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Abstract
Human life expectancy is constantly increasing and aging has become a major risk 
factor for many diseases, although the underlying gene regulatory mechanisms are 
still unclear. Using transcriptomic and chromosomal conformation capture (Hi-C) 
data from human skin fibroblasts from individuals across different age groups, we 
identified a tight coupling between the changes in co-regulation and co-localization 
of genes. We obtained transcription factors, cofactors, and chromatin regulators 
that could drive the cellular aging process by developing a time-course prize-
collecting Steiner tree algorithm. In particular, by combining RNA-Seq data from 
different age groups and protein–protein interaction data we determined the key 
transcription regulators and gene regulatory changes at different life stage transi-
tions. We then mapped these transcription regulators to the 3D reorganization of 
chromatin in young and old skin fibroblasts. Collectively, we identified key tran-
scription regulators whose target genes are spatially rearranged and correlate with 
changes in their expression, thereby providing potential targets for reverting cel-
lular aging.
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1  |  INTRODUC TION

Aging is characterized by a gradual decline of physiological integ-
rity, resulting in compromised function and increased vulnerability 
to disease and mortality (López-Otín et al., 2023). At the molecular 
level, this process involves systematic changes in gene expression 
programs and pathways, accompanied by alterations in cellular 
organization and function at various scales, including cytoskele-
tal architecture and chromatin structure (Zhang, Qu, et al., 2020). 
Characterizing the key transcriptional drivers of aging is crucial to 
advance our understanding of this process and develop therapies 
to mitigate its effects. This is challenging due to the complex and 
distinct impacts of aging on gene expression and molecular path-
ways across different cell types and tissues. Recent evidence, such 
as a meta-analysis of transcriptomic aging signatures across mul-
tiple tissues, has shown limited overlap between organs (Palmer 
et  al.,  2021). Nevertheless, several studies have found common 
patterns of gene expression changes associated with aging across 
various tissues (e.g., genes involved in inflammation and im-
mune response, cell cycle, collagen processing, and metabolism 
and mitochondrial functions) (de Magalhães et  al.,  2009; Palmer 
et al., 2021).

While multiple studies have examined age-associated changes 
in gene expression and proposed several common as well as cell 
type-specific gene signatures of aging (Lee & Shivashankar, 2020; 
Stegeman & Weake, 2017), a systematic description of the corre-
sponding transcriptional regulatory programs has yet to be estab-
lished. Given that transcription factors, cofactors, and chromatin 
regulators (which we collectively refer to as transcription regula-
tors or “TFs”) play a pivotal role in determining cell identity and 
function, it is particularly critical to investigate how their regu-
latory interactions are disrupted or changed during aging (Maity 
et  al.,  2022). Assessing the role of TFs in aging based solely on 
transcriptomic data presents significant challenges. First, the 
impact of TFs may not necessarily correlate with age-associated 
changes in the expression of the genes that code for these TFs. 
For example, while some TFs may exhibit minimal or inconsis-
tent expression changes during aging, their subcellular localiza-
tion and the accessibility of their target genes can influence their 
regulatory significance in a time-dependent manner. Second, 
for TFs that display consistent expression changes throughout 
aging, the effect size of these changes tend to be small due to 
increased stochasticity in gene expression associated with aging 
(Levy et  al.,  2020; Martinez-Jimenez et  al.,  2017). To address 
these challenges, a recent study leveraged the expression scores 
of TF regulons to infer TF activity (Maity et  al.,  2022). This ap-
proach has a higher signal-to-noise ratio for identifying an age-
associated TF compared to using the TF's expression alone but 
suffers from two main limitations. First, regulon databases can be 
incomplete and thus important regulatory activity can be missed. 
Second, while such an approach globally identifies age-associated 

TFs, it does not provide a time-dependent assessment of their 
significance.

Recently, the time-dependent regulatory control of transcrip-
tional programs has been linked to the 3D structure of the ge-
nome thanks to advances in chromosomal conformation capture 
methods (Bickmore & van Steensel, 2013; Dekker & Mirny, 2016; 
Lieberman-Aiden et  al.,  2009; Schmitt et  al.,  2016). Inside the 
cell nucleus, chromosomes are organized in a nonrandom fash-
ion, such that each chromosome occupies its own territory. At 
the intrachromosomal level, DNA sequences may interact in 
the form of topologically associated domains (TADs) (Acemel & 
Lupiáñez, 2023; Dixon et al., 2012). In addition, regions on neigh-
boring chromosomes may loop out and intermingle with each 
other (Maass et  al.,  2019). Several studies have suggested that 
these interchromosomal regions could harbor co-regulated gene 
clusters (Bashkirova & Lomvardas,  2019; Belyaeva et  al.,  2017). 
Transcription factories (or hubs or condensates), corresponding 
to the clustering of genes, transcriptional machinery, and regula-
tory factors, have been proposed as a model for gene regulation 
(Belyaeva et al., 2017; Chen et al., 2015; Palacio & Taatjes, 2022; 
Papantonis & Cook, 2013; Uhler & Shivashankar, 2017). As tissues 
age, the extracellular matrix (ECM) stiffness and cell-ECM interac-
tions are altered, leading to transformations in cell shape and be-
havior (Uhler & Shivashankar, 2020). This affects the type of gene 
programs expressed by the cell through changes in 3D chromatin 
organization and the subcellular compartmentalization of key TFs 
(Mitra et al., 2017). Yet, to date, little progress has been made in 
connecting the transcriptional space and the 3D chromatin packing 
landscape in the context of aging.

In this work, we integrate time-course transcriptomic data, TF 
ChIP-Seq data, and protein–protein interaction (PPI) data to char-
acterize the evolving transcriptional regulatory programs during 
aging in human skin fibroblasts. We construct gene signatures of 
skin fibroblasts at different time points, and we identify key TFs 
that could explain the chronological progression through these 
gene signatures using a network-based approach. The incorporation 
of PPI data helps alleviate potential issues stemming from incom-
plete regulatory relationships. Moreover, our approach provides a 
time-dependent assessment of the roles played by TFs throughout 
the aging process. Furthermore, we connect our findings on aging 
transcriptional regulatory programs to the 3D chromatin packing 
landscape using chromosomal conformation capture data of young 
and old human skin fibroblasts. We find that the signature genes of 
aging regulated by age-associated TFs tend to spatially co-cluster in 
a time-dependent manner. Collectively, our findings shed new light 
on the tight coupling between transcriptional changes and chroma-
tin reorganization during cellular aging and also identify key TFs that 
exhibit time-dependent regulatory patterns during cellular aging. 
These TFs may hold promise as potential therapeutic targets to mit-
igate physiological decline and reduce the occurrence of age-related 
disease.
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2  |  RESULTS

2.1  |  Differential gene expression analysis 
identifies genes with age-dependent expression

During aging, many changes occur in the human transcriptome, 
and there are also differences in the aging gene expression signa-
tures between tissues and cell types. Characterizing these aging 
gene signatures is an important step toward potential therapies 
to delay the onset of age-associated cellular decline (Stegeman & 
Weake, 2017). To identify genes that are differentially expressed 
during the human lifespan in a tissue-specific manner, we used bulk 
RNA-Seq data measuring the gene expression of skin fibroblasts 
from individuals between 1 and 96 years (Fleischer et  al.,  2018). 
In total, the dataset includes 133 individuals, out of which 74% 
are male; see Figure  S1. Given the highly significant correlation 
between female and male transcriptomic profiles throughout 
aging (Figure  S1), we did not perform additional gender-specific 
analyses.

