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Abstract

Diabetic foot ulcers (DFUs) are a serious chronic complication of diabetes mel-

litus and a leading cause of disability and death in diabetic patients. However,

current treatments remain unsatisfactory. Although macrophages are associ-

ated with DFU, their exact role in this disease remains uncertain. This study

sought to detect macrophage-related genes in DFU and identify possible thera-

peutic targets. Single-cell datasets (GSE223964) and RNA-seq datasets

(GSM68183, GSE80178, GSE134431 and GSE147890) associated with DFU

were retrieved from the gene expression omnibus (GEO) database for this

study. Analysis of the provided single-cell data revealed the distribution of

macrophage subpopulations in the DFU. Four independent RNA-seq datasets

were merged into a single DFU cohort and further analysed using bioinformat-

ics. This included differential expression (DEG) analysis, multiple machine

learning algorithms to identify biomarkers and enrichment analysis. Finally,

key results were validated using reverse transcription-quantitative polymerase

chain reaction (RT-qPCR) and Western bolt. Finally, the findings were vali-

dated using RT-qPCR and western blot. We obtained 802 macrophage-related

genes in single-cell analysis. Differential expression analysis yielded 743 DEGs.

Thirty-seven macrophage-associated DEGs were identified by cross-analysis of

marker genes with macrophage-associated DEGs. Thirty-seven intersections

were screened and cross-analysed using four machine learning algorithms.

Finally, HMOX1 was identified as a potentially valuable biomarker. HMOX1

was significantly associated with biological pathways such as the insulin sig-

nalling pathway. The results showed that HMOX1 was significantly overex-

pressed in DFU samples. In conclusion, the analytical results of this study

identified HMOX1 as a potentially valuable biomarker associated with
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macrophages in DFU. The results of our analysis improve our understanding

of the mechanism of macrophage action in this disease and may be useful in

developing targeted therapies for DFU.
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Key Messages
• This study revealed the distribution of macrophage subpopulations as well

as the functional status in DFU by single-cell analysis.
• This study identified HMOX1 as a clinically valuable biomarker associated

with DFU by four machine learning algorithms (Boruta, XGBoost, SVM and
Random forest).

• The analytical results of this study improve our understanding of the mecha-
nism of macrophage action in this disease and may contribute to the devel-
opment of targeted therapies for DFU.

1 | INTRODUCTION

Diabetes has progressively emerged as a significant global
public health issuse.1 Correspondingly, the global num-
ber of diabetes patients was projected to reach 536.6 mil-
lion by the end of the year 2021. With a constant increase
in the number of diabetic patients annually, the global
prevalence of diabetes is expected to reach 693 million
individuals by the year 2045.2 Moreover, diabetes is fre-
quently associated with a variety of complications,
including peripheral neuropathy, chronic renal failure,
cardiovascular disease and diabetic skin wounds or
ulcers.3 In this context, diabetic foot ulcers (DFUs) are
considered one of the most serious complications of dia-
betes. DFU is a condition that occurs in patients with dia-
betes resulting from nerve abnormalities at the distal end
of the lower limbs and varying degrees of vascular dis-
ease, involving foot infection, ulcer, and/or deep tissue
destruction.4,5 Possible aetiologies of DFU include smok-
ing, hypertension, hyperglycaemia, diabetic progression,
vascular occlusion and neuropathy.6 As evident from ear-
lier studies, about 537 million individuals worldwide are
affected by diabetes, of which 19%–34% of diabetes
patients suffer from DFU. Moreover, around 20% of DFU
patients require amputation of the lower limb, while 10%
of patients experience mortality within 1 year following
their initial DFU diagnosis.7–9 Amputation severely
reduces the quality of life for individuals with diabetes,
while also resulting in elevated mortality rates and sub-
stantial medical expenses.10 Thus, given their prevalence
and capacity to result in disability and death, DFUs rep-
resent a critical public health issue that imposes a sub-
stantial burden on social and economic well-being. At
present, the primary methods of treatment for DFU

involve the debridement of wounds, relieving pressure on
the wound, controlling blood sugar levels and preventing
infection. Several emerging treatment modalities, such as
negative pressure wound treatments, dressing changes
and hyperbaric oxygen therapy, are progressively being
incorporated into clinical practice. However, the thera-
peutic efficacy of these approaches remains unsatisfac-
tory.11,12 Hence, it is imperative to further investigate the
aetiology of DFU in order to devise novel therapeutic
approaches that can aid diabetic patients in both prevent-
ing and managing DFU.

