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Introduction

Hepatocellular carcinoma (HCC) is one of the most 
common malignant tumors and a leading cause of death 
around the world (1). Even though the patients with HCC 
received standard therapies including open/laparoscopic 
resection, transcatheter arterial chemoembolization 
(TACE), and radiofrequency ablation (RFA), patients 
with HCC continue to experience unsatisfactory therapy 
outcomes (2). Presently, immune therapy acts as a novel 

therapeutic management for HCC.
RACGAP1, a component of the centralspindlin 

complex, regulates rho-mediated signal pathways. 
RACGAP1 plays essential roles in cytokinesis, cell growth 
and differentiation. Previous studies have reported that 
RACGAP1 plays a critical role in the pathogenesis of 
cancers and is identified as a prognosis biomarker (3-7). 
A study performed by Pliarchopoulou et al. showed that 
RACGAP1 overexpression was associated with poor overall 
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survival (OS) and recurrence-free survival (RFS) in breast 
cancer (8). Saigusa et al. reported that the overexpression 
of RACGAP1 was related to lymph node metastasis and 
unfavorable outcomes in gastric cancer (4). Moreover, some 
recent findings revealed that knockdown of RACGAP1 in 
HCC cells induced cytokinesis failure and cell apoptosis (9). 
All of these findings indicate the involvement of RACGAP1 
in HCC. Thus, our study sought to examine the specific 
role of RACGAP1 in the pathogenesis of HCC. Firstly, 
differential expression gene (DEG) analysis was performed 
based on Gene Expression Omnibus (GEO) database, and 
RACGAP1 was chosen as the candidate gene for further 
research. Then, the expression of RACGAP1 was assessed, 
and the relationship between RACGAP and the outcomes 
of HCC was analyzed. Furthermore, the correlation 
between immune infiltration and RACGAP1 expression 
was evaluated using Tumor Immune Estimation Resource 
(TIMER) or Gene Expression Profiling Interactive Analysis 
(GEPIA) database. We present this article in accordance 
with the REMARK reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-1474/rc).

Methods 

GEO datasets 

The GEO database is a public database containing a 
large number of high-throughput gene expression data. 

GSE112791, GSE102079 and GSE62232 gene expression 
profile datasets were screened (10-12). GEO2R was applied 
for the DEG analysis. 

Enrichment analysis

The database for annotation, visualization and integrated 
discovery (DAVID) was used for analyzing the selected 
genes (13). 

Construction of protein-protein interaction (PPI) network 
and identification of hub gene

A PPI network with complex regulatory relationships was 
constructed using the STRING database (14). Cytoscape 
software (version 3.9.1) was employed to visualize the PPI 
network (15). 

TIMER database 

TIMER or TIMER2 is a comprehensive resource for 
analyzing immune infiltration in different tumor types 
(16,17). 

GEPIA database 

GEPIA is a user-friendly online tool for analyzing gene 
expression based on the data of The Cancer Genome Atlas 
(TCGA) and genotype-tissue expression (GTEx) (18). 
Cell type-level proportion analysis was analyzed using 
GEPIA2021 (19). 

The University of Alabama at Birmingham Cancer 
(UALCAN) database 

UALCAN is a web for in-depth analysis of TCGA and 
clinical proteomic tumor analysis consortium (CPTAC) 
data (20). 

Tumor, normal and metastatic (TNM) plot database 

TNM plot provides gene expressions in different tissues (21). 

The Human Protein Atlas (HPA) database

HPA is a dataset which provides gene expression profiles at 
the protein level in different tissues (22). 
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Kaplan-Meier (KM) survival analysis

The KM plotter contains clinical profiles of patients, and 
was used to assess the relationship between the survival and 
genes in diverse cancers (23). 

GeneMANIA database 

GeneMANIA was applied to predict the function of genes 
or gene sets (24). 

Tumor-Immune System Interaction Database (TISIDB)

TISIDB was used for analyzing the interaction between 
tumor and immune system (25). 