First, we sought to identify a set of key genes for the aging pro-
cess. Because gene signatures of aging are known to be tissue and 
cell type-specific (Stegeman & Weake,  2017), we inferred aging-
associated genes using the bulk RNA-Seq data from human skin fi-
broblasts. For gene selection we used linear regression with age as 
the predicted variable and RNA counts as predictors with a LASSO 
penalty. We report the genes with nonzero regression coefficients 
in Figure  1a. Selecting a penalty parameter of λ = 1 provided ro-
bust results (Figure 1b) resulting in 101 genes with age-associated 
expression.

Based on this set of age-related genes, a hierarchical clustering 
approach was performed to define five age groups (see Figure 1c,d 
and Methods for details): 1–15 years (Group 1, 19 individuals), 
16–26 years (Group 2, 20 individuals), 27–60 years (Group 3, 39 in-
dividuals), 61–85 years (Group 4, 34 individuals), and 86–96 years 
(Group 5, 21 individuals). While the youngest and oldest individuals 
are clearly separated from individuals in the other age groups, the 
clusters containing individuals of middle ages are more mixed, as 
shown in the PCA plot of Figure 1e.

Next, we studied the transitions from one age group to the next. 
There are four such transitions: Group 1 to Group 2, Group 2 to 
Group 3, Group 3 to Group 4, and Group 4 to Group 5. For each 
transition, approximately 170 differentially expressed (DE) genes 
were selected using FDR-adjusted p-value based on the fold change 
and robustness of a gene using subsampling of the individuals in 
each age group (Figure S2A–C and Methods). Overall, the difference 
in gene expression was much higher in the last transition (between 
Group 4 and 5); see Figure 1f. This suggests that more genes change 
their expression from Group 4 to Group 5 (the oldest age group with 
individuals above 85 years). This observation is in accordance with 
a previous study (Márquez et al., 2020) which identified more rapid 
transcriptional and epigenomic changes with high age instead of 
gradual linear changes with age. To select approximately the same 
number of DE genes as in the other transitions, for the subsequent 

analysis we used a lower p-value threshold for the last transition 
(Figure S2C).

Interestingly, by analyzing the DE genes selected in each of the 
four age group transitions we found that most of the DE genes were 
only DE in one of the four transitions (Figure  1g). This suggests 
that aging gradually turns on different gene programs. GO analy-
sis of all identified DE genes revealed that they were significantly 
involved in programs including extracellular matrix organization, im-
mune response, cellular proliferation, as well as cell cycle processes, 
which all play important roles during aging (Figure S2D) (López-Otín 
et al., 2023). Even though most of the DE genes were selected only 
for one transition, many of them not only changed their expression 
during this transition but also experienced consistent changes (al-
though not significant) in their expression throughout all five age 
groups (Figure S3).

A recent study of the aging transcriptome revealed an age-
related transcript length imbalance (Stoeger et  al.,  2022). To con-
nect our results to this study, we examined the relationship between 
gene length and expression between young and old individuals in 
the skin fibroblast dataset. DESeq2 was used with an adjusted p-
value threshold of 0.05 to obtain the genes that are differentially ex-
pressed between Group 1 (youngest individuals) and Group 5 (oldest 
individuals). Genes that were significantly downregulated between 
the youngest (Group 1) and the oldest (Group 5) age group had sig-
nificantly shorter transcripts than non-DE genes (Figure 1h, p-value 
<2.2e-16, one-sided Welch t test). Furthermore, genes that were up-
regulated during aging (positive fold change between Group 1 and 
Group 5) were significantly longer (p-value = 1e-6, one-sided Welch 
t test). This is consistent with the previously observed positive cor-
relation of transcript length and fold change of a gene in human skin 
fibroblasts (Stoeger et al., 2022).

2.2  |  Steiner tree analysis reveals key 
aging-associated transcription regulators

Transcription factors, cofactors, and chromatin regulators are criti-
cal for regulating the expression of gene programs involved in aging. 
To identify TFs that could explain the evolution from the DE genes 
in one age transition to the DE genes in the next age transition, we 
developed a network-based approach using prize-collecting Steiner 
trees (Huang & Fraenkel, 2009; L. Yuan et al., 2022). At a high level, 
we used a PPI network augmented with regulatory edges between 
TFs and their target genes, where the nodes were prized based on 
differential expression and edge costs were assigned based on edge 
confidence (see SI Methods). The prize-collecting Steiner tree algo-
rithm was used to identify the most efficient way to connect the 
DE genes in one transition to the DE genes in the next transition. 
This approach identifies key TFs and other intermediary genes that 
are needed to connect these DE genes and could therefore play an 
important role in driving the aging process.

More precisely, to study the evolution from the DE genes be-
tween Group 1 and Group 2 (which we refer to as the source DE 
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genes) to the DE genes between Group 2 and Group 3 (referred to 
as the target DE genes), we built a gene network in the following 
way. First, we retrieved human PPI data from the STRING database 
(Szklarczyk et  al.,  2019) (17,954 proteins and 1,900,568 physical 

interactions between pairs of proteins) and we filtered out proteins 
corresponding to inactive genes in both age groups (Group 1 and 
Group 2). Gene activity was defined by thresholding the RNA-Seq 
expression distribution as seen in Figure S5A. In the resulting gene 

F I G U R E  1 Differential gene expression analysis identifies age-associated gene signatures that vary across age groups. (a) Absolute 
coefficients resulting from the LASSO regression of age on gene expression using the RNA-Seq data from all individuals (penalty λ = 1). (b) 
Intersection of genes with nonzero LASSO coefficient for varying penalties (λ ∈ {0.25, 0.5, 1, 2, 4}). (c) Hierarchical clustering (Euclidean 
metric, ward.D2 linkage) of all 133 individuals in the dataset based on the variance-stabilized transformed expression of genes selected in A. 
(d) Age distribution in clusters of individuals obtained by thresholding the dendrogram in C (six clusters using a phenetic threshold = 17). We 
defined five age groups as indicated by the red horizontal dashed lines. Each box is colored according to the age group it contributes most 
to. As Clusters 3 and 4 cover the same range, they have the same color. (e) PCA plot of individuals using the variance-stabilized transformed 
RNA-Seq counts of genes selected in A. Each individual is colored according to its age group. (f) Mean variance-stabilized RNA-Seq counts 
between consecutive age groups. DE genes (see thresholds in Figure S2C) are marked in red for each of the four transitions between age 
groups. (g) DE genes between pairs of consecutive age groups. Thresholds in Figure S2C were used to identify around 170 DE genes for each 
transition and the overlap of these groups of DE genes in the four transitions between age groups is shown. (h) Age-associated gene length 
imbalance analysis. The boxplot shows the logarithmic gene length for downregulated DE genes (blue), non-DE genes (gray), and upregulated 
DE genes (red) between Group 1 and Group 5.

Group 1

Group 2

Group 3

Group 4

Group 5

(a)

(c) (d) (e)

(f) (h)

***
***

(g)

(b)
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network, we prized the source DE genes with their absolute log2-
fold change between Group 1 and Group 2. Second, nodes were 
added separately for the target DE genes, and they were prized with 
their absolute log2-fold change between Group 2 and Group 3. To 
connect the gene network with the target DE gene nodes, we added 
edges between TFs in the gene network to their regulatory targets in 
the target DE genes using TF-target regulatory data from hTFtarget 
(Zhang, Liu, et al., 2020), which is a database containing 1,319,123 
regulatory links between 495 TFs and 38,183 targets (see Methods). 
The resulting network is referred to as network N1. We also created 
networks to study the evolution from the DE genes between Group 
2 and Group 3 to the DE genes between Group 3 and Group 4 (net-
work N2) and the evolution from the DE genes between Group 3 and 
Group 4 to the DE genes between Group 4 and Group 5 (network 
N3).

