kept at −80 °C (for
molecular analysis) or fixed in 4% paraformaldehyde and embedded in
paraffin (FFPE) for histological analysis. All procedures received prior
approval by the local ethics committee of the contributing medical
centers, and were conducted in accordance with the guidelines for
good laboratory practice of the European Commission.

RNA isolation
For RNA isolation, human tissue was homogenized in 700 µl Qiazol
Lysis Reagent (Qiagen Benelux, Venlo, The Netherlands). Total RNA
including the microRNA (miRNA) fraction was isolated using the

miRNeasy Mini Kit (Qiagen Benelux, Venlo, The Netherlands) accord-
ing to themanufacturer’s instructions. The concentration andpurity of
RNA was determined at 260/280 nm using a Nanodrop spectro-
photometer (Ocean Optics, Dunedin, FL, USA) and RNA integrity was
assessed using a Bioanalyser 2100 (Agilent Technologies, Santa Clara,
CA, USA). Only samples with RNA integrity number (RIN) equal or
greater than 6.0 were used for sequencing.

RNA-seq library preparation and sequencing
All library preparation and sequencing were performed by Geno-
meScan (Leiden, The Netherlands). The NEBNext Ultra II Directional
RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA,
USA) was used to process the samples. Sample preparation was
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Fig. 6 | The workflow of gene module annotation and identification of reg-
ulomes epilepsies, leading to a proposed summary of impaired biological
mechanisms as the molecular hallmarks of drug-resistant epilepsy. a Gene
modules capture the underlying regulatory processes that are present in the dis-
ease state. b Correlationmatrix across the different samples within one cohort. To
infer potential biological function, responsible cell type(s), and the link to disease,
the following metrics were considered for each gene module: c differential coex-
pression between control and epilepsy (R²), d association to phenotype,
e functional pathway annotation, f inferred cell type, and g prediction of direct
(transcription factor and microRNA) and indirect (cell membrane receptor)
upstream regulators. h Unsupervised hierarchical clustering identified corre-
sponding clusters of gene modules, termed regulomes. For all regulomes, differ-
ential coexpression and conservation were obtained to classify the following four
classes of regulations: i Constitutive regulations capture those that are present in

control and epilepsy patient samples. j Enhanced regulations are present in control
samples but show enhanced activity in epilepsy patient samples. k Activated reg-
ulations can only be identified in epilepsy patient samples and may represent
strong disease impaired pathways. l Some gene modules did not show a strong
overlap with gene modules of other epilepsy cohorts while showing significant
increase in coexpression in the original epilepsy cohort and were referred to as
pathology-specific regulations. ADP adenosine diphosphate, ATP adenosine tri-
phosphate, C1-7 samples from control tissue, CRAFT Causal Reasoning Analytical
Framework for Target discovery, E1-7 samples from epilepsy patient tissue, FDC IIb
focal cortical dysplasia type IIb, M1-3 gene modules, mTOR mechanistic target of
rapamycin, mTORopathies mTOR-related malformations of cortical development,
TLE-HS temporal lobe epilepsy with hippocampal sclerosis, TSC tuberous sclerosis
complex. Source data are provided as a Source Data file.
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performed according to the protocol NEBNext Ultra II Directional RNA
Library prep Kit for Illumina (NEB #E7760S/L). Briefly, mRNA was iso-
lated from total RNA using oligo-dT magnetic beads. After fragmen-
tation of mRNA, cDNA synthesis was performed. Next, sequencing
adapters were ligated to the cDNA fragments followed by polymerase
chain reaction amplification. Clustering and DNA-sequencing was
performed using the NovaSeq6000 (Illumina, Foster City, CA, USA) in
accordance with manufacturers’ guidelines. All samples underwent

paired-end sequencing of 150 nucleotides in length; the mean read
depth per sample was 47 million reads.

The Decontamination Using Kmers (BBDuk) tool from the
BBTools suite was used for adapter removal, quality trimming and
removal of contaminant sequences (ribosomal or bacterial)59. A
phred33 scoreof 20was used to assess the quality of the read, with any
read shorter than 31 nucleotides in length excluded from the down-
stream analysis.