Sangerbox database

The Sangerbox database is a comprehensive Chinese 
bioinformatics analysis platform which provides various 
visualization plots (26). 

Rat HCC model

The  ma le  r a t s  ( 6–8  weeks ,  Be i j i ng  Vi t a l  R i ve r 
Laboratory, Beijing, China) weighing 200 g were injected 
intraperitoneally with N-nitrosodiethylamine (DEN) 
(N0756; Sigma-Aldrich, St. Louis, MO, USA) or 0.9% 
NaCl (control) at a dose of 50 mg/kg once a week for  
16 weeks (27). 

Immunohistochemistry (IHC)

The IHC was applied to detect the protein expression 
of RACGAP1 in human and rat liver tissue. IHC was 
performed using a 2-step method as previously reported 
(27-29). RACGAP1 was used as the primary antibody 
for incubation and then appropriate secondary antibody 
was selected. The other steps followed that marked in the 
manual. The IHC scores were referred as the value of the 
staining intensity [0–3] and the portion of stained cells [1–4].

Statistical analysis

The different expression of RACGAP1 between tumors and 
normal tissues was analyzed using the Wilcoxon rank sum 
test or t-test, respectively. KM curve was plotted to assess 
the survival differences between the high expression and 
low expression groups. P<0.05 was considered as statistical 

significance. 

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Ethical 
approval was not required because GEO and TCGA 
are publicly available sources of data. Written informed 
consent for participation was not required for this study in 
accordance with the national legislation and the institutional 
requirements.

Results 

Screen of hub genes

Three microarray datasets (GSE112791, GSE102079 and 
GSE62232) were screened for DEGs. In GSE112791, 
GSE102079 and GSE62232, 163 DEGs (60 upregulated, 
103 downregulated), 93 DEGs (23 upregulated, 70 
downregulated) and 130 DEGs (39 upregulated, 91 
downregulated) were found, respectively (Figure 1A). Then, 
65 common DEGs were identified through the intersection 
of the Venn diagram (Figure 1B). Next, the 65 overlapped 
genes were analyzed to establish PPI network (Figure 1C). 
The combined scores larger than 0.4 in PPIs were imported 
to Cytoscape for subsequent analysis. Using Cytohubba 
plug-in, 11 hub genes were identified (Figure 1D,1E). Some 
of the overlapped genes, such as ANLN, CDK1, and CCNB1 
have been reported in several studies (30-32). However, 
the role of RACGAP1 in the pathogenesis of HCC has 
been rarely reported. Thus, RACGAP1 was selected as 
a candidate target gene for further analyses. As shown in 
Figure 1F, increased RACGAP1 expression in RNA level 
was observed in HCC tissues compared with non-cancer 
tissues, which was also confirmed in the three microarray 
datasets.

RACGAP1 message RNA (mRNA) and protein expression 
increased in HCC patients

To further examine RACGAP1 mRNA expression in 
HCC, the expression of RACGAP1 in the GEPIA, 
UALCAN and TNM plot was displayed. And we found 
increased expression of RACGAP1 mRNA in HCC tissues  
(Figure 2A, Figure S1A,S1B). 

To detect the RACGAP1 protein expression, the CPTAC 
was applied through UALCAN website. The results 
revealed that the expression of RACGAP1 protein was 
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significantly higher in HCC tissues compared to that of the 
normal tissues (Figure 2B). IHC results from HPA database 
showed RACGAP1 protein expression was overexpressed 
in HCC tissues (Figure 2C). To confirm the result, the 
RACGAP1 expression in protein level was also determined. 
Our results revealed an up-regulation of RACGAP1 
expression at the protein level in HCC tissues (Figure 2D). 