Next, the prize-collecting Steiner tree algorithm was used on 
each gene network (N1, N2, N3) to identify smaller subnetworks (S1, 
S2, S3), called Steiner networks, that connect the source and target 
DE genes while minimizing the overall cost of the included edges 
(Figure  2a, Figure  S6, Methods). The resulting Steiner networks 
contain around 500 nodes and 5000 edges (Figure 2b). To visualize 
one example, the Steiner network corresponding to S3 is shown in 
Figure S6. In addition to the prized nodes, these Steiner networks 
also contain around 200 unprized nodes which are required to con-
nect the prized nodes. Gene ontology analysis revealed that these 
unprized nodes (called Steiner nodes) in the three subnetworks are 
involved in aging relevant pathways such as cell proliferation or DNA 
repair (Figure S8).

Each of the three Steiner networks contains approximately 
50–60 TFs that the algorithm selected to connect the source DE 
genes to the target DE genes. These bridge TFs help bridge DE genes 
in one age transition to DE genes in the subsequent age transition. 
The majority of identified bridge TFs were either specific to only one 
of the networks (S1-specific, S2-specific, or S3-specific) or occurred 
in all three of them (shared) (Figure 2c). We created networks show-
ing the regulatory relationships among the S1-specific, S2-specific, 
S3-specific, and shared bridge TFs to assess how much the bridge 
TFs in each group target each other; this could function as a posi-
tive feedback loop for signal amplification. The identified bridge TF 
groups show dense regulatory relationships (Figure 2d). For exam-
ple, the regulatory network of the shared bridge TFs includes many 
TFs that target themselves (blue nodes), as well as has a significantly 
higher network density than networks of random bridge TFs (p-
value = 0.047, permutation test). Interestingly, 37.1% of all identified 
bridge TFs target themselves, while this number is only 19.6% for 
all TFs in hTFtarget. This suggests a high level of reinforcement in 
the regulation of age-dependent gene programs. Furthermore, the 
bridge TFs in the four groups (S1-specific, S2-specific, S3-specific 
and shared across all three networks) also share many DE genes as 
their targets, that is, many pairs of bridge TFs share significantly 
more targets than expected under a hypergeometric null model (128 
TF pairs with p < 1e-15); see Figure 2e. Such overlap could be benefi-
cial to add robustness to the transcriptional regulation during aging.

While some TFs are very specific and only target a few genes in 
the genome, other TFs target and regulate the expression of thou-
sands of genes (Figure S4B). As TFs with many targets will also target 
many of the DE genes in our networks, it is likely for them to be in-
cluded as bridge TFs in the Steiner networks. Using a hypergeomet-
ric null model and correcting for the Family-Wise Error Rate (FWER, 
with a significance threshold at 0.05), we identified 6 bridge TFs in 
Steiner network S1 and 15 bridge TFs in S3 that are highly specific 
to their network and target significantly more target DE genes than 
genes overall (Figure 2f, Figure S9). These bridge TFs contain known 
key drivers of aging. For example, in S3, the bridge TF with the small-
est p-value is E2F1, which plays a central role in cell proliferation, de-
velopment and apoptosis and regulates cellular senescence, one of 
the hallmarks of aging (Xie et al., 2014). E2F1 also shows strong ex-
pression changes throughout the different age groups (Figure S10).

2.3  |  Hi-C analysis shows differences in 
interchromosomal intermingling during aging

It has been shown in previous studies that the spatial co-localization 
of genes regulated by the same transcription regulators may fa-
cilitate their coordinated expression: Active clusters of genes that 
share TF binding sites and are enriched for transcriptional machinery 
are also known as transcription factories (Palacio & Taatjes, 2022). 
For example, target genes of the transcription factor KLF1 prefer-
entially co-localize in specialized transcription factories in murine 
erythroid tissues (Schoenfelder et al., 2010), and NFκB target genes 
in primary human endothelial cells congregate into discrete NFκB 
factories upon stimulation by TNFα (Papantonis et al., 2012). Several 
comprehensive data-driven studies have confirmed that genes regu-
lated by common transcription factors and genes that belong to the 
same functional groups that reside on distinct chromosomes have an 
enhanced tendency to be in spatial proximity (Belyaeva et al., 2017; 
Thévenin et al., 2014). As it is known that major changes in the three-
dimensional arrangement of the DNA in the nucleus occur during 
aging (O'Sullivan & Karlseder, 2012; Sun et al., 2018), we analyzed 
the chromatin organization changes in relation to the transcriptomic 
changes.

To study the chromatin reorganization during aging, we used 
Hi-C data from our lab (GEO accession GSE237271) consisting of 
two replicates for young fibroblasts originating from a 10-year-old 
donor (GM09503), as well as two replicates for old fibroblasts from 
a 75-year-old donor (GM08401). A resolution of 250 kilo base pairs 
(kb) was chosen as a trade-off between low and high resolution. In 
low resolutions, the bins are large and therefore contain many genes 
such that it is difficult to locate genes of interest. In high resolutions 
with smaller bins the detected Hi-C contacts get sparser and noisier, 
which makes clustering more challenging, especially for interchro-
mosomal contacts. With a resolution of 250 kb the genome is binned 
into 11,537 loci with up to 1000 loci for large chromosomes like 
chromosomes 1 or 2 and around 200 loci for the small chromosomes 
like chromosomes 21 or 22 (Figure S14A). For illustration, Figure S11 



6 of 18  |     BRAUNGER et al.

contains examples of intrachromosomal and interchromosomal Hi-C 
contact maps at several resolutions. Global characterization of the 
Hi-C contact maps in cis using distance decay plots (Figure S12) and 
insulation score profiles (Figure S13) did not reveal substantial dif-
ferences between the young and old cell states at the intrachromo-
somal level.

To identify regions of chromosomal interactions, we applied the 
Large Average Submatrix (LAS) algorithm (Shabalin et al., 2009) to 
each intra- and interchromosomal Hi-C contact matrix in each of 

the four Hi-C datasets (two replicates in the young and old condi-
tion). This algorithm detects contiguous submatrices whose score 
(considering the size of the submatrix and the average value of its 
entries) is high compared to similar-sized submatrices in the Hi-C 
map (Figure 3a and SI Methods). Overall, we obtained around 3000 
LAS submatrices per sample. The interchromosomal LAS scores 
of the two replicates in each condition were very similar with a 
correlation coefficient of 0.85 (p-value <2e-308, correlation test, 
see Methods) in the young condition and 0.94 (p-value <2e-308, 

Source DE gene       Target DE gene
Unprized protein (Steiner node)       
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Protein-Protein Interaction   
TF-target Interaction

(a)
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(d)

(e) (f)Shared Bridge 
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S2-specific     
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D
(iii)
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correlation test, see Methods) in the old condition (Figure S14C). 
Therefore, the results for the two replicates per condition were 
combined, resulting in a set of LAS submatrices specific to the 
young cell state and a set of LAS submatrices specific to the old 
cell state. The binarized Hi-C maps showing the identified LAS 
submatrices (i.e., contacts) among all loci for the young and old 
cell states are shown in Figure 3b.

To study the cell-state specific intermingling, we computed 
the difference between the binarized Hi-C maps for young and 
old fibroblasts. The resulting intermingling difference map among 
all loci is shown in Figure  3c. Interestingly, almost all intrachro-
mosomal LAS submatrices were shared among young and old fi-
broblasts (Figure  3d(i), overlap of 99.995%), while 15.5% of the 
interchromosomal intermingling regions were specific to either 
the old cell state or the young cell state (Figure 3d(ii)). The rear-
rangements between the young and old states at the chromosome 
level are shown in Figure S14D and examples of difference maps 
are provided for chromosome 17 in cis (Figure S11A) and for the 
chromosome pair 17-19 in trans (Figure 3e and Figure S11B). In the 
latter, one LAS submatrix was present only in the young condi-
tion (colored in blue) and one submatrix only in the old condition 
(colored in magenta). These results suggest that the intrachromo-
somal chromatin organization is rather stable during aging, and 
the chromatin reorganization is mostly happening via changes in 
interchromosomal contacts. Although interchromosomal interac-
tions have been less studied in the past compared to intrachromo-
somal chromatin interactions, there has been increasing evidence 
supporting their role in cell type-/state-specific gene regulation 
(Maass et al., 2019).

