Skip to main content
. 2024 Feb 26;6(6):1661–1677. doi: 10.1039/d3na01167d

Different kinds of Co3O4 made using multiple methods of synthesis are used for degradation of dyes.

S. no. Photocatalyst Catalyst amount (mg) Pollutant Dye conc. (mg L−1) Degradation (%) Time (min) Rate constant K (min−1) Synthesis method Light source References
1. Co3O4/TiO2 nanocomposite 1000 Ciprofloxacin (CIP) 10 100 60 0.0157 Sol–gel approach Visible 22
2. p–n Co3O4–TiO2 heterojunction 1000 Methyl orange 100 88 120 0.0097 Wet incipient impregnation method Ordinary visible light 13
3. Co3O4–TiO2 nanoparticles 50 Tetracycline (TC) and phenol (Pl) TC = 67.4, Pl = 85.6 180 TC = 0.01794, Pl = 0.01975 Sol–gel technique Sunlight 59
4. Co3O4–TiO2 nanohybrid 50 Methyl orange (MO) 10 76 300 0.28 Sol–gel methodology Solar 60
5. Co3O4/TiO2 nanorod arrays Methylene blue 10 MB = 60 530 0.91745 Photochemical deposition method 500 W Xe lamp 61
6. rGO-TiO2/Co3O4 nanocomposite 50 Methylene blue and crystal violet 10 120 Co-precipitation method 150 W tungsten lamp (with main wavelength at 465 nm) 62
7. 0D/2D Co3O4/TiO2 Z-scheme heterojunction 20 Enrofloxacin 20 95.6 100 0.0269 Hydrothermal method 500 W xenon lamp light source 63
8. p-Co3O4/n-TiO2 nanopine arrays Tetracycline hydrochloride (TC) 200 60 Hydrothermal method Visible light 64
9. Co3O4/TiO2 nanotube arrays (NTs) Methyl orange (MO) 4 × 10−5 M 92 90 0.027 Impregnating–deposition–decomposition method 50 W xenon lamp 65
10. p–n heterojunction (Co3O4/TiO2) Acetaminophen (ACE) 96.78 10 Simulate solar light illumination 66
11. Co 3 O 4 /TiO 2 nanocomposite 25 OR 25 83 6 0.2958 Hydrothermal Sunlight Present work