Activated microglia

Neuronal support and myelination

Neuroinflammation and 
immune responseEnergy metabolism

Neuronal functionBrain extracellular matrix

Molecular hallmarks of drug-resistant epilepsy

ATP ROS

Fig. 7 | Proposed summary of impaired biologicalmechanisms as themolecular
hallmarks of drug-resistant epilepsy. This workflow led to a proposal for the
molecular hallmarks of drug-resistant epilepsy. Enhanced regulations were identi-
fied related to neuronal function and neuroinflammation and immune response.
Two activated regulomes were identified and involved in brain extracellular matrix
and energy metabolism (oxidative phosphorylation/respiratory electron

transport). Finally, connecting gene coexpressionmodules across epilepsy cohorts
allows the identification of regulations specific to epilepsy cohorts such as neu-
roinflammation and immune response in TLE-HS and neuronal support and mye-
lination inmTORopathies. mTORopathies mTOR-relatedmalformations of cortical
development, TLE-HS temporal lobe epilepsy with hippocampal sclerosis.

Table 2 | Summary of clinical information of the study cohorts (control cortex, control hippocampus, TLE-HS, FCD Iia, FCD Iib,
and TSC cortical tubers)

Mean age at onset of
epilepsy (years)

Mean age sur-
gery (years)

Average seizure fre-
quency (months)

Mutation Medi-
cations

DEPDC5 AKT3 MTOR NLPR2/
NLPR3

TSC1 TSC2 1 2 ≥3

Control Cortex
(n = 14)

21
(0–61)

Control Hippo-
campus (n = 13)

47
(0–82)

TLE-HS
(n = 64)

12
(0–48)

35
(2–62)

24 13 32 19

FCD IIa
(n = 17)

5
(0–22)

11
(0–34)

356 4 3 4 2 1 3 13

FCD IIb
(n = 33)

4
(0–21)

15
(2–46)

208 10 1 4 11 18

TSC cortical tubers
(n = 21)

3
(0–26)

7
(0–30)

148 6 15 3 6 12

For detailed information please refer to Supplementary Data 9.
FCD focal cortical dysplasia, TLE-HS temporal lobe epilepsy with hippocampal sclerosis, TSC tuberous sclerosis complex.
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Reads were aligned directly to the human GRCh38 reference
transcriptome (Gencode version 33)60 using Salmon v0.11.361. Tran-
script counts were summarized to the gene level and scaled using
library size and average transcript length using the R package
tximport62. Genes detected in less than 20% of the samples in any
diagnosis cohort and with counts less than six across all samples were
filtered out, resulting in 28,366 genes for downstream analysis. The
gene counts were then normalized using the weighted trimmed mean
of M-values method with the R package edgeR63. The normalized
countswere then log2 transformedusing the voom function from theR
package limma64. In addition, few significantly upregulated and
downregulated genes were selected to validate the results of the RNA-
seq analysis from the same cohorts. The confirmatory RT-PCR results
of the expression of CD163 (F: GACAGCGGCTTGCAGTTTC; R: TCTTAA
AGGCTGAACTCACTGGG), CCL3 (F: TGCAACCAGTTCTCTGCATC; R: T
GGCTGCTCGTCTCAAAGTA), CCL2 (F: CCCAAAGAAGCTGTGATCTT
CA; R: TCTGGGGAAAGCTAGGGGAA), IL1b (F: GCATCCAGCTACGAAT
CTCC; R: GAACCAGCATCTTCCTCAGC), and WNT7B (F: CCCTCCCT
GGATCATGCAC; R: GATGACAGTGCTCCGAGCTT) can be found in
Supplementary Fig. 4 and the relative primer sequences in Supple-
mentary Data 11. Furthermore, Boer et al. 65 performed PCR validation
of several differential expressed genes in the present study in an
independent TSC cohort65.

Unsupervised hierarchical clustering and discriminant analysis
on principal components
Unsupervised hierarchical clustering based on principal components
was used to identify underlying structure in the gene expression
matrix using the stats and ggdendro R package66. Next, a discriminant
analysis of principal components (DAPC) was performed using opti-
m.a.score to identify the optimal number of principal components to
retain as implemented by the adegenet R package66,67.