2.4  |  Hi-C analysis shows intermingling differences 
for differentially expressed genes

Leveraging the LAS clusters that we identified, we proceeded to 
investigate the intermingling of differentially expressed genes 
during aging. For this analysis, we obtained signature genes of the 
young state by performing a differential gene expression analysis 
of Group 1 (1–15 years) versus all others and selecting a similar 
number of genes as in the previously analyzed transitions (170 
genes with smallest p-values, Wald test, FDR-adjustment) and 
similarly for Group 5 (86–96 years old) to obtain signature genes 
of the old state. The expression of these signature genes over the 
five age groups is shown in Figure 4a–d(i), respectively. The genes 
in Figure  4a,d are highly expressed in young individuals and get 
downregulated during aging, whereas the ones in Figure 4b,c are 
lowly expressed in young individuals and get upregulated during 
aging.

For each of these four gene sets, we created an intermingling 
difference map (see Figure 4a–d(ii), respectively). Figure S15 pro-
vides a view of these difference maps zoomed in on age-specific 
intermingling contacts, colored according to the magnitude of 
LAS score differences between the young and old cell states 
(see Methods). Next, we further quantified the amount of young-
specific and old-specific intermingling. The signature DE genes 
that get downregulated during aging have more young-specific 
than old-specific intermingling (Figure  4a,d(iii), and Figure  S16), 
whereas the DE genes that get upregulated during aging have 
significantly more old-specific than young-specific intermingling 
(Figure  4b,c(iii), and Figure  S16). We note that DE genes that 

F I G U R E  2 Steiner tree analysis reveals key transcription factors that could drive the aging process. (a) Schematic of our prize-collecting 
Steiner tree methodology to identify key transcription factors (TFs) that connect DE genes in one age group transition (source DE genes, 
e.g., Group 1 vs. Group 2) to DE genes in the next age group transition (target DE genes, e.g., Group 2 vs. Group 3). An initial network was 
created by adding a set of regulatory edges (blue arrows) to the human protein–protein interaction (PPI) network (black edges, thickness 
represents edge cost, which is inversely proportional to the confidence of an edge in the PPI network). The blue regulatory edges connect 
TFs to their target genes that are part of the target DE genes. Node prizes (represented by node size) were added for the source DE genes 
(orange nodes) and the target DE genes (red nodes) according to their log2 fold change. The prize-collecting Steiner tree algorithm was used 
to identify a subnetwork, the Steiner network, that connects the orange prized nodes to the red prized nodes by minimizing the overall edge 
cost; see Methods. This identifies a set of bridge TF genes (crosses) as well as other unprized genes (Steiner nodes, in blue) that are required 
to connect the source and target DE genes. (b) Descriptive statistics of the three Steiner networks constructed as described in A: For each of 
the networks S1, S2, and S3 different age groups were used to define the source and target DE genes. The number of nodes, edges, Steiner 
nodes and bridge TFs in the identified Steiner networks are shown. (c) UpSet plot of bridge TFs selected in the three Steiner networks (S1, 
S2, and S3). The first four groups (S2-specific bridge TFs in green, S1-specific bridge TFs in purple, S3-specific bridge TFs in yellow, and TFs 
occurring in all three Steiner networks in grey) are colored to match them with the groups used in D. (d) Networks of regulatory relationships 
(retrieved from hTFtarget) among bridge TFs that are specific to Steiner network S1 (d(i), purple), Steiner network S2 (d(ii), green), Steiner 
network S3 (d(iii), yellow), and bridge TFs that were shared across all three networks (d(iv), grey). TFs targeting themselves are shown in blue. 
In the network of shared bridge TFs, the number of edges per node is significantly higher than in networks obtained by selecting 20 random 
TFs among the ones included in at least one Steiner network (1000 simulations with random bridge TFs, p-value = 0.047). (e) Co-target 
network among the 4 bridge TF groups in D: S1-specific bridge TFs (blue nodes), S2-specific bridge TFs (green nodes), S3-specific bridge 
TFs (orange nodes), and shared bridge TFs (black nodes). Two TFs are linked by an edge if they share significantly more DE targets than 
expected under a hypergeometric null model (p < 1e-15) and if the proportion of the number of targets in the intersection divided by the 
union is bigger than 0.5. Edges are colored and sized by this proportion of shared DE targets and nodes are sized according to the number 
of DE targets each bridge TF has. (f) Adjusted p-values for bridge TFs in Steiner network S1 (f(i)) and S3 (f(ii)) indicating their propensity to 
regulate target DE genes (red nodes in A). A small p-value means that a TF targets more target DE genes in its corresponding network than 
expected by chance based on a hypergeometric null model using its number of targets in the whole genome as a baseline. The p-values were 
Bonferroni-adjusted and only TFs with an adjusted p-value below 0.05 are reported. TFs with differential gene expression are marked by *.
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get downregulated during aging experience more intermingling 
changes between the young and old condition than DE genes that 
get upregulated during aging. Taken together, this means that the 
selected signature DE genes have more intermingling interactions 

with each other in the cell state in which they are higher ex-
pressed. This observation suggests the formation of transcription 
hubs in which these sets of genes get co-activated or co-repressed 
in a spatiotemporal manner.
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2.5  |  Hi-C analysis highlights intermingling 
differences between the gene targets of key 
bridge TFs

To connect the key aging-related TFs obtained in the prize-
collecting Steiner tree analysis to the identified changes in spa-
tial gene clustering during aging, we analyzed the intermingling 
of the target DE genes in the earliest and latest Steiner networks 
(S1 and S3, given that the Hi-C data were from a 10-year-old and 
a 75-year-old individual). As most target DE genes in the Steiner 
network S1 were upregulated (Figure S3), we focused on the up-
regulated genes for this analysis. On the contrary, as most target 
DE genes in S3 were downregulated, we focused on the down-
regulated genes for this analysis. For these two groups of genes, 
an intermingling difference matrix was created, and the genes 
were grouped as in Figure  4a(ii) into the ones that change their 
intermingling between the young and old condition (green) and 
the ones that do not have intermingling changes (grey). We found 
that the upregulated target DE genes in S1 and the downregu-
lated target DE genes in S3 that had age-associated intermingling 
changes were targeted by more bridge TFs compared to the 
target DE genes without age-associated intermingling changes 
(Figure  5a); this finding was particularly significant in S3 (right 
panel of Figure 5a, p-value = 1.4e-6, one-sided Welch t test).

Additionally, we quantified, for each bridge TF, by how much 
the intermingling between its target genes changes with aging. For 
this, we created an intermingling difference map for each bridge 
TF including the upregulated target DE genes in S1 or downreg-
ulated target DE genes in S3. In these maps, the percentage of 
entries with cell-state-specific intermingling (entries that were 
only part of an LAS matrix in the young or the old Hi-C data) was 
calculated and compared between the group of bridge TFs that are 
enriched in targeting DE genes (Figure 2f) and all other bridge TFs. 
This analysis showed that the target DE genes of significant bridge 
TFs tend to have more age-associated intermingling changes 
(Figure  5b); this result was again found to be particularly signif-
icant in S3 (right panel of Figure  5b, p-value = 0.002, one-sided 
Welch t test).