Macrophages exhibit diverse phenotypes that are
implicated in a range of physiological processes and dis-
ease mechanisms.13 Their capacity to rapidly transform
phenotypes plays a crucial role in regulating various
aspects of tissue repair.13 Macrophages are primarily clas-
sified into two main types: the pro-inflammatory M1 type
and the anti-inflammatory M2 type.14 The M1 subtype of
macrophages appears during the initial tissue damage
response, which is triggered by endogenous damage-
related molecular patterns or exogenous pathogen-related
molecular patterns. They demonstrate heightened phago-
cytosis and synthesis of pro-inflammatory cytokines,
which are essential for innate immunity and wound
cleaning. M2 macrophages play a crucial role in the sub-
sequent healing process, as they are activated by various
stimuli, aiding in the reduction of inflammation and
facilitating the formation and reconstruction of tissues.15

Both M1 and M2 macrophages are necessary for the pro-
gression of wound healing; correspondingly, macro-
phages have been implicated in wound healing processes,
including DFU.14,16,17 A recent study conducted by Aitch-
eson et al., demonstrated that hyperglycaemia, can lead
to an increase in the ratio of M1 macrophages in
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comparison to M2 macrophages.18 Thus, modulating the
equilibrium between M1 and M2 macrophages could
offer a promising approach for treating DFUs. In this
context, macrophages may have the potential to function
as effective therapeutic targets for DFU.19 However, the
specific mechanism by which macrophages operate in
the context of DFU remains unidentified.

The advancement of genomics and bioinformatics
research technology has facilitated the development and
enhancement of disease databases, which serve as a theo-
retical foundation for the identification of novel thera-
peutic targets and disease mechanisms. In recent years,
the field of bioinformatics has been extensively utilized to
investigate targets for tumours and other diseases.20–23 At
the same time, the high accuracy and specificity of
single-cell sequencing technologies have rendered them
an ideal tool for single-cell research. The use of single-cell
sequencing technology facilitates high-throughput, unbi-
ased analysis of even extremely small sample sizes. This
allows for the identification of cell specificity and varia-
tions within cells from a localization-based perspective,
facilitating the investigation of cooperative interactions
between cells and the examination of tissue heterogene-
ity. Moreover, single-cell sequencing technologies enable
researchers to gain a more comprehensive understanding
of the dynamic alterations occurring in genes and
proteins.24–26 As a result, the present study employs
single-cell data analysis and RNA sequencing data to
investigate the mechanism of macrophage action in
DFU, offering a theoretical and experimental framework
for the treatment of DFU.

2 | METHODS

2.1 | Download and processing of DFU-
related datasets

The workflow of our study is shown in Figure 1. We
obtained the DFU-associated single-cell dataset
(GSE223964) from the GEO database. At the same time,
we acquired four independent DFU-related RNA seq
datasets from the GEO database. These included the
GSE68183, GSE80178, GSE134431 and GSE147890 data-
sets. The GSE68183 dataset comprised of three samples
from patients with DFU and three samples from individ-
uals without DFU, serving as normal controls. On the
other hand, the GSE80178 dataset contained nine disease
samples and three normal samples. Conversely, the
GSE134431 dataset contained 21 disease samples, while
the GSE147890 dataset contained 12 disease samples and
12 normal samples. In addition, the ‘Combat’ algorithm,
available in the R package ‘SVA’, was employed to

mitigate batch effects across multiple datasets and inte-
grate four distinct RNA seq datasets into a single unified
dataset.

2.2 | Single-cell analysis

The Seurat package was utilized for cell clustering,
employing t-distribution random neighbour embedding
(t-SNE) analysis and principal component analysis
(PCA). By filtering out cells with mitochondrial genes
<200, >2500 or >5%, data filtering was performed to
ensure the quality of the analysis results. Subsequently,
after data normalization, 2000 highly variable genes were
identified using the ‘VST’ approach. Following that, PCA
was performed to identify significant principal compo-
nents (PCs). Finally, a total of 25 PCs were selected for
the t-SNE analysis. The FindClusters function was then
used to categorize cells into 10 separate clusters, with a
resolution of 1.5.

