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Abstract The Resource for Coronavirus 2019 (RCoV19) is an open-access information resource

dedicated to providing valuable data on the genomes, mutations, and variants of the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). In this updated implementation of RCoV19,

we have made significant improvements and advancements over the previous version. Firstly, we

have implemented a highly refined genome data curation model. This model now features an auto-

mated integration pipeline and optimized curation rules, enabling efficient daily updates of data in

RCoV19. Secondly, we have developed a global and regional lineage evolution monitoring plat-

form, alongside an outbreak risk pre-warning system. These additions provide a comprehensive

understanding of SARS-CoV-2 evolution and transmission patterns, enabling better preparedness

and response strategies. Thirdly, we have developed a powerful interactive mutation spectrum com-

parison module. This module allows users to compare and analyze mutation patterns, assisting in

the detection of potential new lineages. Furthermore, we have incorporated a comprehensive

knowledgebase on mutation effects. This knowledgebase serves as a valuable resource for retrieving

information on the functional implications of specific mutations. In summary, RCoV19 serves as a
tion and
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vital scientific resource, providing access to valuable data, relevant information, and technical sup-

port in the global fight against COVID-19. The complete contents of RCoV19 are available to the

public at https://ngdc.cncb.ac.cn/ncov/.
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Figure 1 Logical architecture diagram of RCoV19 database
Introduction

SARS-CoV-2 is responsible for the COVID-19 pandemic, and
continues to evolve and spread to threat public health world-

wide. Genome data play a crucial role in understanding muta-
tions (refers to an actual nucleotide or amino acid change in a
viral genome) and supporting the design of candidate vaccines.
While there are various data deposition repositories available,

such as GISAID EpiCoVTM [1], GenBank [2,3], and GenBase
(https://ngdc.cncb.ac.cn/genbase/), none of them encompass
all worldwide genome data, and redundancies exist among

these repositories. Therefore, the need for a comprehensive
SARS-CoV-2 database arises to integrate genome data, moni-
tor evolution, and provide pre-warning for high-risk variants.

Such a database is essential to comprehend the ongoing pan-
demic and facilitate timely adjustments to public health
interventions.

With millions of genome sequences now available, several
platforms have been developed to track SARS-CoV-2 muta-
tions. These platforms, including COVID-19 CG [4], Outbreak
[5], CoV-Spectrum [6], CovMT [7], Regeneron COVID-19

dashboard (https://covid19dashboard.regeneron.com/), and
ViruClust [8], enable tracking of mutations by sampling loca-
tion or date of interest, and known variants globally. Among

them, CovMT utilizes mutation fingerprints to facilitate geo-
graphic tracking and includes disease severity information,
and ViruClust enables comparison of mutations from two

unrelated locations in terms of hierarchy. Besides, Vcorn data-
base allows for global and domestic data search on COVID-19
infections and mutations in S gene via correlation network
analysis [9]. VarEPS [10] assesses the risk level of mutations

and variants based on their transmissibility and affinity to neu-
tralizing antibodies. Additionally, databases like CoV-RDB
[11,12] and COG-UK-ME [13] have compiled mutations asso-

ciated with reduced susceptibility to various factors, such as
clinical stage SARS-CoV-2 Spike monoclonal antibody
(mAb), RNA-dependent RNA polymerase (RdRP) inhibitor,

3C-like protease (3CLpro) inhibitor, or mutations on T cell
epitope. However, despite these significant efforts, there are
limitations in terms of efficiency and comprehensiveness. Most

of these platforms and databases only focus on specific aspects
of SARS-CoV-2 monitoring or prevention (Table S1).

Furthermore, numerous important mutations affecting
transmissibility, infectivity, or expression are scattered

throughout published literature. Consequently, there is an
urgent need to build an integrated and comprehensive system
that encompasses ‘‘data–information–knowledge–

application”. This system should provide real-time services
for sequence monitoring, evolution tracking, and pre-
warning of high-risk variants.