These results suggest an interplay between gene regulatory 
programs targeted by key bridge TFs of the aging process and the 
spatial organization of the genes involved in these regulatory pro-
grams. Interestingly, this interplay is substantially weaker or absent 
at the level of non-DE target genes of the bridge TFs and at the level 
of age-associated DE genes that are not targeted by any bridge TF 
(Figure S18).

Next, we visualized the changes in the network of Hi-C contacts 
between a TF and its target genes for the significant bridge TFs with 
the highest percentage of age-associated changes in the intermin-
gling of their target genes (CEBPB in the Steiner network S1 and 
RBBP5 in the Steiner network S3). This metric, along with the tar-
get enrichment p-value corresponding to each TF, are reported in 
the z-scored heatmap for all bridge TFs in S1 (Figure 5c(i)) and S3 
(Figure 5c(ii)); for additional features for each TF such as the num-
ber of target genes or the number of protein–protein interactions 
(PPIs) in the Steiner networks see Figure S19. The selected TFs are 
interesting because they are key to bridging the DE genes between 
the young and old conditions and their gene targets undergo 3D 
organizational changes during aging. The corresponding networks 
are shown in Figure 5d and Figures S20 and S21. The subnetwork 
associated with CEBPB consists of 66 nodes and 214 intermingling 
interactions (edges), out of which 8.4% are young-specific and 12.1% 
are old-specific. Interestingly, CEBPB has two intermingling inter-
actions with its target genes that were only found in young or old 
cells (young-specific = blue edges, old-specific = magenta edges in 
Figure 5d(i)). CEBPB has been described in a previous study as a key 
regulator of energy metabolism and longevity (Xia et al., 2021). In 
the subnetwork associated with RBBP5, 14.2% of the 1084 edges 
between the 62 nodes are young-specific and 1.5% are old-specific, 
with RBBP5 having three young-specific intermingling interactions 
with its target genes (Figure  5d(ii)). This high amount of young-
specific intermingling between the downregulated targets of RBBP5, 
which has been associated to the age-driven loss of H3K4 methyl-
ation (Yuan et al., 2015), supports the hypothesis that these genes 
might be co-activated in the young state and are less expressed in 
the old state, potentially due to the loss of spatial clustering between 
them.

F I G U R E  3 Hi-C analysis shows differences in interchromosomal intermingling during aging. (a) Interchromosomal Hi-C matrix of 
chromosome 17 and chromosome 19 for the young (replicate 1) sample. Hi-C contact values were preprocessed and centerdized, see 
Methods. Black boxes indicate significant submatrices with high average values selected by the large average submatrix (LAS) algorithm. 
(b) Binarized intermingling map for young (b(i)) and old (b(ii)) human skin fibroblasts based on the identified LAS matrices in the Hi-C data. 
All 250 kb loci are ordered according to their ascending genomic location (x-axis from left to right and y-axis from top to bottom) and all 
submatrices (dark red) identified with the LAS algorithm that were above the threshold in both replicates are shown. Interactions between 
chromosomes 17 and 19, for which a zoom-in is shown in E, are marked with a black box. (c) Intermingling difference map as a comparison of 
the two binarized maps in B. It shows which of the LAS submatrices only occurred in young samples (blue), only in old samples (magenta) or 
in both samples (dark grey). Interactions between chromosomes 17 and 19 are enclosed in a black box. (d) UpSet plot of intrachromosomal 
LAS submatrices (d(i)) and interchromosomal LAS submatrices (d(ii)) selected in the young and old Hi-C data, showing that the 3D chromatin 
rearrangements during aging are mainly interchromosomal. Intersection sizes are measured by the number of pixels in each submatrix. (e) 
Zoom-in for interchromosomal contacts of chromosome 17 (y-axis) with chromosome 19 (x-axis). Based on the results of the LAS algorithm, 
the binarized intermingling maps for young (e(i)) and old (e(ii)) were created. On the right (e(iii)), the difference between those two maps is 
visualized by coloring submatrices only found in young samples in blue, only found in old samples in magenta, and the submatrices found in 
both young and old samples in grey.
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F I G U R E  4 Hi-C analysis shows intermingling differences for differentially expressed genes. (a) Expression and spatial clustering of 
upregulated genes in Group 1. a(i) shows the heatmap of the z-scored expression of the genes upregulated in Group 1 over the five age 
groups from Group 1 (youngest, top) to Group 5 (oldest, bottom). Genes were ordered by hierarchical clustering with Euclidean distance 
and complete linkage. a(ii) shows the intermingling difference map for the genes in a(i). Hi-C entries corresponding to the interaction of 
two DE genes that were only part of an LAS submatrix in young Hi-C data are shown in blue, those only found in old Hi-C data in magenta, 
and those that are in LAS submatrices occurring in young and old Hi-C data in grey. The DE genes were grouped into the ones with specific 
intermingling (green group with blue and magenta spots) and the ones without specific intermingling (grey group). The DE genes per 
group were sorted according to their ascending genomic location. a(iii) shows a barplot quantifying the amount of young- and old-specific 
intermingling entries in the intermingling difference maps. Here, 8.5% out of all intermingling interactions were young-specific and 5.1% 
old-specific. (b) Expression and spatial organization of downregulated genes in Group 1. In b(ii) and b(iii), 0.77% out of all intermingling 
interactions were young-specific and 7.7% old-specific. (c) Expression and spatial clustering of upregulated genes in Group 5. In c(ii) 
and c(iii), 3.5% out of all intermingling interactions were young-specific and 6.7% old-specific. (d) Expression and spatial organization of 
downregulated genes in Group 5. In d(ii) and d(iii), 6.4% out of all intermingling interactions were young-specific and 4% old-specific.
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3  |  DISCUSSION

The work presented in this study offers a systematic analysis of the 
evolving transcriptional regulatory programs in human skin fibro-
blasts throughout the aging process. Our analysis shows that aging 
follows a nonlinear trajectory, characterized by gradual transcrip-
tional changes observed in age groups 1–4 (1–85 years old), followed 
by an abrupt transcriptional shift toward the end of life in age group 
5 (86–96 years old). These results align with previous research sug-
gesting that age-related genomic and epigenomic alterations occur in 
spikes rather than a continuous progression (Márquez et al., 2020). 
We find that the differentially expressed genes between consecu-
tive age groups are involved in biological pathways related to fibro-
blast function, immune response, and cell cycle (Figure S2D). This 
finding is consistent with previous studies showing, for example, 
that the ECM becomes stiffer with age, leading to a more pro-
inflammatory cellular environment (López-Otín et  al.,  2023; Uhler 
& Shivashankar, 2020). Interestingly, our results corroborate recent 
findings, which identified an age-associated transcript length imbal-
ance in skin fibroblasts, with longer transcripts exhibiting higher ex-
pression levels in older cells (Stoeger et al., 2022).

Several previous studies have acknowledged the significance 
of TFs and their regulatory interactions in driving the aging pro-
cess. These studies typically identified TFs based on the expression 
levels of their target genes, sometimes in conjunction with age-
dependent changes in the expression of genes that code for these 
TFs (Maity et al., 2022; O'Brown et al., 2015). In order to consider 
aging as a gradual process and encompass multiple timepoints, our 
work leverages an innovative Steiner tree methodology that inte-
grates transcriptomic data from different age groups with PPI data 
and TF-target data. This integration enables us to identify TFs that 
could drive the expression changes observed in the subsequent time 
step. Moreover, our approach also allows the identification of TFs 
whose expression remains stable throughout the aging process but 
may still be key to the aging process because of changes in cellular 
architecture and 3D chromatin organization, leading to alterations 
in their cellular compartmentalization or the accessibility of their 
target genes. The high level of self- and cross-regulation among the 
identified TFs suggests that aging is highly programmed and self-
reinforcing. For example, we identified E2F1, a known regulator of 
cellular senescence, as a bridge TF using our Steiner tree analysis.

