| 1. |
Co3O4/TiO2 nanocomposite |
1000 |
Ciprofloxacin (CIP) |
10 |
100 |
60 |
0.0157 |
Sol–gel approach |
Visible |
22
|
| 2. |
p–n Co3O4–TiO2 heterojunction |
1000 |
Methyl orange |
100 |
88 |
120 |
0.0097 |
Wet incipient impregnation method |
Ordinary visible light |
13
|
| 3. |
Co3O4–TiO2 nanoparticles |
50 |
Tetracycline (TC) and phenol (Pl) |
— |
TC = 67.4, Pl = 85.6 |
180 |
TC = 0.01794, Pl = 0.01975 |
Sol–gel technique |
Sunlight |
59
|
| 4. |
Co3O4–TiO2 nanohybrid |
50 |
Methyl orange (MO) |
10 |
76 |
300 |
0.28 |
Sol–gel methodology |
Solar |
60
|
| 5. |
Co3O4/TiO2 nanorod arrays |
— |
Methylene blue |
10 |
MB = 60 |
530 |
0.91745 |
Photochemical deposition method |
500 W Xe lamp |
61
|
| 6. |
rGO-TiO2/Co3O4 nanocomposite |
50 |
Methylene blue and crystal violet |
10 |
— |
120 |
— |
Co-precipitation method |
150 W tungsten lamp (with main wavelength at 465 nm) |
62
|
| 7. |
0D/2D Co3O4/TiO2 Z-scheme heterojunction |
20 |
Enrofloxacin |
20 |
95.6 |
100 |
0.0269 |
Hydrothermal method |
500 W xenon lamp light source |
63
|
| 8. |
p-Co3O4/n-TiO2 nanopine arrays |
— |
Tetracycline hydrochloride (TC) |
— |
200 |
60 |
— |
Hydrothermal method |
Visible light |
64
|
| 9. |
Co3O4/TiO2 nanotube arrays (NTs) |
— |
Methyl orange (MO) |
4 × 10−5 M |
92 |
90 |
0.027 |
Impregnating–deposition–decomposition method |
50 W xenon lamp |
65
|
| 10. |
p–n heterojunction (Co3O4/TiO2) |
— |
Acetaminophen (ACE) |
— |
96.78 |
10 |
— |
— |
Simulate solar light illumination |
66
|
|
11.
|
Co
3
O
4
/TiO
2
nanocomposite
|
25
|
OR
|
25
|
83
|
6
|
0.2958
|
Hydrothermal
|
Sunlight
|
Present work
|