RCoV19, previously known as 2019-nCoVR [14,15], is an
open-access information resource for SARS-CoV-2. It has
been available online and has already provided data services

to over 3.2 million visitors from 182 countries/regions world-
wide, with more than 14 billion data downloads in total. In this
updated release of RCoV19, significant improvements have
been made in data curation, integration, sequence growth

and lineage evolution surveillance, and mutation comparisons
of sequences and lineages. Additionally, a weekly report on
potentially high-risk haplotypes (a distinct virus genome

sequence) and variants (a viral genome that may contain one
or more mutations which may affect virus’s properties) is pro-
vided by considering genetic mutation effects and haplotype
network features [16,17]. Furthermore, RCoV19 curates an

integrated knowledge of mutation effects from literature and
databases, offering critical insights into virus evolution,
immune escape, and medical countermeasures. Ultimately,

RCoV19 establishes a one-stop hub for SARS-CoV-2 genome
data integration and variant monitoring, as illustrated in
Figure 1.

Database content and features

Efficient integration and retrieval of worldwide SARS-CoV-2

genome data

RCoV19 is an extensive data resource for SARS-CoV-2 that
collects genome data from multiple repositories, performs de-
redundancy processing, and assesses sequence quality to

ensure a comprehensive and curated collection of worldwide
genomes (Figure 2). The resource incorporates data from
EpiCoVTM [1], GenBank [2,3], CNGBdb [18], and Novel

Coronavirus Service System of NMDC [19], and has included
data from GenBase since the beginning of 2023. To eliminate
redundancies that have been submitted to different data
sources, RCoV19 identifies identical genomes across different

sources and cross-references related accession IDs. In the de-
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Figure 2 Framework of genome data curation model for SARS-CoV-2

RCoV19 integrates genome data from different repositories and provides value-added curations. It collects metadata and genome

sequences from different resources, standardizes metadata, and performs de-redundancy processing based on metadata and sequence

comparisons. These steps have been chained together as one workflow, which is activated automatically every day and sends the

integration statistics to mobile phone client at the end. After integration, RCoV19 performs a series of assessments; it determines

completeness of the protein-coding region, assesses sequence quality in five aspects, and defines high-quality sequences. We consider a

sequence to be of high quality if it could pass quality control for both Ns (<= 15) and degenerate bases (<= 50). Otherwise, it is of low

quality.
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redundancy processing, we place a significant emphasis on
comparing key metadata such as virus name (specifically the

isolate name), sampling date, and location. These comparisons
serve as the primary method for identifying identical sequences
across different databases. To facilitate this process, we stan-
dardize these metadata beforehand and employ manual cura-

tion to identify additional identical sequences with similar
but not completely consistent metadata. In addition, we take
certain standardization measures such as unifying the letter

case of genome sequences, removing Ns from the entire
sequence, and calculating the MD5 codes for the standardized
sequences. By comparing these MD5 codes, we are able to

identify more identical sequences from different data sources.
Therefore, we detect sequences that are deposited to multiple
sources by matching metadata (isolate name, sampling date,

and location) or both metadata and sequences. Notably, dif-
ferent from the statistics reported at the early stage of
COVID-19 where all overlaps were found between GISAID
and other sources [20], EpiCoVTM doesn’t cover all the

sequences, but has achieved coverage of 96% of sequences
worldwide. It has an overlap of 91.3% with GenBank
sequences, while 56.7% of EpiCoVTM sequences are unique

(Figure S1). In addition, RCoV19 determines completeness
of the protein-coding region, evaluates sequences in five
aspects (Ns, degenerate bases, gaps, mutations, and mutation

density), and defines high-quality sequences based on Ns and
degenerate bases. These processes enable RCoV19 to provide
a comprehensive and reliable list of SARS-CoV-2 genomes
for global monitoring and pre-warning purposes.
In the new version, the SARS-CoV-2 genome data curation
model has been significantly enhanced with an automated inte-

gration pipeline and optimized curation rules (Figure 2), ensur-
ing efficient daily updates in RCoV19. The automated pipeline,
activated by a timer every day, collects genome data from
those repositories through the Chrome Browser on Linux,