Beyond the transcriptional lens, we delved into the relationship 
between age-associated changes at the transcriptional level and 
changes in chromatin organization. While most of the literature 
on 3D chromatin organization has focused on intrachromosomal 
contacts (Maass et  al.,  2019), we focused on interchromosomal 
contacts, as we observed these to exhibit significant changes be-
tween the young and the old conditions. Using chromosomal con-
formation capture data from two time points (10 years old and 
75 years old), we found that genes upregulated in young cells exhib-
ited increased intermingling among each other within the nucleus 
of young cells compared to old cells, and vice versa. Furthermore, 
we observed that the target genes of the key age-associated TFs 

identified using our Steiner tree approach displayed enhanced in-
termingling compared to other TF target genes. Thus, our Hi-C data 
provide strong experimental validation of the identified bridge TFs 
through our network-based approach. These observations are con-
sistent with the existence of interchromosomal functional gene 
clusters implicated in key cell state-specific processes (Belyaeva 
et al., 2017; Chen et al., 2015; Papantonis & Cook, 2013; Uhler & 
Shivashankar,  2017). Interestingly, our analysis uncovered specific 
TFs whose target genes are differentially expressed through aging 
and experience age-specific interactions through chromosomal in-
termingling. These TFs include CEBPB, known for its role in energy 
metabolism and longevity (Xia et al., 2021); AHR, recently associated 
to vascular and brain age-related phenotypes (Eckers et  al.,  2016; 
Ojo & Tischkau, 2021); ERG, linked to fibrosis in mice via its role in 
chromatin remodeling (Caporarello et al., 2022); STAT1, associated 
with transcriptional changes and inflammation in the aging human 
kidney (O'Brown et al., 2015); RBBP5, potentially associated to the 
age-driven loss of H3K4 methylation (T. Yuan et  al.,  2015); BMI1, 
which was shown to protect hematopoietic stem cells against aging 
(Nitta et  al.,  2020); HDAC1, which plays a critical role in aging of 
the liver and fibroblast senescence through histone deacetylation 
(Willis-Martinez et al., 2010), among others.

Taken together, our results provide a systematic characteriza-
tion of age-associated transcriptional regulatory programs in human 
skin fibroblasts, with a particular focus on elucidating the key TFs 
that could drive the progression of these programs during aging. 
Importantly, we identified a tight coupling between changes in tran-
scription and spatial gene clustering during aging. These findings 
highlight the importance of systematically evaluating paired time 
course transcriptional and chromatin conformation data to advance 
our fundamental understanding of aging. Similar to recent work 
identifying rejuvenating TFs (Sengstack et al., 2022), we anticipate 
that some of the TFs we identified in this work could serve as po-
tential therapeutic targets to attenuate, prevent, or even reverse 
age-related declines, offering life-changing benefits to the growing 
global geriatric population.

4  |  METHODS

4.1  |  RNA-Seq data

Transcriptomic data were retrieved from a previous study (Fleischer 
et al., 2018), which generated bulk RNA-Seq measurements of skin 
fibroblasts for 133 individuals between 1 and 96 years old. The 
corresponding FASTQ files containing the sequencing information 
were downloaded from the European Nucleotide Archive with ac-
cession numbers SRR7093809 to SRR7093951. For transcript 
quantification, the tool Salmon (Patro et  al.,  2017) was used. The 
sequenced reads were aligned to the Homo sapiens reference tran-
scriptome from Ensembl release 105. Then, Salmon was used to cre-
ate an index on that reference transcriptome, as well as a quant.sf 
file for each sample, which contains the count values per transcript. 
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The transcript counts per sample were then imported into R with 
tximeta (Love et al., 2020). Additionally, two different normalization 
techniques were applied to the raw counts. First, for gene expres-
sion comparisons within a sample, the Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) values for each gene 
and for each individual were calculated using the R package DESeq2. 
Second, for gene expression comparisons between samples, scaling 
factors for library-size correction were applied and the variance-
stabilized transformed counts were obtained using DESeq2. Given 
the strong correlation between mean and variance of the expression 
of a gene, we used variance-stabilizing transformation on the counts 

to make the variance independent of the mean. This is useful given 
that many downstream statistical methods assume homoscedastic 
data (Anders & Huber, 2010). To define the activity of each gene, the 
histogram of the logarithmic mean FPKM value per age group was 
plotted, showing a bimodal distribution (Figure S5A). A threshold of 
0.8 on the FPKM values was chosen as this marks the end of the first 
mode. In each age group, genes with a mean expression below that 
threshold were considered inactive and the remaining genes were 
considered active. Over 11,000 genes were found to be active in all 
five age groups, but there were also more than 800 genes that were 
only active in a subset of the age groups (Figure S5B).
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(c) (d)(i) Steiner network S1 (ii) Steiner network S3
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4.2  |  PPI data

A network with proteins as nodes and edges corresponding to direct, 
physical PPIs in Homo sapiens was obtained from the STRING data-
base version 11.5 (Szklarczyk et al., 2019). We decided to use STRING 
(Bajpai et al., 2020) in this study because it is among the databases 
that have the highest coverage of experimentally verified protein in-
teractions and it also allows to select only physical interactions. The 
reported annotations in STRING refer to the Ensembl peptide IDs, 
while the networks were built using gene names. Therefore, the an-
notation file provided on the STRING website was used for renam-
ing. As some of the peptide IDs correspond to the same gene name, 
the dataset included 17,954 distinct proteins after renaming of the 
18,384 peptide IDs and 1,900,568 physical interactions between 
pairs of proteins. In the STRING database each interaction has a con-
fidence score of being present based on its evidence in the literature. 
The scores for physical interactions range from 0 to 1000, in which 
high numbers mean that there were many experiments which report 
a physical interaction between two proteins (Szklarczyk et al., 2019). 
We transformed these edge confidence scores into edge costs so 
that they can be used in the prize-collecting Steiner tree algorithm, 
which is formulated as a minimization problem over edge costs. We 
chose to reverse the confidence scores x into costs between 0 and 1 
using the following formula: cost(x) = 1 – (x – min_score)/(max_score 
– min_score) with min_score referring to the lowest score and max_
score to the highest score in the dataset. A pseudo-count of 0.01 
was added to prevent having a cost of zero; the distribution of the 
costs over all interactions is shown in Figure S4A.

4.3  |  Transcription regulator – Target data

The database hTFtarget was used to obtain information about 
which human TFs target which genes (Zhang, Liu, et  al.,  2020). 
This database contains data from 7190 large-scale Chromatin 

Immuno-Precipitation sequencing (ChIP-Seq) experiment samples 
of 659 TFs in 569 different conditions, including a broad range of 
cell types. Only 48 out of 659 TFs reported in hTFtarget had targets 
that were specifically reported for fibroblast cells in various tissue 
types. Therefore, the TF-target interactions over all cell types were 
used even though this might include some false positive interactions 
that are not present in fibroblast cells due to cell-type-specific TF-
target binding. We took this approach, given that gene expression 
values are considered during network construction and thus missing 
TF-target links are more harmful than the addition of false edges. 
Therefore, we downloaded a file from hTFtarget that reports all TF-
target links which were found in more than 30% of ChIP-Seq data-
sets. This file includes 1319,123 regulatory links between 495 TFs 
and 38,183 targets. The list of transcription regulators and target 
genes was then filtered to the ones included in STRING. Most of the 
TFs only have a few target genes (Figure S4B).

