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There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a
highly lethal malignancy with increasing incidence! and poor prognosis2. Although targeting
tumor metabolism has been the focus of intense investigation for more than a decade, tumor
metabolic plasticity and high risk of toxicity have limited this anticancer strategy3. Here we

use genetic and pharmacological approaches in human and mouse /n vitroand in vivo models

to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine.

We find that this process, which is mediated through ornithine aminotransferase (OAT), supports
polyamine synthesis and is required for tumor growth. This directional OAT activity is usually
largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other
cancer types on arginine-derived ornithine for polyamine synthesis®®. This dependency associates
with arginine depletion in the PDA tumor microenvironment and is driven by mutant KRAS.
Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to
alterations in the transcriptome and open chromatin landscape in PDA tumor cells. The distinct
dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides
an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.

PDA generates polyamines from glutamine

Our prior work on nitrogen metabolism in PDA? led to the unexpected finding that the
amine nitrogen of glutamine is directly channeled into de novo ornithine synthesis (DNS),
independent of the urea cycle. This OAT- catalyzed reversible reaction is largely restricted
to early infancy in the direction of ornithine and arginine synthesis, whereas the majority

of adult tissues favor the reverse direction, degrading ornithine to generate glutamate® (Fig.
1a, Extended Data Fig. 1a). In adults, ornithine is classically produced from arginine via
arginase (ARG1/2), serving both as a substrate for citrulline synthesis in the urea cycle and
as precursor for polyamines, including putrescine, spermidine and spermine (Extended Data
Fig. 1a). These small polycationic molecules are involved in multiple fundamental processes
of cell growth and survival®.

We thus asked whether glutamine-derived, rather than arginine-derived ornithine serves as
an unconventional source for polyamines in PDA. Metabolic tracing in human AsPC-1

cells fed either 1°N(amine)-glutamine (:°N-GIn, Extended Data Fig. 1b) or 1°N4-arginine
(*°>N-Arg, Extended Data Fig. 1c) revealed that the glutamine nitrogen is not transferred

to citrulline, argininosuccinate, arginine or urea, consistent with incomplete urea cycle /n
vitro’, but is significantly detected in ornithine, confirming active DNS (Fig. 1b, Extended
Data Fig. 1d). Even if the urea cycle were active, this nitrogen would be donated to urea
(Extended Data Fig. 1b, black circles) and not ornithine (gray circles), making DNS the only
pathway for its transfer to ornithine (red circles). Glutamine rather than arginine (Extended
Data Fig. 1d, e) proved to be the main source for ornithine (40% M+1 and M+2 from
15N-GIn vs. 17% M+2 from 1°N-Arg) and its polyamine derivatives, putrescine (65% from
I5N-GIn vs. 16% from 1°N-Arg) and spermidine (45% from 1°N-GlIn vs. 9% from 1°N-Arg).
These results contrast with the recognized role of arginine as the main nitrogen donor for
ornithine and polyamines® and were confirmed in 29 human cancer cell lines representing

5 cancer types (pancreatic, breast, lung, colon and prostate) and 6 tissue-matched non-
transformed cell lines (Fig. 1b, ¢, Extended Data Fig. 1f, g). In human pancreatic ductal
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epithelial (HPDE) cells and all non-PDA cancer cell lines tested, arginine was the main
source of ornithine and putrescine with up to 87% ornithine and 80% putrescine derived
from 15N-Arg vs. 40% ornithine and 41% putrescine from 1°N-GlIn. In contrast, all PDA cell
lines, except for the non-KRAS driven BXPC3, preferred glutamine: up to 71% ornithine and
77% putrescine from 1°N-GIn vs. 35% ornithine and 26% putrescine from 1°N-Arg (Fig. 1b,
¢, Extended Data Fig. 1f, g). These results distinguish PDA, over 90% of which is driven

by KRASS, from normal pancreatic cells and other cancer types, in its unconventional usage
of glutamine as a source for polyamine synthesis. Importantly, this feature is not the simple
consequence of enhanced glutaminolysis?, as the 15N-GIn differential labeling pattern was
not only maintained but became further evident, following normalization to 1°N-glutamate
(Extended Data Fig. 1h, i); nor is it due to increased proliferative potential, given that lung,
colon, prostate and some breast cancer cells, displayed doubling times comparable to PDA
(Extended Data Fig. 2a). Moreover, despite common use by both DNS and proline synthesis
of the intermediate glutamate-y-semialdehyde (Extended Data Fig. 1a), only a mild increase
in 15N-GIn-derived proline was detected in PDA compared to other cancers (Extended Data
Fig. 2b), indicating that PDA favorably channels glutamate towards OAT for DNS. High
levels of arginine in the culture media (e.g. RPMI 1.15 mM) can cause reversal of the
argininosuccinate lyase (ASL) reaction (Extended Data Fig. 1c) leading to accumulation of
15N-Arg-derived argininosuccinate in vitro'9 (Extended Data Fig. 1e) where the urea cycle
is inactive’10 (Extended Data Fig. 1d). This phenotype is however not specific to PDA
(Extended Data Fig. 2c), and is abrogated in low plasma levels of arginine (64 pM, Extended
Data Fig. 2d, e), where PDA cells continue to favor glutamine over arginine for polyamine
synthesis (Extended Data Fig. 2f, g).