Identification of gene coexpression modules
Coexpression networks were constructed per epilepsy cohort using
hierarchical clustering of normalized gene expression as developed by
Srivastava et al. 10. First, as healthymatching control samples were age-
matched across the general sample set, the age distribution was
assessed per cohort before applying the workflow. In addition, any
outliers due to area of resection or library preparation were removed.
Next, only genes showing high variability across sampleswere retained
(median absolute deviation [MAD] ≥0.25). For all remaining genes, the
1-Spearman rank correlation was computed for all gene pairs68–70 and
used to construct the adjacencymatrix (soft-thresholding power = 6)71.
Unsupervised hierarchical clustering using Ward’s method identified
the clusters of genes72 (from K = 1–200). The optimal number (Kx) was
obtained by the inflection point of the curve which is calculated based
on the second derivative of percentage of the variance explained (R²)
per K 55. Next, a leave-one-out bootstrapping procedure was imple-
mented to assess the effect of samples on the stability and robustness
of gene coregulation modules. For each permutation, gene coexpres-
sion modules were identified using the above-mentioned workflow
and records of gene module membership. Cluster membership was
used to construct the similaritymatrix to identify genes assigned to the
junk module based on an arbitrary threshold (50% assigned to junk
module). The remaining genes were clustered based on the similarity
matrix to obtain the coexpression modules. Finally, the modules were
divided using (anti-)correlation of genes within the module. Based on
the relative over- or underexpression of themodule’s genes compared
with healthy control samples, each submodule was assigned an o or u
suffix, respectively.

To ensure the robustness of the identifiedmodules, coexpression
modules were only assembled in epilepsy cohorts with greater than
20 samples. An additional joint analysis was performed across all
mTORopathies (FCD IIa, FCD IIb, and TSC cortical tubers). The

presence of outliers related to technical covariates was assessed using
principal component analysis regression and removed from further
analyses.

Differential coexpression
For each module the correlation between gene expression was calcu-
lated in both healthy controls and epilepsy patients to obtain the dif-
ference in median R². The empirical P-value was estimated for each
module by comparing the difference in median R² to the null dis-
tribution generated by performing 10,000 permutations of samples
across cohorts10,73.

Phenotype association to module eigenGene
The relationship between module expression and the different
reported phenotypes was explored using a linearmodel between each
module’s eigenGene and the covariate using lme4 R package: hippo-
campal sclerosis (HS) subtype, log10 of self-reported seizure fre-
quency, gender, age, duration, antiseizure medications, sequencing
group, and library preparation batch. As duration also depends on the
age of the patients, age was made an additional covariate when
assessing association with duration.

Functional annotation using enrichment analysis
The modules were functionally annotated using multiple pathway
resources (MetaCore - Cortellis solution, 11/03/2022, © 2023 Clar-
ivate), Reactome, and GO as well as cell-type enrichment based on
marker gene signatures derived from PanglaoDB74. A hypergeometric
test was used to assess the significance of enriched pathway terms or
marker gene signatures using a false discovery rate (FDR) correction to
rectify formultiple testing using all expressed genes as a background75.

CRAFT framework: in silico causal reasoning
Candidate upstream regulators for the identified gene coexpression
moduleswere predicted using theCRAFT framework. Srivastava et al. 10.
defined a causal reasoning framework that utilizes the direction of
effects between the three components of the system, namely CMPs,
TFs, and target genes. The interactions between these three compo-
nents and the direction of these interactions were obtained from the
MetaCore (Cortellis solution, 11/03/2022, © 2023 Clarivate), an inte-
grated knowledgebase for pathway analysis of high throughput tran-
scriptomic data. It contains ca. 1600 protein interaction pathways,
which are a comprehensive resource of human, mouse, and rat signal-
ing, metabolism, diseases, and stem cells, all manually curated from
peer-reviewed literature. The upstream regulator prediction workflow
have been developed by Srivastava et al. 10. All expressed membrane
receptors, TFs and target genes from MetaBase were identified. Next,
for each TF the set of target genes was retrieved as well as its activity
(activation, inhibition, unspecified) and upstreammembrane receptors
affecting a TF and their effect were obtained using MetaBase® defined
canonical linear pathways. The overall effect of themembrane receptor
on the underlying module was defined by combining the separate
effects of CMP-TF and TF-gene. The significance of effect of a regulator
(TF or CMP) on a module was subsequently assessed by testing the
overlap between genes under the control of the regulator and the genes
belonging to a module (hypergeometric test), taking all expressed
genes as the universe. FDR was calculated using Benjamini–Hochberg
correction of enrichment P values, taking into account the total number
of enrichment tests performed in testing75.