Increased RACGAP1 expression was correlated with 
unfavorable prognosis in HCC patients 

To investigate the relationship between RACGAP1 and 
clinicopathological characteristics in HCC patients, the 
analysis was performed using the online tool UALCAN. 
No difference was found in the RACGAP1 expression 
in different genders (Figure 3A). Then, the expression of 
RACGAP1 was determined in different stages of HCC. 
RACGAP1 expression increased gradually in cancerous 
tissues, which was accompanied by the development of 

HCC. However, lower RACGAP1 expression was observed 
in stage 4 compared with stage 3, which might be attributed 
to small size of enrolled patients in stage 4 (Figure 3B). 
Similar pattern was observed in the correlation between 
tumor grade and RACGAP1 expression (Figure 3C).  
Increased RACGAP1 expression was accompanied by 
lymph nodes metastasis (Figure 3D). 

KM plotter survival analysis was performed to assess the 
prognosis (using “auto select best cutoff” as group cutoff). 
Firstly, the survival was analyzed using the KM plotter 
online tool. And KM analysis revealed HCC patients with 
increased RACGAP1 expression had poor OS, progression-
free survival (PFS), RFS and disease-specific survival (DSS) 
compared with patients with lower level of RACGAP1 
expression (Figure 4A). The data of the GEPIA database 
showed similar pattern in HCC patients with different 
levels of RACGAP1 expression (Figure 4B). 

I n  o r d e r  t o  f u r t h e r  i n v e s t i g a t e  t h e  r o l e  o f 
RACGAP1 expression in HCC patient’s prognosis, the 

Figure 2 Expression of RACGAP1 in HCC. (A) RACGAP1 mRNA expression in HCC was examined by using the GEPIA. (B) RACGAP1 
protein expression in HCC and normal tissues. (C) RACGAP1 protein expression in the HPA database by IHC with DAB staining. (D) 
RACGAP1 protein expression in human HCC tissues by IHC with DAB staining method. *, P<0.05; ***, P<0.001. HCC, hepatocellular 
carcinoma; mRNA, message RNA; GEPIA, Gene Expression Profiling Interactive Analysis; TPM, transcripts per million; CPTAC, clinical 
proteomic tumor analysis consortium; HPA, human protein atlas; IHC, immunohistochemistry; DAB, 3,3'-diaminobenzidine. 
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correlation between RACGAP1 mRNA expression and 
clinicopathological features was determined (Table 1).  
The overexpression of RACGAP1 was found to be 
significantly associated with worse OS and PFS. For HCC 
patients in Stages 1 to 3, high expression of RACGAP1 
was significantly related to unfavorable OS and PFS. 
Additionally, increased expression of RACGAP1 was related 
to unfavorable OS and PFS in tumor grade and American 
Joint Committee on Cancer (AJCC) Tumor (T) stage but 
was not related to OS of grade 2 [hazard ratio (HR): 1.57, 
95% CI: 0.93–2.62, P=0.086] and PFS of AJCC-T3 [HR: 
1.94, 95% CI: 0.96–3.90, P=0.059]. These results revealed 
the expression of RACGAP1 was an important factor in the 
HCC patient’s prognosis.

Identification and functional analysis of RACGAP1

Firstly, the gene interaction network for RACGAP1 was 
generated through the GeneMania database. The results 
revealed that the top 20 genes were strongly related to 
RACGAP1, including the KIF23, ECT2, PRC1 and AURKB 

(Figure 5A). Then, the STRING tool was used to generate 
PPI network of RACGAP1. The network had 51 edges and 11 
nodes, including KIF23, ECT2, ANLN and CDK1 (Figure 5B). 

To further uncover the function of RACGAP1, we 
searched the related genes of RACGAP1 using UALCAN 
website. The top 300 genes related to RACGAP1 were 
identified. And the results showed that the top 300 genes 
were positively associated with RACGAP1. Then, the top 
50 related genes were selected through heat map analysis 
(Figure 5C). Subsequently, the top 300 genes received 
enrichment analysis to assess the potential signal pathways 
and function. The representative Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways are shown in Figure S2A-S2D. These genes were 
involved in cell division/cycle and DNA repair.