2.3 | Identification and functional
annotation of differential expression
analysis

Within the DFU queue, we employed the ‘limma’ pack-
age to identify DEGs, utilizing thresholds of j log2FC j >1
and p < 0.05. The R packages ‘Pheatmap’ and ‘ggplot2’
were utilized to create thermal and volcanic maps of
DEGs. Subsequently, we compared DEGs with specific
genes that served as markers for different subpopulations
of macrophages in a single-cell dataset. Following that,
functional annotation was conducted on the acquired
cross genes. Subsequently, the R package ‘clusterProfiler’
was used to conduct gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis to identify the significant pathways having
a p-value threshold of <0.05.

2.4 | Identification of potential
biomarkers for DFU based on four
machine algorithms

We utilized four machine-learning algorithms to analyse
the intersection genes obtained previously, aiming to
identify potential biomarkers associated with DFU. These
included commonly used feature selection algorithms
such as random forest algorithm (RF), XGBoost, support
vector machine recursive feature elimination (SVM-RFE)
and Boruta feature selection model, which were then
used to filter the feature basis of DFUs. Extreme gradient
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boosting (XGBoost) is a widely employed algorithm for
supervised integrated learning. The algorithm utilizes a
gradient-enhanced tree model to effectively address clas-
sification and regression problems. XGBoost also has the
capability to utilize the expression values of important

genes as feature values for training the model. By provid-
ing the expression values of key genes as feature values
to the XGBoost model, these features can be used for
classification or regression tasks.27 On the other hand,
RF comprises a type of supervised machine learning

FIGURE 1 The flow chart of our study.
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approach that employs random forest algorithms to cate-
gorize or arrange features.28 Subsequently, to assess the
predictive performance and identify characteristic genes,
we employed tenfold cross-validation and consider genes
with a relative importance >1.5. Additionally, SVM-RFE
comprises a widely used machine learning algorithm that
simplifies typical classification and regression problems
through efficient ‘transduction inference’ from training
to predicting samples.29 Accordingly, SVM-RFE has been
used for screening feature genes through iterative rank-
ing of features in order to mitigate overfitting. On the
other hand, the Boruta feature selection method com-
prises a feature-filtering machine learning method that is
primarily based on random forests.30 By calculating the
significance score of each feature and contrasting it with
randomly generated shadow features, it can aid in identi-
fying the most pertinent feature genes associated with
DFU. All these machine-learning methods can be utilized
for the purpose of feature gene selection. Correspond-
ingly, we utilized these algorithms to identify the most
pertinent feature genes associated with DFU. Subse-
quently, we investigated their involvement in disease pro-
gression and therapeutic approaches.

In addition to the above, we evaluated the diagnostic
accuracy of the biomarkers and analysed the gene expres-
sion in the DFU cohort. The biomarker expression levels
in samples from patients with DFU and samples from
healthy individuals were compared using the indepen-
dent t-test, and the significance level was set at p < 0.05.
The diagnostic utility of biomarkers in clinical settings
can be assessed using receiver operating characteristic
(ROC) curves.

2.5 | Gene set enrichment analysis
(GSEA) of biomarkers related to DFU

Based on the median expression levels of biomarkers
related to DFU, we categorized the samples into groups
with high and low expression. Subsequently, we
employed GSEA software to analyse the enrichment of
the genes that were highly ranked in these two groups
with regard to pathways. Herein, we used the C2.CP
KEGG. v7.2 gene set sourced from the MSigDB database.
The gene set permutations for each analysis were fixed at
1000. Subsequently, the gene set exhibiting significant
differences was identified by applying a nominal (NOM)
p value threshold of <0.05 and an error detection rate
(FDR) q value threshold of <0.25. GeneMANIA (https://
genemania.org/) can discover functionally similar genes
or proteins using a large amount of genomics and proteo-
mics data and weight each functional genomic dataset
according to the predicted value of the query.31

Therefore, we also use GeneMANIA to explore co-
expressed genes for biomarkers and construct co-
expressed gene networks.

2.6 | Immune infiltration analysis

To estimate the abundance of 22 different types of
immune cells in tissues, the CIBERSORT deconvolution
approach was used in the current study. Accordingly, the
CIBERSORT method used linear support vector regres-
sion to quantify the proportion of 22 distinct immune cell
types in the DFU queue. Additionally, the Wilcoxon test
was used to assess differences in immune cell levels
between the DFU samples and control samples.