Identification of shared epilepsy regulations based on gene
coexpression modules
The subsequent paragraph details the identification of specific epi-
lepsy regulations as captured by gene coexpression modules in the
independent epilepsy cohorts. Although different structural epilepsies
are studied, similar pathways ormechanismsmay still be dysregulated.
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To identify shared epilepsy regulations, the amount of gene content
overlap between the gene coexpression modules from each epilepsy
cohorts was identified using the inclusion index:

inclusion index =
lengthðintersectðx, yÞÞ

minðlengthðxÞ, lengthðyÞÞ ð1Þ

with x and y as two gene coexpression modules. Next, unsu-
pervised hierarchical clustering based on Ward’s method was used to
identify modules that showed overlap in gene content72 using the sil-
houette method to identify the optimal number of clusters. The ana-
lyses were performed with the stats and factoextra R packages76. By
design, within an epilepsy cohort, a gene can only belong to one
coexpression module. Therefore, the intersect between gene coex-
pression modules across epilepsy cohorts was defined as those genes
occurring in at least one module per epilepsy cohort. This gene
intersection was subsequently submitted to a hypergeometric test to
obtain functional annotation with pathway resources (MetaBase,
Reactome, GO) as well as cell-type enrichment based on marker gene
signatures derived fromPanglaoDB74. Finally, the conservation of gene
coexpression in other epilepsy cohorts and healthy control tissue was
assessed with the same permutation approach as for differential
coexpression analysis.

Immunohistochemistry
Human brain tissue was fixed in 10% buffered formalin and embed-
ded in paraffin. Paraffin-embedded tissue was sectioned at 6 µm,
mounted on pre-coated glass slides (Star Frost, Waldemar Knittel
Glasbearbeitungs, Braunschweig, Germany), and processed for
immunohistochemical staining (n = 3 biological replicates per
cohorts, n = 2 technical replicates). Immunohistochemistry was car-
ried out on samples from patients as reported in Supplementary
Data 9. The following protocol was used as previously described21:
the following antibodies and dilutions were applied: SOX10 (SOX10,
rabbit monoclonal, Cell Marque, 383R-16, EP268, Lot#: 0000209147,
1:200) incubated 1 h at room temperature (RT), SP1 (SP1, rabbit
monoclonal, Abcam, EPR6662(B), ab124804, Lot#: GR3281146-2,
1:200) and KMD1A/lysine-specific demethylase 1 (LSD1) (KMD1A/
LSD1, rabbit polyclonal, Cell Signaling Technology, Cat#: 2139S, Lot#:
2, 1:200) incubated overnight at 4 °C. For double labeling of SOX10,
SP1 and KMD1A/LSD1, sections were incubated with NeuN (NeuN,
mouse monoclonal, clone A60, MAB377; Chemicon, Temecula, CA,
USA; 1:2000), glial fibrillary acidic protein (GFAP; mouse mono-
clonal, clone GA5, MAB360, Sigma-Aldrich, St. Louis, MO, USA;
1:4000) and HLA-DP/DR/DQ (HLA-II, mouse monoclonal, clone CR3/
43, M0775, Agilent Technologies, Santa Clara, CA, USA; 1:100) anti-
bodies, after incubation with the primary antibodies overnight at
4 °C. For detection, sections were first incubated with Brightvision
poly-alkaline phosphatase-anti-rabbit (DVPR55AP, Immunologic,
Duiven, The Netherlands) for 30min at room temperature, and
washed with phosphate-buffered saline and then with Tris–HCl buf-
fer (0.1M, pH 8.2) to adjust the pH. Alkaline phosphatase activity was
visualized with the alkaline phosphatase substrate kit III Vector Blue
(SK-5300, Vector Laboratories Inc., CA, USA). After washing in
phosphate-buffered saline, sections were secondly incubated with
Brightvision poly-horseradish peroxidase-anti-mouse (DPVM55HRP,
Immunologic, Duiven, The Netherlands) for 30min at room tem-
perature. Signal was detected using the chromogen 3-amino-9-
ethylcarbazole (AEC, Sigma- Aldrich, St. Louis, MO, USA) in 0.05M
acetate buffer filtered substrate solution. Sections incubated without
the primary antibodies or with the primary antibodies followed by
heating treatment were essentially blank.