To extend our findings to an /n vivo setting, we infused the doxycycline (Dox)-inducible
mouse model of PDA8, p48-Cre-LSL-Kras®12D;p53f/l or jKrasG12D and non-tumor-
bearing controls (iKrasWT) with either 15N(amine)-Gln or 15N-Arg (Fig. 1d—g and Extended
Data Fig. 2h-1). In all mice, steady-state plasma enrichment (~60%) was achieved within
30 min (Extended Data Fig. 2h, j), with ~ 54% 1°N-GIn or ~30-40% 15N-Arg being
reached in normal pancreas and tumors over the course of 3 hours (Extended Data Fig.

2i, k). Strikingly, both the synthesis rates of °N-GIn-derived ornithine and putrescine (3.5-
to 5.9-fold) and their total pools (3 to 3.7-fold) were significantly higher in PDA tumors
(Fig. 1e, f), with glutamine contributing to 45% and 23% of ornithine and putrescine
labeled fractions, respectively, in PDA compared to its 19% and 3% contributions in normal
pancreas (Fig. 1g). In contrast, arginine was the major contributor to ornithine (51%) and
putrescine (16%) in normal pancreas, compared to PDA, where only 14% ornithine and

6% putrescine were arginine-derived (Fig. 1g, Extended Data Fig. 2I). These data confirm
predominant usage by PDA, compared to normal tissue, of glutamine-derived rather than
arginine-derived ornithine for /n vivo polyamine synthesis.

Arginine is depleted in PDA TME

Because nutrient availability influences metabolic behavior!1-13, we asked whether the
tumor microenvironment (TME) contributes to PDA predominant usage of glutamine over
arginine for polyamine synthesis. Targeted polar metabolite profiling of the plasma and
interstitial fluids (IF) of tumors (TIF) or normal pancreas (NIF) isolated from iKras®12P or
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iKrasWT mice, respectively (Fig. 1h) unveiled similarity in the metabolic composition of the
host plasma, independent of tumor presence (Extended Data Fig. 3a); this composition was
however quite distinct from that of the TIF12, with significant variance additionally detected
between the NIF and TIF (Extended Data Fig. 3a—d). Thus, major metabolic differences
associated with tumor presence in the pancreas occur within the TME, rather than the
circulation. Notably, compared to plasma, the levels of both arginine and glutamine were
lower in the NIF of control mice, indicative of usage (Fig. 1i); however, only arginine

and its urea cycle precursor citrulline were further depleted in the TIF, whilst glutamine
levels remained high as in plasmal2 (Fig. 1i). This arginine depletion was recently found to
result from arginine breakdown by ARG1-expressing myeloid cells in the PDA TME1415,
promoting a compensatory induction of de novo arginine biosynthesis in PDA cells!4. As
such, KRAS-driven PDA cells are able to survive and proliferate, albeit slowly, in medium
completely depleted of arginine# or containing levels comparable to those in TIF (2uM,
Extended Data Fig. 3g, ).

The low in vivo availability of arginine led us to hypothesize that PDA rewires its
metabolism to favor unconventional use of glutamine for polyamine synthesis. However,
the mechanisms for maintenance of such rewiring /n vitro despite abundant arginine in the
media (Fig. 1b, ¢) remain elusive and may involve epigenetic changes. Indeed, ornithine,
putrescine and spermidine were strikingly enriched in the TIF, but not in NIF (Fig. 1i)
mirroring their higher intracellular levels within tumors (Extended Data Fig. 3g—j). Our
findings thus validate the distinct usage of glutamine by PDA for polyamine synthesis, so as
to adapt to its arginine-depleted microenvironment.

DNS is a metabolic dependency in PDA

Although OAT mRNA levels are notably lower in human pancreas compared to other
tissues, they are induced in PDA tumors compared to normal pancreas (Extended Data Fig.
4a), as confirmed in 20 cancer and 3 tissue-matched normal cell lines (Extended Data Fig.
4b), and further validated by immunohistochemical staining in murine or human whole
tissue sections and in tumor microarrays (TMAS, Extended Data Fig. 4c—e). In addition to its
production from glutamine via OAT, or arginine via ARG, ornithine can be generated from
arginine via glycine amidinotransferase (GATM) in the creatine synthesis pathway (Fig.
2a, Extended Data Fig. 1a). To assess their distinct contributions to polyamine synthesis
and tumor growth, each of the three ornithine-synthesizing enzymes, was knocked down
individually in AsPC-1 cells and compared to knockdown of the rate-limiting enzyme of
polyamine synthesis, ODC1 (Extended Data Fig. 5a). ARG2 and not ARG1 was chosen,
because ARG1 is not expressed at detectable levels in PDA cells’. Silencing of OAT, but
not ARG2 or GATM completely suppressed the synthesis of 15N-GlIn-derived ornithine
(Fig. 2b), decreasing its total pools (3.5-fold, Fig. 2c). Similar to ODCI but unlike ARG2
or GATM, knockdown of OAT caused significant suppression of glutamine-derived 1°N-
putrescine (32-fold, Fig. 2b) resulting in ~7-fold-decrease in its total pools (Fig. 2c).
Although a mild 1.5 to 2-fold increase in 1°N-Arg-derived ornithine was observed upon
OAT knockdown (Fig. 2b), a compensatory increase was not reflected in total ornithine
levels (Fig. 2c), nor did it significantly affect the levels of labeled or total putrescine