Expression of RACGAP1 was positively associated with 
immune infiltration 

The tumor microenvironment (TME) plays a crucial role 
in tumor progression and recurrence (33-35). TME is 
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consisted of immune cells, abundant immune molecules 
and other regulating cytokines, which is related to the 
occurrence, development and metastasis of tumor. Previous 
studies reported immune infiltration was closely associated 

with the prognosis of cancers (36,37). The TIMER 
database was used to explore the relationship between 
the expression of RACGAP1 and immune infiltration. 
RACGAP1 expression was closely related to B cell, CD8+ 

Table 1 Correlation of RACGAP1 mRNA expression and clinical prognosis in HCC with different clinicopathological factors by Kaplan-Meier 
plotter

Factors
Overall survival (n=364) Progress-free survival (n=366)

N HR (95% CI) P N HR (95% CI) P

Gender 1.81 (1.31–2.81) 0.00068* 1.81 (1.31–2.81) 0.00068*

Male 246 4.04 (1.94–8.40) 5.3e–05* 246 1.92 (1.33–2.76) 0.00038*

Female 118 1.98 (1.08–3.62) 0.024* 120 2.63 (1.49–4.66) 0.00055*

Alcohol

Yes 115 3.26 (1.42–7.47) 0.0032* 115 2.90 (1.62–5.17) 0.00017*

None 202 2.05 (1.25–3.35) 0.0034* 204 2.06 (1.36–3.13) 0.00051*

Hepatitis virus

Yes 150 2.70 (1.18–6.15) 0.014* 152 1.92 (1.14–3.25) 0.013*

None 167 2.19 (1.37–3.52) 0.00087* 167 3.07 (1.91–4.91) 1e−06*

Stage

1 170 2.44 (1.23–4.88) 0.0088* 170 1.78 (1.06–3.00) 0.027*

2 83 2.75 (1.09–6.94) 0.025* 84 1.95 (1.00–3.80) 0.045*

3 83 2.60 (1.31–5.15) 0.0046* 83 2.27 (1.16–4.43) 0.014*

4 4 – – 5 – –

Grade

1 55 3.9 (1.33–11.48) 0.0088* 55 2.69 (1.02–7.11) 0.039*

2 174 1.57 (0.93–2.62) 0.086 175 2.37 (1.53–3.68) 6.8e−05*

3 118 3.14 (1.71–5.76) 0.00011* 119 3.28 (1.93–5.57) 3.6e−06*

4 12 – – 12 – –

AJCC tumor

1 180 2.31 (1.21–4.41) 0.0088* 180 1.80 (1.11–2.91) 0.015*

2 90 2.64 (1.12–6.21) 0.021* 92 1.98 (1.05–3.74) 0.031*

3 78 2.31 (1.22–4.4) 0.0085* 78 1.94 (0.96–3.90) 0.059

4 13 – – 13 – –

Vascular invasion

None 203 1.99 (1.07–3.70) 0.027* 204 1.98 (1.25–3.15) 0.0033*

Micro 90 2.30 (0.93–5.73) 0.065 91 1.95 (1.08–3.54) 0.024*

Macro 16 – – 16 – –

“–” means sample number too low for meaningful analysis. *, P<0.05. Only patients for whom explicit information is available are listed 
in this table. mRNA, message RNA; HCC, hepatocellular carcinoma; HR, hazard ratio; CI, confidence interval; AJCC, American Joint 
Committee on Cancer.
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Figure 5 Identification of RACGAP1 interacted genes and proteins. (A) The gene-gene interaction network. (B) The protein-protein 
interaction network. (C) Co-expression heat map of the top 50 RACGAP1-related genes. 