2.7 | Quantitative reverse transcription-
polymerase chain reaction (qRT-PCR)

The total RNA was extracted using TRIzol reagent
(Thermo Fisher, USA). The RNA obtained from each
sample (2 μg) was analysed using quantitative reverse
transcription polymerase chain reaction (qRT-PCR) with
FastStart Universal SYBR Green Master (Roche,
Switzerland) on a LightCycler 480 PCR System
(Roche, USA). The cDNA was used as a template in a
reaction volume of 20 μL (2 μL of cDNA template, 10 μL
of PCR mixture, 0.5 μL of forward and reverse primers
and an appropriate volume of water). The PCR reactions
were performed according to the following protocols: The
process of initial DNA denaturation was carried out using
cycling conditions, with a duration of 30 s at a tempera-
ture of 95�C. Subsequently, a total of 45 cycles were per-
formed, each lasting 15 s at 94�C, followed by 30 s at
56�C and finally 20 s at 72�C. Three different analyses
were conducted for each sample. The data obtained from
the threshold cycle (CT) were collected and adjusted to
the levels of GAPDH for each sample using the 2�ΔΔCT

method. The mRNA expression levels were compared to
those of controls obtained from healthy tissues. The
primer pair sequences for the target genes are shown in
Table 1.

2.8 | Western blot

For the Western blot analysis, protease and phosphatase
inhibitors were added after the lumbar disc was lysed in
RIPA buffer (Solarbio, China). Subsequently, the samples
were denatured at 100�C for 15 min. The protein
samples were transferred onto polyvinylidene fluoride
(PVDF) membranes. Following a 2-h incubation period,
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PVDF membranes were blocked using a 5% solution of
skimmed milk powder. The membranes were incubated
overnight with an anti-HMOX1 antibody (1:500, NOVUS,
NBP1-31341). Subsequently, the Chemidoc detection sys-
tem (Bio-Rad, USA) was used to detect the signals from
the protein strips.

2.9 | HE staining

In order to promote hydration, the portions were progres-
sively immersed in decreasing alcohol concentrations
prior to being rinsed with distilled water. After being
stained with haematoxylin for 10–15 min, the sections
were subsequently counterstained with 0.5% eosin for 2–
5 min. In order to promote dehydration, the sections
were then immersed in increasingly concentrated alcohol
solutions prior to being cleansed with xylene and
mounted on glass slides.

2.10 | Statistical analysis

The statistical analysis of all data was performed using R
(v4.2.1). Additionally, Student's t-test was used to com-
pare the two groups. Moreover, we calculated the area
under the curve (AUC) of the survival receiver operating
characteristic (ROC) curve to assess the clinical effective-
ness of biomarkers. The significance level was set at a p-
value of <0.05.

3 | RESULTS

3.1 | Identification of marker genes for
macrophage subpopulations related to DFU

The single-cell dataset (GSE223964) was analysed at first.
Following the implementation of quality control mea-
sures, we eliminated the cells that did not meet the
required criteria (Figure 2A). Figure 2B displays a strong
positive correlation between sequencing depth and gene
number, as indicated by a coefficient of 0.89. Following
the process of data normalization, we identified and
selected the top 2000 genes that exhibited a high degree
of variability. (Figure 2C) To reduce dimensionality, we
used the PCA method, as illustrated in Figure 2D. Subse-
quently, by utilizing ElbowPlot and PC heat maps, we

identified 14 principal components (PCs) that were most
suitable for further analysis (Figure 2E,F). Based on the
results of the clustering tree, we decided to use a resolu-
tion of 1.5 (Figure 2G). Figure 2H shows the heatmap
representing the marker genes associated with each sub-
group. Additionally, Figure 2I demonstrates that the
UMAP algorithm exhibits 25 distinct cell subpopulations.
By utilizing the Cellmaker database, we obtained perti-
nent genes and subsequently annotated 25 distinct cell
subpopulations (Figure 2J). Accordingly, cell subpopula-
tions 6 and 17 are annotated as macrophage
subpopulations. Finally, we selected 802 marker genes
specifically for the purpose of analysing macrophage
subpopulations.