standardizes genome metadata, and performs de-redundancy
processing. This automated approach improves efficiency com-
pared to semi-automated methods and enables regular and

constant updates. To ensure the reliability of the automated
approach in data collection and curation, we have imple-
mented a series of measures. Firstly, the integration statistics

for each step will be shared with the mobile phone client to
confirm successful data download and processing. Secondly,
we employ strict criteria to identify redundant sequences dur-

ing the automated processing stage. Thirdly, we incorporate
manual curation to detect additional redundant sequences.
Lastly, considering that SARS-CoV-2 genome data are always
updated in different data sources [21], we examine the sequence

and metadata changes to ensure data in RCoV19 remain up-
to-date. Furthermore, curation rules have also been optimized
to achieve more accurate de-redundancy, by comparing gen-

ome sequences (with the removal of Ns and uniform letter
cases) in addition to key metadata (virus name, sampling date,
and location). The curation rule for assessing abnormally high

mutations has been improved as well. The expected number of
mutations for each sequence is now calculated based on its
sampling date and empirical mutation rate [22], rather than
relying on a fixed value. This approach provides a more realis-
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tic assessment. If the observed number of mutations exceeds
the expected number, the genome sequence is highlighted with
a red dot, indicating the need for further investigation into

sequencing quality issues.
With the automated integration pipeline and optimized

curation rules, RCoV19 accommodated a total of 16,119,080

non-redundant genome sequences from 193 countries/regions
as of June 10, 2023. A comprehensive and up-to-date list of
all released SARS-CoV-2 genome metadata can be freely

accessed and downloaded by users at https://bigd.big.ac.cn/
ncov/release_genome. The majority of these genomes are con-
tributed by countries such as the United States (31.6%), Uni-
ted Kingdom (19.3%), Germany (5.9%), France (4.4%),

Denmark (4.0%), Japan (3.8%), and Canada (3.4%). Among
the released human-derived genome sequences (16,103,219),
87.7% are complete, and 47.0% are both complete and high-

quality. Additionally, RCoV19 offers the service of collapsing
identical sequences, resulting in a total of 5,832,804 unique
sequences (1:1.3) among the complete and high-quality

human-derived genome sequences, and 13,762,271 unique
sequences (1:1.2) among all released genomes, highlighting
the rapid evolution and high diversity of SARS-CoV-2

genomes.
To facilitate fast and customized retrieval of SARS-CoV-2

genomes from this vast collection, RCoV19 has developed an
advanced search module at https://ngdc.cncb.ac.cn/ncov/

genome/search. Users can query items by accession ID, Pango
lineage, World Health Organization (WHO) variant label,
country/region, host, nucleotide completeness, quality assess-

ment, database resource, sampling date, and sequence length
range. The search results are complemented by statistics dis-
played on the right side of the search page, showcasing distri-

butions in nucleotide completeness, sequence quality, data
source, WHO variant label, lineage, country/region, and host.
Furthermore, all filtered results can be easily downloaded to

support downstream analysis.

Timely monitoring of sequence growth and lineage evolution

With the rapid accumulation of SARS-CoV-2 genome

sequences, the emergence of new lineages in specific regions
or the whole world has become increasingly prevalent. To
enhance our understanding of SARS-CoV-2 evolution and

transmission characteristics, we have developed specific mod-
ules (https://ngdc.cncb.ac.cn/ncov/monitoring/global) for
monitoring global and regional sequence growth and lineage

evolution.
Sequence growth serves as an indicator of a country’s mon-

itoring capability and level. By examining the cumulative curve
of genome sequence growth based on release dates, we can

identify three distinct periods: slow growth (January 2020 to
January 2021), fast growth (February 2021 to May 2022),
and relatively slow growth (June 2022 to October 2023)

