Figure 3. Role of biphasic interactions in network and motif response.
The results presented in this plot show the consequence of biphasic signal regulation and biphasic response within interactions in enabling network response. In each plot the inset image represents the basal behavior in the absence of biphasic signal regulation or biphasic interaction, for the same kinetic parameters of the system. (A–B). Role of biphasic signal regulation in perturbing behavior of enzymatic systems, (A) Covalent modification cycle and (B) double site modification (DSP) (common enzymes). (A) shows how biphasic signal regulation can enable homeostatic (prolonged flat region) and biphasic response from a covalent modification cycle (note that the response is an increasing function of dose for small signal values). (B) shows how biphasic signal regulation can enable not just biphasic behavior (top right panel) but multiphasic behavior (bottom right panel), and result in a dose response curve with multiple multistable regions (indicated by pairs of limit points) along with a biphasic response (bottom left panel). (C) contrasts this with the response from incoherent feedforward regulation of the DSP (a driver of biphasic responses), which can similarly present multiphasic responses (note that the curve decreases before increasing and decreasing again) (plot to the right shows behavior without incoherent feedforward regulation, where such behavior is absent). (D–F) Effect of biphasic interaction on common network regulatory motifs. Biphasic interaction can alter the fundamental feature of feedforward motifs in multiple ways. (D) In incoherent feedforward networks, it can destroy the expected biphasic response (left panel) and also enable the creation of multiphasic responses (right panel). Similarly, in feedback networks, it can destroy multi-stability in a positive feedback motif (E). On the other hand, it can erode homeostatic responses and enable multistability in negative feedback motifs (the later shown in F). [Colored straight arrows in network schematics represent biphasic interactions. LP: saddle-node bifurcation, solid lines, and dotted lines denote stable and unstable steady state, respectively].