3.2 | Identification and functional
annotation analysis of DEGs between
normal and DFU samples

We consolidated four DFU-independent GEO datasets
into a single DFU queue in this study. Subsequently,
we standardized the samples from the DFU queue.(-
Figure 3A,B) Then, we identified 743 DEGs and repre-
sented them using thermal and volcanic maps
(Figure 3C,D). Then, an intersection analysis was per-
formed between the DEGs and 802 marker genes spe-
cific to macrophage subpopulations. This analysis
yielded 37 genes that were associated with macro-
phages. Additionally, the GO analysis (Figure 3E)
revealed that in the BP category, these genes were pri-
marily enriched in biological functions related to sul-
phur compound metabolism, regulation of anion
transmembrane transport and sulphur compound bio-
synthesis (Figure 3F). Moreover, within the context of
MF, these genes were found to be predominantly asso-
ciated with specific biological functions, including the
catalytic activity of alkyl or aryl groups other than
methyl transfer, the binding of vascular endothelial
growth factors and the binding of sulphates
(Figure 3G). Furthermore, within the context of CC,
these genes were primarily enriched in biological pro-
cesses such as vesicle membrane, adhesion junction
and lysosomal cavity (Figure 3H). The KEGG analysis
demonstrates that these genes are R enriched in meta-
bolic pathways, fluid shear stress and atherosclerosis,
glutathione metabolism, fatty acid metabolism and
other biological pathways (Figure 3I).

TABLE 1 The primer pair

sequences for the target genes.
Gene Forward primer sequence (50-30) Reverse primer sequence (50-30)

HMOX1 CCAGGCAGAGAATGCTGAGTTC AAGACTGGGCTCTCCTTGTTGC
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FIGURE 2 Legend on next page.
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FIGURE 2 Identification of marker genes for macrophage subpopulations. (A) Quality control of single-cell data. (B) Correlation

analysis between sequencing depth and mitochondrial genes. (C) Red represents 2000 highly variable genes and highlights the top 10 highly

variable genes. (D) Single-cell expression profiles were analysed using principal component analysis (PCA) to determine the optimal

Elbowplot and heatmap for PC. (G) Select the appropriate resolution based on the clustering tree. (H) The heat map displays the expression

level of marker genes for each subgroup. (I) The UMAP algorithm displays 25 cell subpopulations. (J) 25 cell subpopulations were annotated

as 10 subpopulations.

FIGURE 3 Identification of differentially expressed genes (DEGs) between normal and DFU samples. (A, B) Datasets before and after

standardization. (C) Heat map of DEGs. (D) Volcano maps of DEGs. (E) The Wayne diagram shows the intersection of genes between DEGs

and the marker genes of macrophage subpopulations. GO analysis of (F–H) intersection genes. (F): BP; (G): MF; (H): KEGG analysis of

CC. (I) intersection genes.

8 of 16 CHEN ET AL.



3.3 | Identification of DFU-related
biomarkers

The present study employed machine learning methods,
viz., Boruta, XGBoost, RF and SVM-RFE, to identify
potential biomarkers associated with DFU. Correspond-
ingly, utilizing the Boruta algorithm, we successfully
identified 14 distinct genes that were specifically associ-
ated with DFU from the pool of macrophage-related
genes (Figure 4A,B). In addition, the use of the XGBoost
algorithm successfully resulted in the identification of
20 feature genes. (Figure 4C) Furthermore, the use of the
SVM-RFE algorithm, resulted in the effective screening
of 37 overlapping genes and identified nine feature genes.
(Figure 4D,E) Moreover, the RF algorithm successfully
identified five distinct genes (Figure 4F,G). Finally, we

combined the distinctive genes recognized by the four
algorithms, resulting in the identification of FGL2 and
HMOX1 as potential biomarkers associated with DFU
(Figure 4H).

Subsequently, we analysed the expression levels of
FGL2 and HMOX1 in both normal and DFU samples
within the DFU queue. The expression level of FGL2 was
found to be significantly higher in normal samples in
comparison to the DFU samples (Figure 4I). Further-
more, the expression level of HMOX1 was significantly
higher in the DFU samples, in comparison to the control
samples (Figure 4J). In addition, we assessed the clinical
diagnostic precision of FGL2 and HMOX1 using ROC
analysis. The analysis revealed that the AUC value of
FGL2 was 0.721 (Figure 4K). Thus, FGL2 exhibited signif-
icant clinical diagnostic utility. In addition, the AUC

FIGURE 4 Identification of potential biomarkers for DFU. (A) The z-score evolution with the Boruta run (B) Selected genes by the

Boruta algorithm; (C) XGBoost algorithm. (D, E) SVM-RE algorithm. (F) RF algorithm. (G) Genes ranked in the top 20 in importance.