(Figure 3A). We dynamically display the genome sequence
numbers for the top 10 countries each month to visualize their
contributions (Figure 3B). Moreover, we organize sequence

numbers for each country/region in a tabular format to pro-
vide more detailed data (Figure 3C). For example, as of Octo-
ber 9, 2023, a total of 105,763 genome sequences have been

released for China, with an average release rate of hundreds
of sequences per month in 2023.
As SARS-CoV-2 spreads, mutations constantly occur and
accumulate, leading to the emergence of new lineages and vari-
ants. To monitor mutation rates, we calculate the mutation

frequency (mutation numbers / genome length) for each com-
plete and high-quality genome and plot the daily median muta-
tion frequency as a curve (Figure 4A). By observing the slope

of curve growth, it is facilitated to timely monitor signals indi-
cating accelerated mutation. For instance, the median muta-
tion frequency rapidly increased to 2.1‰ in mid-December

2021 due to the rapid spread of Omicron variant and reached
3.28‰ in March 2023 due to the spread of XBB.1.5 variant. As
sequences with similar mutation spectra are always classified
into a Pango lineage [23] or named as a WHO-defined variant

(https://www.who.int/news/item/31-05-2021-who-announces-
simple-easy-to-say-labels-for-sars-cov-2-variants-of-interest-
and-concern), we display the weekly sequence proportion for

each lineage or variant. To highlight the main lineages or vari-
ants that are currently or previously popular, we interactively
display only the top 3 Pango lineages or WHO-defined vari-

ants with the most genome sequences (Figure 4B). Addition-
ally, the genome sequence proportion for each lineage is
further represented in a heatmap (Figure 4C), providing infor-

mative insights into lineage trends over time. Taking China as
an example, it experienced a wave of COVID-19 infections
from late 2022 to early 2023. We use a histogram to display
the distribution of the number of sequences released daily in

China, and we also provide a pie chart to monitor the preva-
lence of SARS-CoV-2 transmission at the provincial level in
China (Figure 4D and E).

Pre-warning of potential high-risk haplotypes and lineages

Early and accurate detection of potential high-risk SARS-

CoV-2 haplotypes or lineages is a shared challenge for the sci-
entific community in combating the virus. Leveraging the vast
amount of genome sequences, we have developed a machine

learning model called HiRiskPredictor [16] to predict potential
high-risk haplotypes and update these predictions weekly in
RCoV19 (https://ngdc.cncb.ac.cn/ncov/monitoring/risk). For
each haplotype, a risk score ranging from 0 to 1 is calculated

based on the available sequences at that time. Haplotypes with
higher risk scores (> 0.5) are identified as potential high-risk
haplotypes. A tabular table (Figure 5A) organizes the risk

score, associated lineage, and transmission-related values
(e.g., geographic entropy and betweenness) for each high-risk
haplotype. Users can quickly search for specific haplotypes

or lineages using different keywords, or sort the table by ‘Risk
score’ to identify haplotypes with the highest risk scores. Addi-
tionally, a boxplot displays those higher risk lineages (20 at
most), ranked in descending order based on the median risk

scores of all associated haplotypes. Figure 5B illustrates the
prediction of 12 potential high-risk lineages as of May 31,
2023, with BN.1.2.3, XBB.1.5.24, XBB.1.9.1, XBB.1.16.1,

and XBB.1.9.2 identified as the top 5 lineages. Importantly,
the weekly predicted risk scores for all lineages are recorded,
allowing users to track historical predictions, to detect new

warning lineages, and to understand their development trends
(Figure 5C). Furthermore, the lineage prevalence, represented
by the genome sequence proportion, is plotted to visualize glo-

bal changes in epidemic variants (Figure 5D). For example, the
dominant lineage XBB.1.5 accounts for 20% of all Omicron
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Figure 3 The monitoring platform of SARS-CoV-2 sequence growth globally and regionally

A. The dynamic growth curves of globally and China released SARS-CoV-2 genome sequences, and globally released complete genome

sequences as of October 9, 2023. The vertical coordinate with the blue hue on the right-hand side represents China’s data. B. A bar chart

shows the top 10 countries with the most public released genome sequences as of October 9, 2023. C. A tabular table shows the statistics of

sequences in country/region.
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lineages but is gradually diminishing and being replaced by
XBB.1.9.1.

These visualization modules provided by RCoV19

empower users to identify potential high-risk haplotypes and
track the prevalence and evolution of lineages, contributing
to early warning systems and informed decision-making in

the fight against SARS-CoV-2.