4.4  |  Chromosomal conformation data

Low input in-nucleus Hi-C data were obtained from the GEO database 
under accession number GSE237271 (Sornapudi et  al.,  2023). The 
dataset consists of two biological replicates of (young) healthy human 
dermal fibroblasts derived from a 10-year-old donor (GM09503), as 
well as two biological replicates of (old) healthy human dermal fibro-
blasts derived from a 75-year-old donor (GM08401). Each biological 
replicate includes approximately 200,000 cells. As we had access to 
the mapped sequencing reads in the .pair format, the first step was 
to convert the files to the .hic file format using Juicer tools software 
with a resolution of 250 kb and a mapping quality threshold of 30 
(Durand et al., 2016). Chromosomes X and Y were not considered 
in this study. As Hi-C data may contain locus-specific multiplicative 
biases which depend, for example, on the accessibility of a locus, 
a matrix-balancing normalization was performed that balances the 
Hi-C map into a doubly stochastic matrix. For the intrachromosomal 

F I G U R E  5 Hi-C analysis highlights intermingling differences between the gene targets of key bridge TFs. (a) Distribution of the number 
of bridge TFs included in the corresponding Steiner network targeting the target DE genes in Steiner network S1 (left) and S3 (right). The 
target DE genes per network were grouped into those whose intermingling status with other target DE genes changes with aging (green 
box) and the ones whose intermingling does not change with aging (grey box). (b) Distribution of the amount of specific intermingling for 
significant bridge TFs (green box) and non-significant bridge TFs (grey box) from Steiner network S1 (left) and S3 (right). Significant bridge 
TFs correspond to the TFs in Figure 2f and the intermingling change for a bridge TF is defined as the percentage of intermingling interactions 
changing between its target DE genes. An intermingling interaction change refers to a pair of genes that is only part of an LAS submatrix in 
young or old Hi-C data, but not in both. (c) Heatmap with hierarchical clustering of the bridge TFs (y-axis) in the Steiner network S1 (c(i)) and 
S3 (c(ii)) for two features (x-axis) using the Euclidean metric and complete linkage. The selected features are (i) the p-value for enrichment in 
DE gene targeting from the hypergeometric test (Figure S10; Figure 2f(ii)) the proportion of intermingling interactions between the target 
DE genes in the corresponding network targeted by a TF that were only part of an LAS submatrix in young or old Hi-C data, but not in 
both. All values were z-scored for each feature and clipped to [−2, 2]. The annotation bar on the left side of the heatmaps marks bridge TFs 
included in all three Steiner networks (S1, S2 and S3) in red. Grey entries correspond to NAs as some bridge TFs have no targets among the 
upregulated target DE genes in S1 or the downregulated target DE genes in S3. (d) Intermingling network of CEBPB and its upregulated DE 
target genes in S1 (d(i)) and RBBP5 and its downregulated DE target genes in S3 (d(ii)). Gene–gene interactions that were only part of an LAS 
submatrix in young Hi-C data are shown as blue edges, those only found in old Hi-C data are shown as magenta edges, and the shared ones 
as grey edges. Nodes are colored according to the chromosome on which the gene is located. The bridge TF nodes are shaped as triangles. 
The unconnected nodes correspond to DE genes targeted by CEBPB, or RBBP5 respectively, that do not have any intermingling with the 
other DE genes targeted by this TF.
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contact maps the “SCALE” normalization from Juicer tools was used 
(Durand et al., 2016). For interchromosomal contacts, we used the 
“INTERSCALE” normalization from Juicer tools which produces a 
doubly stochastic matrix for the genome-wide Hi-C map after re-
moving all intrachromosomal maps. Additionally, there exist chro-
mosome regions like repeats, centromeres or pericentromeric 
regions (2 Mb in both directions starting at the centromere), where 
mapping of sequencing reads is challenging due to their repetitive-
ness. Therefore, these regions were excluded from the analysis using 
the annotation from the UCSC table browser for reference genome 
GRCh38 (Karolchik et al., 2004). Finally, a log(x + 1) transformation 
was applied to the normalized Hi-C contact maps. We also created a 
z-scored version of the data. In this version, the mean and standard 
deviation over all intrachromosomal contacts was calculated, as well 
as the mean and standard deviation over all interchromosomal con-
tacts. Then, z-scores were obtained by subtracting the correspond-
ing mean and dividing by the corresponding standard deviation. The 
distribution of the z-scored inter- and intrachromosomal values in 
the two young and two old replicates are shown in Figure S14B. We 
used the z-scored version of the Hi-C data when running the LAS 
algorithm. Note that we used Hi-C data for GM09503 (young) and 
GM08401 (old) fibroblast cells to study the 3D organization of age-
associated DE genes obtained from bulk RNA-Seq of skin fibroblasts 
from research subjects (Fleischer et al., 2018). To test that these cell 
types are similar and can be used in a combined analysis, we cor-
related the transcriptional profiles of GM09503 cells with cells from 
individuals in age group 1 (correlation coefficient R = 0.96, p-value 
<2.2e-16) and the transcriptional profiles of GM08401 with age 
group 5 (R = 0.95, p-value <2.2e-16), resulting in highly significant 
correlation coefficients; see Figure S17.

4.5  |  Definition of age groups

A hierarchical clustering approach was used to define five age 
groups. For this clustering approach, we used a subset of genes that 
were found to be associated with age in a linear regression model. 
First, LASSO regression was performed with age as the predicted 
variable and gene counts as predictors. We tested five LASSO 
penalty coefficients (λ ∈ {0.25, 0.5, 1, 2, 4}). The higher the pen-
alty coefficient, the fewer genes have a nonzero coefficient. A me-
dium penalty coefficient of λ = 1 was chosen, which results in 101 
genes with a nonzero coefficient. Next, for hierarchical clustering, 
a distance matrix of all individuals was created by calculating the 
Euclidean distance between two individuals based on the variance-
stabilized expression of genes selected by the LASSO regression. 
Then, the distance matrix was used for hierarchical clustering with 
the Ward agglomeration method (ward.D2) using the pheatmap 
package. The dendrogram was cut to obtain 6 clusters (phenetic 
threshold = 17) and the age distribution per cluster was visualized as 
a boxplot (Figure 1d). We chose six clusters because increasing the 
number of clusters did not improve the age separation. As the age 
range of two of the groups were overlapping, only five age groups 

were defined based on the obtained clusters: Group 1 (1–15 years 
old), Group 2 (16–26 years old), Group 3 (27–60 years old), Group 4 
(61–85 years old), and Group 5 (86–96 years old).

4.6  |  Differential gene expression analysis

To identify key genes related to the transitions between consecutive 
age groups, a differential gene expression analysis was performed. 
For this, the R package DESeq2 was used on the raw RNA-Seq 
counts obtained from tximeta. Typically, a threshold for the FDR-
adjusted p-value from a Wald test is used to distinguish between DE 
and non-DE genes. In addition to this threshold, we used a robust-
ness analysis to assure that a gene is consistently found as DE when 
subsampling the individuals from the dataset (Fleischer et al., 2018). 
This procedure dampens the effect of outlier values in single indi-
viduals. 100 simulations were performed in which 80% of the in-
dividuals per age group were randomly selected and the DE genes 
(FDR-adjusted p-value <0.1) per transition from one age group to the 
next were recorded. Only genes (i) having a significant DE p-value, (ii) 
identified in at least a certain proportion of the subsamples, and (iii) 
having a high log2-fold change value were selected as the final DE 
genes as follows. First, transition-specific p-value thresholds were 
applied to select approximately 400 genes per transition. Second, 
transition-specific robustness thresholds were chosen based on 
the transition's robustness profile (see Figure S2A) to discard non-
robust genes. Finally, transition-specific log2-fold change thresholds 
were used to select approximately 160–180 DE genes per transition. 
These three combined levels of thresholding (shown in Figure S2C) 
guarantee the selection of a robust and meaningful set of DE genes 
for each age group transition; see also the GO analysis in Figure S2D.