(H) The Wayne diagram shows the identification of characteristic genes related to DFU. (I) There is a significant difference in the expression

of FGL2 between DFU samples and normal samples. (J) There is a significant difference in the expression of HMOX1 between DFU samples

and normal samples. (K) Evaluation of clinical diagnostic accuracy of FGL2 by ROC. (L) Evaluation of clinical diagnostic accuracy of

HMOX1 by ROC.
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value of HMOX1 was 0.868 (Figure 4L), which confirmed
that HMOX1 had exceptional clinical diagnostic signifi-
cance. Consequently, we incorporated HMOX1 in the
subsequent analysis.

3.4 | GSEA analysis of HMOX1

We also conducted GSEA analysis to elucidate the role of
HMOX1 in DFU and its potential mechanism of action.
Correspondingly, HMOX1 was found to be involved in
various biological processes, such as the ERBB, insulin,
P53, focal adhesions, Fc epsilon ri and Toll-like receptor
signalling pathways (Figure 5).

3.5 | Identification of HMOX1-
interacting genes

We utilized GeneMANIA to create a gene–gene interac-
tion network for HMOX1 and other related genes. The
20 genes that were associated with HMOX1 are shown in
Figure 6A. As observed in Figure 6B, the functional anal-
ysis revealed a significant correlation between the fluid

shear stress of these genes and important biological pro-
cesses, including atherosclerosis, porphyrin metabolism
and iron death. Moreover, in the GO analysis, these genes
were significantly linked to multiple metabolic processes,
including haeme catabolism, pigment catabolism,
porphyrin-containing compound catabolism and tetra-
pyrrole catabolism (Table 2).

3.6 | Correlation between HMOX1 and
immune cells

In addition to the above, the CIBERSORT method was
employed to analyse each sample in the DFU queue and
determine the estimated proportion of immune cells.
When compared to normal samples, the results indicated
a significant increase in the levels of naïve B cells, mono-
cytes, resting dendritic cells and eosinophils in the DFU
samples (Figure 7A). In contrast, the normal samples
exhibited a substantial increase in the levels of T-cell reg-
ulation (Tregs), Plasma cells, memory B cells and macro-
phages M1 (Figure 7B). More importantly, HMOX1
exhibited a significant positive correlation with various
immune cells, including T cells gamma delta, naïve B

FIGURE 5 Gene set enrichment analysis analysis of HMOX1. (A) ERBB signalling pathway; (B) Insulin signalling pathway; (C) P53

signalling pathway; (D) focal adhesion; (E) FC epsilon RI signalling pathway; (F) Toll-like receptor signalling pathway.
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cells, activated NK cells, eosinophils, monocytes and
others. HMOX1 exhibits a strong negative correlation
with immune cells including macrophages M1, plasma
cells, macrophages M2 and others (Figure 7C).

3.7 | Experimental verification of the
clinical value of HMOX1

In order to assess the reliability of the bioinformatics
results, we conducted a qRT-PCR analysis using both
normal skin tissues and ulcerated skin tissues obtained
from diabetic patients. The results of qRT-PCR were con-
sistent with those predicted using the bioinformatics
approach used in the study. Accordingly, the expression

of HMOX1 was found to be increased in the ulcerated
skin tissues of diabetic patients (Figure 8A). This was
consistent with the results of the Western blot analysis,
which also indicated an increased expression of HMOX1
in DFU tissues (Figure 8B,C). Furthermore, the results of
HE analysis also indicated a substantial increase in the
number of immune cells in the DFU tissues
(Figure 8D,E).

4 | DISCUSSION

DFU comprises a serious complication, which frequently
occurs in individuals with diabetes. It is typically attrib-
uted to the nerve and vascular impairment resulting from

TABLE 2 GO analysis of the 20 genes evaluated in the current study.

