Figure 2. Presence and absence of substrate and enzyme biphasic dose responses in the commonly observed building blocks of cellular signaling systems.
An examination of a suite of substrate modification systems and different doses allows us to clearly ascertain the origin and necessary features of such systems to present enzyme and substrate biphasic dose responses. Where results denote a biphasic response is absent (indicated by a cross in a box), this is absent irrespective of kinetic parameter values and total amounts of substrate(s) and enzyme(s). This is established through analytical work (see Supplementary file 1). When a biphasic dose-response is present, it is shown in a bifurcation diagram where the relevant dose is the bifurcation parameter. The presence of specific dose-responses can be characterized in parameter space in the following way, either the behavior is (1) present for all intrinsic kinetic parameter values (accessible for some total amounts of substrate and enzyme, transparent boxes with a tick), or (2) present only for specific intrinsic kinetic parameter values (accessible for some total amounts of substrate and enzymes, blue-shaded boxes with a tick) - see text and analytical work for more details. (A) Covalent modification system. Absence of substrate and enzyme biphasic response. (B) Protein-Protein Interaction Model. Enzyme biphasic dose responses are seen in the protein-protein interaction model, but substrate biphasic responses are absent. In contrast to the covalent modification cycle which is incapable of biphasic responses, this result indicates how a single additional complex formation by the enzyme (and resulting sequestration) can generate enzyme biphasic dose responses. (C) Double site modification (DSP): common enzymes. Presence of enzyme and substrate biphasic response (enzyme biphasic responses only for certain ranges of intrinsic kinetic parameter values - see text). (D) DSP: common kinase and separate phosphatase. Presence and absence of substrate and enzyme biphasic response, respectively. (E) DSP: separate kinase and common phosphatase. Absence and presence of substrate and enzyme biphasic response, respectively (enzyme biphasic only with respect to the total amount of the second kinase, and only for certain ranges of intrinsic parameter values- see text). (F) DSP: separate kinase and separate phosphatase. Absence of both substrate and enzyme biphasic response. These results together show how commonality of both enzymes promotes biphasic responses with both doses, and in particular how commonality in phosphatase and kinase action enables enzyme and substrate biphasic responses, respectively. (G, H) Two-tier enzymatic cascades with common and separate phosphatases, respectively. Presence of substrate biphasic in the second-tier substrate of the two-tier cascaded enzymatic modification system with a common phosphatase. The first tier substrate is incapable of substrate biphasic in the same model. Both tier substrates are incapable of substrate biphasic responses when the phosphatases are distinct. Enzyme biphasic responses are absent in both systems. (I–K) Coupled covalent modification cycles with common and separate enzymes. Presence and absence respectively of substrate and enzyme biphasic responses in the system with common kinases and common phosphatases. The system with separate phosphatases and the system with separate kinases are incapable of substrate and enzyme biphasic responses. (G–K) indicates how commonality of enzymes can enable biphasic responses in covalent modification systems, which are either otherwise decoupled (I, J) or where they are part of a cascade (G, H). This highlights how such features emerge, even though the constituent modules (covalent modification cycles) are incapable of it.