T cell and CD4+ T cell (Figure 6A). Then, the results of 
TIMER2 database demonstrated RACGAP1 expression was 
positively related to the resting myeloid dendritic cell, M0 
macrophage, myeloid derived suppressor cells (MDSCs), 
activated CD4+ memory T cell, Tfh, and Treg cell, and 
negatively associated with CD4+ memory resting T cell in 
TME. 

Thereafter, the TISIDB database was applied to assess 
the relationship between RACGAP1 expression and tumor 
infiltrating lymphocytes (TILs). The result of heat map 
revealed the relationship between RACGAP1 and TILs 
across pan-cancers (Figure 6B). Meanwhile, the fraction 
of infiltrating immune cells was determined using the 
online tool of GEPIA2021. The result revealed that 
the proportion of Treg, macrophages M0, and mast cell 
resting was significantly higher in tumor tissues than that 
in normal tissues. However, the result for monocyte and 
mast cell activated showed the opposite trend (Figure 6C,  
Figure S3A-S3D). These findings indicated that RACGAP1 
might regulate the infiltration of Treg, Tfh, Th2, M0 
macrophage, MDSC in HCC TME.

RACGAP1 expression was positively correlated with 
immune suppressive microenvironment

It  i s  wel l  establ ished that  tumor immune escape 
involves Tregs which comprise an immune suppressive 
microenvironment. The TIMER and GEPIA datasets were 

utilized to explore the relationship between RACGAP1 
expression and diverse immune signatures in HCC. 
Additionally, the association between RACGAP1 expression 
and the markers of diverse immune cells was explored. 

The correlation between tumor purity and immune 
infiltration was studied. After adjusting for purity, there was a 
clear correlation between RACGAP1 expression and several 
immune cells, particularly Treg, T cell exhaustion, TAM, 
dendritic cell, M2 macrophage cell and MDSC (Table 2).  
In order to confirm the results, the association between 
RACGAP1 expression and the infiltration of immune cells 
in TME was analyzed using the GEPIA web. Similar results 
were observed in the TIMER web tool (Table 3). 

The results  of  TIMER, TIMER2, GEPIA and 
GEPIA2021 revealed RACGAP1 was positively related to 
Treg cells in HCC. Moreover, further investigation was 
conducted to examine the relationship between RACGAP1 
and the cytokine/receptor axis for Treg infiltration (CCR4-
CCL22, CCR5-CCL5, CCR8-CCL1, and CCR10-
CCL28). These results indicated RACGAP1 expression 
had a positive association with the expression levels of the 
aforementioned cytokine and receptors (Table S1). 

Discussion 

HCC is a common cancer with unfavorable prognosis (38). 
In China, the 5-year survival rate of HCC is still less than 
5% (39). In this study, 65 common DEGs were screened 

https://cdn.amegroups.cn/static/public/TCR-23-1474-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1474-Supplementary.pdf
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Figure 6 Correlation of RACGAP1 with immune infiltration. (A) RACGAP1 is correlated with tumor purity and different immune 
infiltration cells. (B) Pan-cancer analysis revealing the association between RACGAP1 and tumor infiltrating lymphocytes through TISIDB 
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out from three GSE datasets, and then the top 11 hub genes 
were identified. The hub genes, including ANLN, CDK1 
and CCNB1, have been studied previously. However, the 
function of RACGAP1 has rarely been explored in HCC. 
Thus, RACGAP1 was selected to explore its value in 
hepatocarcinogenesis.

RACGAP1 is  a Rac GTPase-activating protein 
involved in process of cell division, cell transformation 
and differentiation. Recent studies found that it had an 
important function in oncogenesis. RACGAP1 knockdown 
could inhibit development of various tumors, especially 

HCC (9,40,41). However, the potential molecular 
mechanisms for this process have not been profoundly 
known.