ONTOLOGY ID Description p value FDR Count

BP GO:0042167 Haeme catabolic process <0.001 <0.001 4

BP GO:0046149 Pigment catabolic process <0.001 <0.001 4

BP GO:0006787 Porphyrin-containing compound catabolic process <0.001 <0.001 4

BP GO:0033015 Tetrapyrrole catabolic process <0.001 <0.001 4

BP GO:0042168 Haeme metabolic process <0.001 <0.001 5

MF GO:0016628 Oxidoreductase activity, acting on the CH CH
group of donors, NAD or NADP as acceptor

<0.001 0.024067 2

MF GO:0001228 DNA-binding transcription activator activity, RNA
polymerase II-specific

0.001764 0.024067 4

MF GO:0001216 DNA-binding transcription activator activity 0.00182 0.024067 4

MF GO:0016627 Oxidoreductase activity, acting on the CH CH
group of donors

0.002117 0.024067 2

FIGURE 6 Identification of HMOX1-interacting genes. (A) 20 genes closely related to HMOX1 from GeneMania. (B) KEGG analysis.
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long-term hyperglycaemia, which typically manifests as
chronic foot ulcers, infections and inflammation.32 The
lifetime prevalence of foot ulcer in individuals with dia-
betes ranges from 19% to 34%. However, the 1-year inci-
dence rate of ulcer recurrence is estimated to be 40%,
while the recurrence rate within 5 years is 65%.7 Corre-
spondingly, the presence of DFU has significantly
impacted the well-being and financial aspects of individ-
uals suffering from diabetes. Hence, there is an urgent
need to identify precise therapeutic targets to enhance
the prognosis of patients with DFU. Macrophages com-
prise an important subset of immune cells within the

immune system and participate in inflammatory
responses, wound healing and tissue regeneration pro-
cesses. Dysfunction of macrophages in DFU can cause
chronic inflammatory reactions, which impede the pro-
cess of wound healing.15,18,33 Hence, the present study
utilized single-cell transcriptome analysis to identify spe-
cific macrophage subpopulations that are associated with
DFU. By analysing the characteristic genes of these spe-
cific macrophage subpopulations, we were able to gain
insights into their functions and contributions to the
development of DFU. Simultaneously, this study also
integrated machine learning to explore macrophage-

FIGURE 7 The difference in immune cell infiltration levels between normal and DFU samples. (A) The proportion of immune cells in

each sample in the DFU queue. (B) Violin diagram of differential expression of immune cells in DFU samples and normal samples. (C) The

correlation between HMOX1 and immune cells.
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associated genes that exhibited abnormal expression in
DFU, and discovered potential biomarkers associated
with DFU. Thus, the present study enhances our under-
standing of the role of macrophages in DFU and aids in
the creation of effective treatment plans for this
condition.

Through the examination of single-cell data, marker
genes for a total of 802 distinct subpopulations of macro-
phages were identified in the current study. Subse-
quently, the marker genes were crossed with the DEGs
between normal and DFU samples, to identify 37 genes
associated with macrophages. Subsequently, the GO anal-
ysis revealed that these genes were involved in specific
biological processes, molecular functions and cellular
components including sulfur-containing compound
metabolism processes, adhesive binding and vascular
endothelial growth factor binding. In addition, the KEGG
analysis revealed a significant association of these genes
with metabolic pathways, fluid shear stress, atherosclero-
sis, iron death and other biological pathways. Iron death
is a cellular process of programmed cell death character-
ized by disrupted iron balance and excessive lipid peroxi-
dation.34 A high concentration of serum iron has been

associated with an increased risk of developing type 2 dia-
betes.35 Currently, ongoing research is being conducted
to investigate the mechanism of iron death in DFU. How-
ever, a correlation does indeed exist. In this context, He
et al., found that inhibitors associated with iron-induced
cell death have a protective effect in DFU.36 This suggests
a strong correlation between iron death and DFU. In
addition, prolonged hyperglycaemic environments can
result in impairment of the iron metabolism pathway,
causing a significant reduction in the number of iron
binding sites in circulating transferrin and ferritin, as
well as an increase in the amount of free iron in the
plasma, ultimately leading to oxidative stress.37–39 More-
over, oxidative stress is has been frequently identified as
the main cause of complications associated with diabetes,
such as delayed ulcer healing.37 Consequently, an exces-
sive buildup of iron and increased oxidative stress may
result in cellular death and increased inflammatory reac-
tion in the foot tissue, further damaging the nerves and
blood vessels in the foot and impeding the healing of
wounds. Thus, iron-induced cell death may contribute to
the development of DFU through the aforementioned
pathways. However, it is important to acknowledge that

FIGURE 8 HMOX1 expression is elevated in ulcerated skin tissues of diabetic patients. (A) The mRNA expression of HMOX1 in normal

skin tissues and diabetic ulcerated skin tissues was examined by qRT-PCR and analysed for relative quantification: N = 6. (B, C). Protein

expression of DUSP1 and HMOX1 in normal skin tissues and diabetic ulcerated skin tissues was detected and quantified by WB: N = 3. (D,

E) The number of immune cells infiltrated in normal skin tissues and diabetic ulcerated skin tissues was detected and quantified by

HE: N = 5.
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additional investigation is required to fully understand
the precise mechanism by which iron contributes to the
development of complications associated with DFU.