4.7  |  Protein network design

Three networks (N1, N2, and N3) corresponding to different life 
stages were built. For N1, we filtered the STRING interactome to 
proteins corresponding to actively expressed genes in Group 1 or 
Group 2 and prized the DE genes between Group 1 and Group 2 
(source DE genes) by their absolute log2 fold change. Additionally, 
nodes for the DE genes in the consecutive transition (Group 2 vs. 
Group 3) were added (target DE genes) and prized by their log2 fold 
change. To connect the PPI network part to the target DE genes, 
edges from bridge TFs in the PPI network were added to target DE 
genes that are targeted by these TFs based on TF-target interactions 
from the data base hTFtarget. A cost of 0.01, which corresponds 
to the minimum cost for the PPIs, was assigned to these TF-target 
edges. In N2, Group 2 and Group 3 were used for the source DE 
genes and Group 3 and Group 4 for the target DE genes, and in N3, 
Group 3 and Group 4 were used to define the source DE genes and 
Group 4 and Group 5 for the target DE genes. Five different net-
work design choices were tested and compared for robustness, in 
which the first is the one described above. In Design 2, information 
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from the oldest subnetwork (S3) was used for constructing the next 
younger one (S2), as well as from S2 to S1 in the following way: in 
addition to prizing DE genes, bridge TFs included in the next-older 
subnetwork were added to the target DE genes of the younger one. 
They were connected by edges to bridge TFs in the PPI and their 
nodes were prized with the minimum prize over the target DE genes. 
The intuition behind this approach is to ensure that also bridge 
TFs that target bridge TFs driving the aging process in the next life 
stage are identified. For Design 3 and onward, we also added PPI 
edges between the target DE gene nodes (red nodes in Figure 2a). 
In Design 4, not only bridge TFs, but also all other nodes in the PPI 
network of the next older subnetwork, as well as their PPIs with the 
target DE genes were added. Finally, in Design 5, the unprized nodes 
from the next older network were not only included, but also prized 
with the minimum prize of the target DE genes. To compare the re-
sults of the different design choices, the prize-collecting Steiner tree 
algorithm was used to identify a smaller subnetwork including the 
prized genes. As there was a high overlap between the bridge TFs 
that were included across the design choices (Figure S7), Design 2 
was selected and used for all subsequent analyses.

4.8  |  Null distributions for significance testing

In Figure 2d, TF-target links from hTFtarget were used to build regu-
latory networks between groups of TFs. To assess whether there 
are significantly more edges in the networks of Figure 2d than ex-
pected by chance, a null distribution was obtained by doing 1000 
simulations selecting 20 random bridge TFs that were included in 
at least one of the three Steiner networks. For each of the simu-
lations, the regulatory network was created. For each of the four 
networks containing the bridge TFs from one of the four groups, as 
well as for the 1000 networks with randomly selected bridge TFs, 
the network density defined as (number of edges)/(number of nodes) 
was measured. The numerical p-value for the network in each of the 
four groups was calculated as the percentage of simulated networks 
whose density was at least as high as the observed network density 
of the group under consideration.

In Figure  2e, we show which TF pairs have significantly more 
intersecting targets than expected under a hypergeometric null 
model. This figure was constructed in the following way. Out of all N 
genes in the genome, N1 genes are targeted by the first of the two 
TFs. The hypergeometric distribution then describes for the second 
TF with N2 target genes, how likely it is to observe k intersecting 
targets. A p-value for each TF pair was obtained by using the cumu-
lative distribution function calculating the probability of observing 
at least k intersecting targets with the function stats.hypergeom.
sf (k-1, N1, N2, N) from the Python package scipy. Additionally, the 
proportion of shared targets was calculated as |{targets of TF1} ∩ 
{targets of TF2}|/|{targets of TF1} ∪ {targets of TF2}| for each pair of 
bridge TFs (TF1, TF2).

To evaluate which of the bridge TFs in the Steiner networks tar-
get significantly more target DE genes than genes in the genome 

in general, a hypergeometric null model was used (see Figure  2f 
and Figure  S9). The hypergeometric distribution has four parame-
ters, namely the total number of genes (M), the total number of DE 
genes (n), the number of target genes of a bridge TF in the genome 
(N), as well as the number of DE genes that are targeted (k). The 
p-values were calculated using the function stats.hypergeom.sf(k-1, 
M, n, N) from the Python package scipy. The p-values were adjusted 
for multiple testing using Bonferroni correction. Additionally, 95% 
confidence intervals were calculated over multiple values of N (the 
number of target genes in the genome).

To evaluate whether there is significantly more or less intermin-
gling between the selected genes in Figure 4 compared to random 
ones, 1000 simulations were performed sampling the same number 
of random genes. In each intermingling difference map, the percent-
age of young-specific, old-specific, and shared intermingling was cal-
culated. Based on these null distributions, p-values were calculated 
as the percentage of simulations with a higher percentage for each 
intermingling type (Figure S16).

4.9  |  Data and code availability

RNA-Seq data were obtained from the European Nucleotide Archive 
with accession numbers SRR7093809–SRR7093951. For network 
construction, we used protein interactions reported in the STRING 
database version 11.5 (Szklarczyk et al., 2019) and TF-target inter-
actions from the database hTFtarget (Zhang, Liu, et al., 2020). The 
Hi-C data used in this study can be obtained from the GEO database 
under accession number GSE237271.

The code to reproduce the analysis and figures in this work can 
be found on GitHub (https://​github.​com/​uhler​lab/​aging_​trans​cript​
ome_​and_​chrom​atin). Our analyses used R version 4.2.1 with the ti-
dyverse package (version 1.3.2). To read in the RNA-Seq data into R, 
we used the package tximeta (version 1.14.1). The package DESeq2 
(version 1.36.0) (Love et al., 2014) was used to call differentially ex-
pressed genes. The package biomaRt (version 2.52.0) was used to 
get the genomic location of each gene (Durinck et al., 2009) and in 
case a gene spans multiple 250 kb loci of the Hi-C data, only the first 
one in genomic order was used. To create intersection plots, we used 
the package UpSetR (version 1.4.0) (Conway et al., 2017). To create 
hierarchically clustered heatmaps, we used the package pheatmap 
(version 1.0.12).

We also conducted analyses using Python version 3.7.13. 
Network analyses and visualizations were conducted in Python 
using the package networkx (version 2.4) (Hagberg et  al.,  2008) 
and the package OmicsIntegrator 2 (version 2.3.10) (Huang & 
Fraenkel, 2009). Gene ontology (GO) analyses were performed with 
the enrichr function of the Python package gseapy (version 0.10.8) 
(Fang et al., 2023) with the gene set “GO_Biological_Process_2021.” 
For hypergeometric testing and p-value computations, we used the 
package scipy (version 1.7.3). The function stats.pearsonr from scipy 
was used to calculate the Pearson correlation coefficient and the 
p-value for testing non-correlation. The package upsetplot (version 

https://github.com/uhlerlab/aging_transcriptome_and_chromatin
https://github.com/uhlerlab/aging_transcriptome_and_chromatin
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0.6.1) was used for the intersection plot in Figure 3b. Hi-C distance 
decay profiles, insulation scores, and boundary scores were com-
puted using the package fanc (version 0.9.27) (Kruse et al., 2020).

For visualization, p-values were encoded using the following con-
vention: p-value <0.05 (*), p-value <0.01 (**), p-value <0.001 (***).
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