In this study, the expression of RACGAP1 was 
upregulated in HCC. Higher expression of RACGAP1 was 
associated with tumor aggressive behavior, which is similar 
to findings from previous studies (7,42). All these results 
indicated that RACGAP1 could be applied as a candidate 
biomarker for predicting HCC prognosis. Enrichment 
analyses revealed that RACGAP1 regulated the cell division 
process. Furthermore, the results indicated that RACGAP1 
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Table 2 Correlation analysis between RACGAP1 and relate genes markers of immune cells using TIMER

Immune cells Gene markers

Liver hepatocellular carcinoma

None Purity

Cor P Cor P

CD8+ T cell CD8A 0.152 3.34e−03* 0.267 4.60e−07*

CD8B 0.115 2.68e−02* 0.227 2.12e−05*

T cell (general) CD2 0.104 4.50e−02* 0.249 2.91e−06*

CD3D 0.152 3.39e−03* 0.272 2.76e−07*

CD3E 0.109 3.66e−02* 0.260 9.77e−07*

Th1 IFN-γ (IFNG) 0.231 6.89e−06* 0.324 6.76e−10*

STAT1 0.412 0.00e+00* 0.470 2.18e−20*

STAT4 0.142 6.20e−03* 0.210 8.28e−05*

T-bet (TBX21) 0.052 3.13e−01 0.163 2.42e−03*

TNF-α (TNF) 0.233 5.63e−06* 0.367 2.04e−12*

Th2 GATA3 0.125 1.63e−02* 0.269 3.76e−07*

IL13 0.059 2.57e−01 0.070 1.96e−01

STAT5A 0.366 3.15e−13* 0.431 4.65e−17*

STAT6 0.297 5.40e−09* 0.281 1.05e−07*

Tfh BCL6 0.356 2.07e−12* 0.358 7.68e−12*

IL21 0.144 5.56e−03* 0.190 3.82e−04*

Th17 IL17A 0.119 2.16e−02* 0.125 2.02e−02*

STAT3 0.240 3.12e−06* 0.288 5.13e−08*

Treg CCR8 0.403 6.91e−16* 0.516 6.63e−25*

FOXP3 0.190 2.41e−04* 0.255 1.56e−06*

STAT5B 0.459 0.00e+00* 0.439 1.16e−17*

TGFβ (TGFB1) 0.271 1.26e−07* 0.389 6.91e−14*

T cell exhaustion CTLA4 0.249 1.22e−06* 0.369 1.36e−12*

GZMB 0.107 4.04e−02* 0.179 8.60e−04*

LAG3 0.214 3.48e−05* 0.271 3.11e−07*

PD-1 (PDCD1) 0.251 9.76e−07* 0.358 6.81e−12*

TIM-3 (HAVCR2) 0.282 3.86e−08* 0.457 3.31e−19*

B cell CD19 0.221 1.68e−05* 0.301 1.18e−08*

CD79A 0.061 2.38e−01 0.183 6.32e−04*

Monocyte CD86 0.291 1.33e−08* 0.461 1.42e−19*

CD115 (CSF1R) 0.177 6.20e−04* 0.333 2.13e−10*

TAM CCL2 0.066 2.01e−01 0.175 1.09e−03*

CD68 0.239 3.62e−06* 0.351 1.96e−11*

IL10 0.225 1.17e−05* 0.351 1.90e−11*

Table 2 (continued)
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Table 2 (continued)