Mutation spectrum comparison between selected lineages or

sequences

To facilitate the analysis of mutation spectra and comparisons
between different lineages and sequences of SARS-CoV-2, we

have developed two interactive modules for users to explore
mutation distributions and construct mutation maps at lineage
level or sequence level.

In the inter-lineage or variant comparison module (https://

ngdc.cncb.ac.cn/ncov/knowledge/compare), users can examine
the mutation patterns across WHO-defined variants (e.g.,
Delta and Omicron) or Pango lineages (e.g., B.1.177 and

XBB.1.5) and analyze mutations by genes or mutation fre-
quency. For example, considering the top 3 prevalent lineages
in the 10th week of 2023 (XBB.1, XBB.1.5, and BQ.1) and the

previous variants of concern (VOCs) defined by WHO (Alpha,
Beta, Gamma, Delta, and Omicron), it is evident that these lin-
eages exhibit more mutations in the S gene (Figure 6A). More-
over, several novel mutations with high frequencies, such as

S371F, T376A, and S477N (frequency > 0.89), in S gene, have
emerged in XBB.1 and XBB.1.5. Additionally, well-known
mutations, such as D614G (known to enhance SARS-CoV-2

infectivity in human lung cells) and N501Y (associated with
reduced vaccine protection in Delta), may explain the preva-
lence of ongoing XBB variants [24]. In addition to the exten-

sively studied S gene, N gene mutations like R203K and
G204R, implicated in increased transmission [25], are com-
monly observed in the top 3 ongoing lineages (Figure 6B).

Notably, the N gene mutation P13L, which occurs at a high
frequency of 90% in the top 3 ongoing variants, can signifi-
cantly impair the CD8+ T cell epitope (QRNAPRITF), lead-
ing to a loss of T cell recognition [26–28]. Similarly, amino

acid deletions from position 31 to 33 in the N protein, with
a high frequency of 90% among ongoing lineages, may con-
tribute to improved replication efficacy or breakthrough infec-

tions, warranting further investigation in the future.
In the multiple sequence comparison module (https://ngdc.

cncb.ac.cn/ncov/variation/sequence/compare), users can sensi-

tively detect potential new lineages by comparing newly
3

Figure 4 Monitoring of SARS-CoV-2 lineage evolution globally and r

A. Number of released genome sequences and the median mutation fr

calculated by dividing the total mutation of each sequence by the gen

prevalent Pango lineages or WHO-defined variants per week. VUMs

BA.2.75, CH.1.1, XBB*, XBB.1.9.1, XBB.1.9.2, and XBB.2.3 Pang

circulating variants of interest that include XBB.1.5 and XBB.1.16 Pan

of the cumulative sequences for randomly selected lineages in China. D.

along sequence sampling date. The blue vertical line represents the num

represents the dynamic accumulation of SARS-CoV-2 genome sequenc

in Hubei Province in China from July 1 to October 24 in 2023. VUM
released sequences with the representative sequences of the lat-
est lineages in RCoV19. By inputting accession IDs and select-
ing the lineages of interest, this module will display a mutation

matrix for comparison, which can be further refined interac-
tively by genes or differential mutation sites. The mutation
matrix can be color-coded based on lineage, sampling date,

or location. Additionally, as we known, recombination con-
tributes new variations in virus evolution, and the identifica-
tion of the events requires complex algorithms and intensive

calculations, such as 3SEQ [29], RDP5 [30], RIPPLES [31],
RIVET [32], RecombinHunt [33], and VirusRecom [34]. Our
sequence comparison module is particularly useful for narrow-
ing down the breakpoint ranges in identified recombinant vari-

ants, which are illustrated by unique mutations among each
variant. For example, when analyzing the XBB recombinant
lineage, comparing it with its parental sequences (BJ.1:

EPI_ISL_14891585; BM.1.1.1: EPI_ISL_14733830) reveals
that the breakpoint likely lies between V445 and N460 in S
gene since XBB harbors V445 from BJ.1 and N460 from

BM.1.1.1 (Figure 6C). Overall, this module complements exist-
ing platforms [35,36] and aids in assessing the validity of newly
assigned lineages. It also empowers users to explore and com-

pare mutation spectra across different lineages and variants,
providing valuable insights into the evolution and characteris-
tics of SARS-CoV-2 lineages.