Herein, we conducted additional screening and suc-
cessfully identified potential biomarkers of DFU by utiliz-
ing four machine-learning algorithms. Accordingly,
HMOX1 was identified as a promising biomarker.
HMOX1 is a catalytic protein that is necessary for the
breakdown of haeme. When compared with normal sam-
ples, HMOX1 showed higher expression in DFU samples.
Consequently, the ROC analysis demonstrated that
HMOX1 (HO-1) exhibited excellent diagnostic efficacy for
DFU. The experiment also confirmed the substantial
expression of HMOX1 in DFU samples. More importantly,
HMOX1 exhibited a strong positive correlation with
immune cells, including eosinophils, monocytes and acti-
vated NK cells. Conversely, the expression of HMOX1
showed a significant negative correlation with macro-
phage M1 and macrophage M2. Additionally, NRF2 is a
member of the Cap-n Collar family of alkaline leucine zip-
per proteins and is involved in the regulation of oxidative
stress and aging effects.40 HO-1 comprises one of the
downstream genes regulated by NRF2. During the process
of cell aging, the NRF2/HO-1 pathway exerts a
protective effect.41 Wang et al., found that miR-181b-5p
can promote cellular aging and impede the formation of
new blood vessels by influencing the NRF2/HO-1 path-
way. This, subsequently, hinders the process of wound
healing in DFU wounds.42 More importantly, Meng et al.,
discovered that the elimination of HMOX1 can diminish
Fe2+ overload, consequently decreasing iron levels, reac-
tive oxygen species and lipid peroxidation.42 This further
reduces the iron death of endothelial cells in patients with
diabetes.43 In order to elucidate the mechanism by which
HMOX1 acts in DFU, a GSEA analysis was performed in
the current study, which revealed the relationship
between HMOX1 and several biological pathways, such as
ERBB, insulin, P53 and toll-like receptor signalling path-
ways. In addition, insulin signalling plays a crucial role in
the process of wound healing.44 Insulin signalling can
activate the differentiation of effector T cells into the
helper T2 phenotype and decrease the ratio of interferon
levels-γ/IL-4, thus facilitating anti-inflammatory activ-
ity.45 Earlier studies show that the topical insulin on the
skin surface in a rat burn wound model effectively reduces
the production of ROS and minimized oxidative harm to
DNA, lipids and proteins within the wound.46 Further-
more, the application of topical insulin can facilitate the
early recruitment of neutrophils to the surface of the
wound, aiding in the removal of necrotic tissue in burn
injuries.46 Moreover, in diabetes rat models, local insulin
treatment can improve the wound healing of diabetes rats
and normalize corneal re-epithelization.47–49 This

indicates that insulin signal transduction resident in skin
cells is crucial for wounds in diabetes animals. In addi-
tion, local insulin can improve the deposition of fibrillar
collagen, re-epithelization, granulation and wound con-
traction in burn wounds of diabetes rats.50 As observed,
the insulin signalling pathway plays a crucial role in the
process of wound healing in individuals with diabetes.
Nevertheless, there is currently limited research on the
mechanism of insulin signalling pathways in DFU. Thus,
additional investigations are imperative to further explore
the mechanism of insulin signalling pathways in DFU.

Nevertheless, the research is constrained in several
aspects. First, the small sample size included in the study
may affect the accuracy of the results, resulting in incor-
rect identification and missed diagnosis. Hence, the use
of a larger DFU sample size to validate the accuracy of
the results is imperative. Second, the HMOX1 gene dis-
covered in this study has the potential to be a target for
therapeutic interventions in DFU. However, it is neces-
sary to validate this finding through experimental studies
involving a larger number of participants.

5 | CONCLUSION

To conclude, our analysis provides critical insight into
the precise action mechanisms of macrophages in DFU,
elucidating their specific functions. More importantly,
HMOX1 was identified as a valuable biomarker for DFU.
These findings enhance our understanding of the patho-
physiology of DFU and have the potential to assist in the
development of more targeted approaches for managing
this condition.
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