Functional assessment in PMA/Ionomycin stimulated fetal
astrocytes
Astrocytes were isolated using a papain dissection method (Worthing-
ton Biochemical, Lakewood, NJ, USA) from human control brain tissue
derived from abortions occurred between gestational weeks 12 and 16.
All tissue was collected with written consent and according to the
declaration of Helsinki as well as the Amsterdam research code of the
medical ethics committee (science committee of the BioBank and
Medical Ethical Committee, Amsterdam UMC - protocol number: 21-
174). Upon isolation, fetal astrocytes were cultured in DMEM/F10 (1:1)
(Gibco, Life Technologies, Grand Island, NY, USA) supplemented with
50 units/ml penicillin and 50μg/ml streptomycin (1% P/S), 1% L‐Gluta-
mine and 10% fetal calf serum (FCS; Gibco, Life Technologies, Grand
Island, NY, USA). All cultures were grown and maintained in a 5% CO2

incubator at 37 °C. For experiments, cells (n = 3 biological replicates,
n = 2 technical replicates) were seeded in 12‐well plates with 0.1 × 106

cells/well and allowed to adhere for 48 h. After 48 h, cells were trans-
fected with KDM1A silencer (siRNA id: 108658, Catalog #: AM16708,
Interrogated Sequence (Refseq): NM_001009999.2 and NM_015013.3,
Thermo Fisher Scientific, Wilmington, DE, USA). Oligonucleotides were
delivered to the cells using Lipofectamine® RNAiMax Transfection
Reagent (InvitrogenTM, Catalog #: 13778075) in a final concentration of
12.5 pmol for a total of 24 h for mRNA isolation. Data of KDM1A siRNA
transfected cells were normalized to the control group. This control
group consisted of cells exposed to Silencer® Select Negative control
N1 siRNA (siRNA id: 4390843, Catalog #: 4390843, Thermo Fisher Sci-
entific, Wilmington, DE, USA), data are expressed as a fold‐change
compared to the control group.

For RNA isolation, human tissue was homogenized in 700 µl Qia-
zol Lysis Reagent (Qiagen Benelux, Venlo, TheNetherlands). Total RNA
including the microRNA (miRNA) fraction was isolated using the
miRNeasy Mini Kit (Qiagen Benelux, Venlo, The Netherlands) accord-
ing to themanufacturer’s instructions. The concentration andpurity of
RNA was determined at 260/280 nm using a Nanodrop spectro-
photometer (Ocean Optics, Dunedin, FL, USA) and RNA integrity was
assessed using a Bioanalyser 2100 (Agilent Technologies, Santa
Clara, CA, USA).

For the evaluation of mRNA expression, qPCRs targeting of
KDM1A (F: ACCGCCCTATGCAAGGAATA; R: CGCTTCCAACTCCTGAA
GTTTT),C3 (F: CCTGAAGATAGAGGGTGACCA; R: CCACCACGTCCCAG
ATCTTA), IL1b (F: GCATCCAGCTACGAATCTCC; R: GAACCAGCATC
TTCCTCAGC), MMP3 (F: CTCCAACCGTGAGGAAAATC; R: CATGGA
ATTTCTCTTCTCATCAAA),MMP9 (F: GAACCAATCTCACCGACAGG; R:
GCCACCCGAGTGTAACCATA), were run with EIF1-a (F: ATC-
CACCTTTGGGTCGCTTT; R: CCGCAACTGTCTGTCTCATATCAC) and
C1orf43 (F: GATTTCCCTGGGTTTCCAGT; R: ATTCGACTCTCCAGGG
TTCA) as a housekeeping genes. Quantification of data was performed
using the computer program LinRegPCR in which linear regression on
the Log (fluorescence) per cycle number data is applied to determine
the amplification efficiency per sample77. For the relative expression,
all groups were compared to the controls. The sequences of the
selected primers can be found in Supplementary Data 11.

The cellular determination of ROSwas performed using CellROX®
Green Reagents (C10444, Thermo Fisher Scientific, Wilmington, DE,
USA). The cells were transfected with KDM1A siRNA and treated with
PMA/Ion at 3 h and 6 h. The CellROX® Reagent was added to the
medium at the end of incubation time at a final concentration of 5μM
to the cells and further incubated for 30min at 37 °C. Media was
removed and the cells were washed three times with PBS. Fluorescent
intensity was measured with a Clariostar plate reader (BMG Labtech).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The data generated in this study are provided in the Supplementary
Information/Source Data file. The data generated in this study are
available through the Gene Expression Omnibus at https://www.ncbi.
nlm.nih.gov/geo with accession number GSE256068. Source data are
provided with this paper.

Code availability
The code used in this study are deposited in the GitHub repository.
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