Investigation of the mutation effects on transmissibility and

immune escape

A number of mutations have been confirmed to affect viral

characteristics, including pathogenicity, infectivity, transmissi-
bility, and antigenicity [11–13,37,38]. However, the knowledge
is scattered across publications and always focuses on one

aspect of a mutation or a variant. To facilitate the effective
retrieval of mutation functions, we have constructed an inte-
grated knowledgebase by curating information from literature

and databases. Specifically, mutation knowledge is recorded
and organized according to the impacts of mutations on infec-
tivity/transmissibility and effectiveness to antibodies, drug,
and T cell epitopes.

Mutation-related information is collected and categorized
based on their specific impacts. For each mutation, we have
gathered detailed information, including a comprehensive

description, experimental methods used for characterization,
and corresponding PubMed IDs (PMIDs) for reference. In
the case of T cell epitope mutations, information on epitopes,

HLA restriction, and corresponding T cell types has also been
egionally

equency along sequence sampling date. The mutation frequency is

ome length. B. Stacking diagram showing the proportion of top 3

are currently circulating variants under monitoring that include

o lineages as of 19 June 2023. Meanwhile, VOIs are currently

go lineages as of 27 June 2023. C. Heatmap showing the frequency

Distribution of the number of genome sequences released in China
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es released in China. E. Pie chart showing the lineage proportions

, variant under monitoring; VOI, variant of interest.
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Figure 5 Pre-warning of potential high-risk haplotypes and lineages

A. A screenshot of the tabular table for all haplotypes with values of haplotype network features and their risk scores predicted on May 31,

2023. B. Boxplot showing the predicated risk scores for all haplotypes of higher-risk lineages (20 at most). As of May 31, 2023, 12 lineages

have been predicted as potential high-risk lineages. C. Distribution of the historical risk scores for user selected lineages. D. Genomic

prevalence of lineages based on sequence sampling date.

Li C et al / RCoV19: A Platform of SARS-CoV-2 Variant Monitoring and Pre-warning 1073



1074 Genomics Proteomics Bioinformatics 21 (2023) 1066–1079
integrated. Overall, we have collected and summarized a total
of 2693 single mutations/Indels, as well as 19 combined muta-
tions. Among these mutations, 76 affect infectivity/transmissi-

bility, 131 are associated with drug resistance, 734 are related
to antibody resistance, and 1816 are located in T cell epitopes
(Figure 7A). Mutations are distributed unevenly across genes

and open reading frames (ORFs). Specifically, in the S gene,
73 mutations (4.7%) have been reported to affect infectivity/
transmissibility, while 733 mutations (46.7%) are associated

with antibody resistance. This is understandable as the
receptor-binding domain (RBD) of the S protein is responsible
for virus binding to the ACE2 receptor and is a target for neu-
tralizing antibodies. In the ORF1ab gene, 127 mutations

(48.8%) are related to drug resistance, which may be attributed
to ORF1ab being the target of most small molecule inhibitors.

Mutations within regions encoding T cell epitopes are of

particular concern as they are dispersed across different genes,
posing challenges for the immune system to recognize and
mount an effective response against various variants. More-

over, mutations in the regions encoding CD4+ and CD8+ T
cell epitopes have the potential to disrupt HLA-peptide bind-
ing, leading to immune escape. The regions encoding diverse

epitopes within different genes of SARS-CoV-2 exhibit distinct
mutation patterns, which need to be carefully considered dur-
ing the design of epitope-based vaccines (Figure 7B).

By providing a comprehensive and organized knowledge-

base, researchers and users can easily access and retrieve infor-
mation regarding the functional impacts of specific mutations.
This integrated resource (https://ngdc.cncb.ac.cn/ncov/knowl

edge/mutation) enhances our understanding of the effects of
mutations on viral characteristics and assists in the develop-
ment of effective countermeasures against SARS-CoV-2

variants.