Immune cells Gene markers

Liver hepatocellular carcinoma

None Purity

Cor P Cor P

M1 macrophage COX2 (PTGS2) 0.147 4.65e−03* 0.283 8.62e−08*

INOS (NOS2) 0.085 1.02e−01 0.099 6.62e−02

IRF5 0.403 6.86e−16* 0.413 1.12e−15*

M2 macrophage CD163 0.138 7.76e−03* 0.268 4.17e−07*

MS4A4A 0.125 1.63e−02* 0.269 3.96e−07*

VSIG4 0.120 2.06e−02* 0.250 2.47e−06*

Dendritic cell BDCA-1 (CD1C) 0.115 2.63e−02* 0.213 6.83e−05*

BDCA-4 (NRP1) 0.442 0.00e+00* 0.478 4.19e−21*

CD11C (ITGAX) 0.314 7.99e−10* 0.461 1.42e−19*

HLA-DPA1 0.177 6.33e−04* 0.311 3.38e−09*

HLA-DPB1 0.160 2.05e−03* 0.291 3.79e−08*

HLA-DQB1 0.099 5.7e−02 0.215 5.88e−05*

HLA-DRA 0.201 9.87e−05* 0.336 1.43e−10*

Natural killer cell KIR2DL1 0.026 6.23e−01 0.009 8.69e−01

KIR2DL3 0.191 2.19e−04* 0.237 8.73e−06*

KIR2DL4 0.204 7.84e−05* 0.248 3.03e−06*

KIR2DS4 0.076 1.42e−01 0.071 1.90e−01

KIR3DL1 0.076 1.45e−01 0.106 4.86e−02*

KIR3DL2 0.063 2.23e−01 0.117 2.93e−02*

KIR3DL3 0.066 2.06e−01 0.059 2.73e−01

Neutrophils CCR7 0.056 2.85e−01 0.187 4.74e−04*

CD11b (ITGAM) 0.312 9.60e−10* 0.421 3.01e−16*

CD66b (CEACAM8) 0.111 3.20e−02* 0.139 9.87e−03*

M-MDSC CD14 −0.405 0.00e+00* −0.376 5.13e−13*

PMN-MDSC ITGAM 0.312 9.60e−10* 0.421 3.01e−16*

FUT4 0.372 1.80e−13* 0.415 8.64e−16*

*, P<0.05. TIMER, Tumor Immune Estimation Resource; TAM, tumor-associated macrophage; MDSC, myeloid derived suppressor cell; 
M-MDSC, mononuclear MDSC; PMN-MDSC, polymorphonuclear MDSC.

expression was correlated with immune infiltration. 
Therefore, this study could provide a novel view to the 
potential value of RACGAP1 in tumor immunology. 

Tregs are involved in the maintenance of immunological 
self-tolerance through immunosuppressive effects in various 
types of tumors, thereby helping tumor cells to escape 
from immune killing (43-46). In this study, several results 

indicated the recruitment of immunosuppressive Tregs as 
a key mechanism of immune escape in HCC. In HCC, the 
secretion of various chemokines recruits Treg to TME (47).  
We found that RACGAP1 upregulation was positively 
related to the chemokines and receptors expression for 
Treg recruitment. Increased secretion of chemokines 
and corresponding receptors following RACGAP1 may 
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Table 3 Correlation analysis between RACGAP1 and relate genes markers of immune cells using GEPIA

Immune cells Gene markers
Liver hepatocellular carcinoma

R P 

CD8+ T cell CD8A 0.14 0.0066*

CD8B 0.11 0.03*

T cell (general) CD2 0.091 0.081

CD3D 0.1 0.044*

CD3E 0.092 0.077

Th1 IFN-γ (IFNG) 0.22 1.6e−05*

STAT1 0.41 2.4e−16*

STAT4 0.15 0.0035*

T-bet (TBX21) 0.051 0.33

TNF-α (TNF) 0.23 7.2e−06*

Th2 GATA3 0.15 0.0043*

IL13 0.074 0.16

STAT5A 0.39 1.6e−14*

STAT6 0.33 8.5e−11*

Tfh BCL6 0.38 3.3e−14*

IL21 0.14 0.0056*

Th17 IL17A 0.09 0.084

STAT3 0.27 1.1e−07*

Treg CCR8 0.4 6.8e−16*

FOXP3 0.12 0.02*

STAT5B 0.49 2e−23*

TGFβ (TGFB1) 0.22 2.2e−05*

T cell exhaustion CTLA4 0.25 1.3e−06*

GZMB 0.044 0.4

LAG3 0.13 0.014*

PD-1 (PDCD1) 0.25 1e−06*

TIM-3 (HAVCR2) 0.28 5.8e−08*

B cell CD19 0.24 4.3e−06*

CD79A 0.064 0.22

Monocyte CD86 0.29 1.2e−08*

CD115 (CSF1R) 0.21 7e−05*

TAM CCL2 0.056 0.29

CD68 0.25 9.3e−07*

IL10 0.19 2e−04*

M1 macrophage COX2 (PTGS2) 0.17 0.00085*

INOS (NOS2) 0.12 0.025

IRF5 0.39 8.3e−15*

Table 3 (continued)
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Table 3 (continued)