Discussion

RCoV19 has been continuously updated and developed to sup-
port precise prevention of COVID-19. As an integrated repos-
itory for SARS-CoV-2 genome data, we have addressed

various challenges by implementing a one-stop curation pipe-
line. This pipeline resolves issues such as sequence redundancy
across different repositories, cross-linking between resources,

and sequence quality evaluation. However, due to the lack of
comprehensive clinical phenotype data, conducting in-depth
association studies between massive genomic data and clinical

outcomes, as well as unraveling the clinical significance of
mutations, remains challenging. To enhance our understand-
ing of disease spread and pathogenesis, we urge the collection
and integration of clinical phenotype data of infected individ-

uals to create a more comprehensive platform.
Timely monitoring and precise pre-warning based on geno-

mic data are crucial for epidemic prevention. While there are

platforms [4–6] available for spatiotemporal surveillance of
mutations and variant evolution, there is a deficiency in plat-
forms specifically focusing on pre-warning of high-risk vari-

ants. Recently, various machine learning-based prediction
models have been proposed, such as PyR0 [39] and Var-
EPS [10]. PyR0, a hierarchical Bayesian multinomial logistic
regression model, can identify mutations that are likely to

increase SARS-CoV-2 fitness [39], while VarEPS evaluates
the risk level of mutations and variants based on their trans-
missibility and affinity to neutralizing antibodies using a ran-
dom forest model [10]. In RCoV19, we have developed a
LightGBM model called HiRiskPredictor [16], which calcu-

lates a comprehensive risk score and predicts potential high-
risk haplotypes on a weekly basis. In the future, we aim to pro-
vide multidimensional pre-warning by combining the strengths

of different AI models and features.
Genetic mutation spectra play a critical role in determining

the virological characteristics of different virus strains.

Sequence comparison remains the primary approach for iden-
tifying differences in mutation spectra. Although the Pango
dynamic phylogeny-informed nomenclature system has made
significant contributions to tracking genetic diversity and clas-

sifying SARS-CoV-2 lineages, there is often a time gap before
sporadic variants occurring in specific regions are designated
as new lineages. To stay updated on SARS-CoV-2 mutations

more sensitively and identify novel lineages earlier, RCoV19
now supports the comparison of newly released sequences with
representative sequences of the latest lineages. This feature

complements existing public platforms [35,36] and assists in
verifying the assigned lineages of newly released sequences.

Numerous mutations have been identified that they can

increase the severity of infections, enhance transmissibility,
and enable evasion of natural and vaccine-induced immunity
[40]. Through comprehensive literature curation, we have con-
solidated a wealth of knowledge regarding the effects of muta-

tions on viral infectivity, resistance to antibodies and
therapeutic drugs, and alterations to T cell epitopes. However,
further investigation is needed on mutations that impact dis-

ease severity. For example, the mutation S194L in the N gene
has a notably high frequency among individuals with severe
clinical manifestations [41], suggesting its potential contribu-

tion to disease progression. Meanwhile, most of the knowledge
on mutation effects is curated from published literature or
databases. Future improvements could focus on structural

bioinformatics-based prediction of mutation effects, which
would enhance our understanding of future pandemics and
aid in the development of preventive measures and treatment
strategies. In conclusion, knowledge of mutation effects is

essential for effective public health interventions, the develop-
ment of therapeutics, and the generation of pre-warning mod-
els. Additionally, automatic gathering of mutation effect

information may soon become necessary, e.g., with automatic
processes such as ViMRT [42] or crowd-sourcing-based meth-
ods such as CoVEffect [43]. However, ViMRT does not clas-

sify effects; instead, it extracts phenotype descriptions using
regular expression-based methods. In contrast, CoVEffect pri-
marily focuses on training abstracts and has lower support for
full texts and tables within the full texts. Therefore, building

upon the aforementioned studies, we will aim to develop new
algorithms to automate knowledge formation.

Method

Pre-warning of potential high-risk haplotypes

All complete and high-quality SARS-CoV-2 sequences and
metadata in RCoV19 were used to predict potential high-risk

haplotypes weekly. First, we calculated the population muta-
tion frequency (PMF) for each mutated site within every
month. Then, those non-UTR mutations with PMF > 0.005

https://ngdc.cncb.ac.cn/ncov/knowledge/mutation
https://ngdc.cncb.ac.cn/ncov/knowledge/mutation
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were selected for haplotype network construction by McAN
[17] with default parameters. Next, the result of the haplotype
network was loaded into HiRiskPredictor with a pre-trained

machine learning algorithm (LightGBM) to perform the fore-
warning analysis process. The HiRiskPredictor automatically
extracts features, such as out degree, geographic information

entropy, and betweenness, for each haplotype in the network.
And HiRiskPredictor infers a risk score indicating the likeli-
hood of a haplotype being positive or classified as high-risk.

If the predicted risk score of a haplotype is greater than 0.5,
it is defined as a high-risk haplotype.

Mutation spectrum comparison between selected lineages or

sequences

Only complete and high-quality genome sequences were used
for downstream analyses, including mutation identification,

lineage identification, and mutation spectrum comparison.
First, genome sequence alignment was performed with MUS-
CLE (v3.8.31) [44] by comparing against the earliest released

SARS-CoV-2 genome (GenBank: MN908947.3). Sequence
mutations were identified directly using an in-house Perl pro-
gram. Then, we utilized the Pangolin [45] software to predict

the Pango lineage of the genome sequence. The software is
periodically updated in accordance with its official website.
Next, the mutation spectrum comparison module was devel-
oped at both the lineage and sequence levels, using the

sequence mutation and lineage data. At the sequence level,
we selected one of the earliest high-quality genome sequences
as the representative sequence for each lineage that has been

widely distributed globally. By utilizing these representative
sequences as references, users can input the sequence IDs to
be compared into the input box and visualize the amino acid

differences between these sequences in the form of heatmaps.
For the comparison at the lineage level, if a mutation occurs
in more than 70% (the frequency cutoff is user defined) of

all sequences within a lineage, we identify it as a common
mutation of that lineage. By selecting the lineages of interest
from the dropdown menu, one can observe the amino acid dif-
ferences in common mutations among these lineages in the

form of heatmaps.

Investigation of the mutation effects on transmissibility and

immune escape

Through a comprehensive literature curation, we collected a
curated list of epitopes that have been experimentally vali-

dated. These experiments involved interferon-c (IFN-c)
enzyme-linked immunospot (ELISpot) assays, complex class
3

Figure 6 Mutation spectrum comparison among selected lineages and

A. Lineage mutation comparison on the S gene among top 3 prevalence

previous VOCs defined by WHO (Alpha, Beta, Gamma, Delta, and Om

on the N gene among the top 3 prevalent lineages in the 10th week of

WHO (Alpha, Beta, Gamma, Delta, and Omicron) with mutation freq

EPI_ISL_15854782; BJ.1: EPI_ISL_14891585; BM.1.1.1: EPI_ISL_147

to those after removing common mutations among sequences) in

recombination breakpoints. VOC, variant of concern.
I (pMHCI) tetramer staining, and peptide-stimulated
activation-induced marker (AIM) assays, etc. Subsequently,
we employed an in-house program to integrate all available

mutations within the regions encoding those effective epitopes
and filter mutations with sequence count lower than 2000.
Then, we conducted a more precise literature curation to

search for mutation effect occurring on epitopes to illustrate
their functions in T cell recognitions.

Data availability

The complete contents of RCoV19 are available at https://
ngdc.cncb.ac.cn/ncov/.
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Figure 7 Mutation effects on SARS-CoV-2 viral characteristics

A. Collection of mutation effect knowledge. The X-axis represents the number of mutations. B. Mutations occurring in the regions

encoding experimentally verified T cell epitopes. The magnitude of the circles represents the number of mutations occurring in the regions

encoidng each epitope, and different colors indicate T cell epitopes on different proteins encoded by SARS-CoV-2 genome.
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