Immune cells Gene markers
Liver hepatocellular carcinoma

R P 

M2 macrophage CD163 0.028 0.59

MS4A4A 0.12 0.021*

VSIG4 0.12 0.024*

Dendritic cell BDCA-1 (CD1C) 0.12 0.026*

BDCA-4 (NRP1) 0.44 1.7e−18*

CD11C (ITGAX) 0.32 6e−10*

HLA-DPA1 0.18 5e−04*

HLA-DPB1 0.17 0.00096*

HLA-DQB1 0.031 0.55

HLA-DRA 0.2 7.8e−05*

Natural killer cell KIR2DL1 0.041 0.43

KIR2DL3 0.2 0.00015*

KIR2DL4 0.23 5.1e−06*

KIR2DS4 0.073 0.16

KIR3DL1 0.015 0.78

KIR3DL2 0.15 0.0051*

KIR3DL3 0.12 0.017*

Neutrophils CCR7 0.058 0.26

CD11b (ITGAM) 0.34 9.6e−12*

CD66b (CEACAM8) 0.14 0.0067*

M-MDSC CD14 -0.38 7.5e−14*

PMN-MDSC ITGAM 0.34 9.6e−12*

FUT4 0.36 1.7e−12*

*, P<0.05. GEPIA, gene expression profiling interactive analysis; TAM, tumor-associated macrophage; MDSC, myeloid derived suppressor 
cell; M-MDSC, mononuclear MDSC; PMN-MDSC, polymorphonuclear MDSC.

contribute to the Treg enrichment in HCC TME.
The enrichment analysis revealed RACGAP1 was 

involved in cell division processes, which suggested its 
contribution to tumorigenesis. Yang et al. demonstrated 
that overexpression of  RACGAP1 contributed to 
tumorigenesis by promoting cytokinesis via Hippo/YAP 
signaling (9). Hippo-YAP pathway is regarded as a regulator 
of cell proliferation, contact inhibition, organ size and 
tumorigenesis. Interestingly, recent studies demonstrated 
YAP activation enhanced the initiation or maintenance of 
Treg differentiation in multiple tumors including gastric 
cancer, HCC and melanoma (48-50). Knockdown or 
knockout YAP decreased the expression of RACGAP1 and 

improved antitumor immunity. Therefore, we speculate 
RACGAP1 may promote tumorigenesis of HCC through 
immunosuppression mediated by YAP activation. 

This study has several limitations. Firstly, the correlation 
between RACGAP1 and prognosis factors was analyzed 
using online public databases, which requires clinical studies 
to validate the conclusion. Secondly, the analyses were 
mainly performed according to the expression of RACGAP1 
at the mRNA levels. Thirdly, the precise molecular 
mechanisms of RACGAP1 in immunosuppression need 
further studies to validate. 

We demonstrated positive correlation of RACGAP1 
overexpression with HCC prognosis and immune infiltration 
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in this study. Notably, we demonstrated that the immune 
suppressive effect of RACGAP1 was mediated by YAP 
activation. In summary, these results indicated that RACGAP1 
could serve as a molecular target for HCC therapy.

Conclusions

In this study, we determined the prognostic value 
of RACGAP1 for HCC patients. Overexpression of 
RACGAP1 was associated with unfavorable prognosis 
and immune infiltration in HCC, which indicated that 
RACGAP1 could be a molecular target for HCC.
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