(Fig. 2b, ¢) indicating that inhibition of DNS does not result in compensatory increase in
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arginine-derived ornithine or polyamine synthesis in PDA. In contrast, ODCI1 knockdown
led to the accumulation of its substrate ornithine (1.5- to 2.5-fold, Fig. 2c) and reversal of
the OAT reaction, towards ornithine degradation (Fig. 2b, left). This in turn resulted in a
compensatory increase in 15N-Arg-derived synthesis of ornithine (M+2) (Fig. 2b, left) and
urea (M+2) via ARG2, and the production of creatine and creatinine via GATM (M+2,
Extended Data Fig. 5b, c). The 1°N-Arg-derived ornithine was then channeled towards the
synthesis of glutamate (M+1) and proline (M+1) (Extended Data Fig. 5b, ¢). Thus although
genetic silencing of ODCI or OAT similarly suppresses polyamine synthesis, knockdown
of ODC1 but not OAT, results in compensatory induction of arginine-mediated ornithine
synthesis.

Consistent with DNS requirement for ornithine and putrescine synthesis, loss of OAT,
but not ARGZ2or GATM mimicked ODCI loss in suppressing AsPC-1 cell proliferation,
which was rescued with 10 pM putrescine (Extended Data Fig. 5d, e). This indicates

that OAT is required for PDA cell growth and OAT-mediated putrescine production is a
major contributor to growth maintenance. Similar results were observed in two additional
human PDA cell lines, MIA PaCa-2 and SUIT-2 (Extended Data Fig. 5f—j). Furthermore,
knockdown specificity was confirmed via ectopic expression of OAT or ODCJ1, which
rescued proliferation as well as total and 1°N-GIn-derived ornithine and putrescine levels
(Extended Data Fig. 6a—d).

In non-transformed HPDE cells, OAT silencing (Extended Data Fig. 6¢) further suppressed
the low levels of 1°N-GIn-derived ornithine and putrescine, while simultaneously inducing
a striking compensatory increase (7- to 9-fold) in synthesis from 15N-Arg (Fig. 2d). This
in turn led to a moderate increase (1.5- to 2-fold) in total ornithine and putrescine pools
(Fig. 2e), without affecting proliferation (Extended Data Fig. 6f). These data contrast

with the effects of OAT silencing in PDA, where no significant compensatory increase in
arginine-derived ornithine or putrescine is observed (Fig. 2b, c), and PDA cell proliferation
is severely mitigated (Extended Data Fig. 5d, €, j), underscoring the critical role of OAT in
pancreatic cancer but not normal cells, and its potential for therapeutic targeting.

To evaluate the /n vivo requirement for DNS in PDA, we generated and monitored the
growth of orthotopic xenografts derived from human PDA cells bearing knockdown of

OAT or ODC1. Silencing of OAT or ODC1 suppressed PDA growth (Fig. 2f, Extended

Data Fig. 6g, h), significantly reducing tumor size over a 4-week period (2.45 and 2.7-

fold, respectively). Similar to human PDA cells, knockdown of Oator Odcl in murine

cells derived from iKras®12P mice resulted in impaired glutamine-derived ornithine and
putrescine synthesis (Extended Data Fig. 6i—k) and suppressed /n vitro proliferative capacity,
which was rescued by putrescine supplementation (Extended Data Fig. 61). This was
mirrored in iKras cells with CRISPR/Cas9 loss of Oator Odcl (Extended Data Fig. 7a—

e), although ornithine did not accumulate as significantly as in human PDA cells upon
ODC1 loss (Extended Data Figs. 6k, 7d, compared to Fig. 2c), preventing strong suppression
of DNS or induction of arginine-derived ornithine synthesis (Extended Data Figs. 6j, 7¢
compared to Fig. 2b). Similar to human orthotopic xenografts in immune-deficient Ragl ™~
mice (Fig. 2f, Extended Data Fig. 6g, h) murine PDA orthotopic transplants derived from
Oat-null or OdeI-null iKras cells displayed suppressed /n vivo growth in syngeneic immune-

Nature. Author manuscript; available in PMC 2024 March 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Leeetal.

Page 6

competent mice (Extended Data Fig. 7f-h). These /in vitroand /n vivo results indicate

that the requirement for DNS and polyamine synthesis for PDA growth is cell-autonomous
and independent of a previously reported role for polyamines in inducing evasion from anti-
tumor immunity8. Consistent with the Jin vitro findings, both DNS and polyamine synthesis
were impaired in Oat KO transplant tumors, but only putrescine synthesis was impaired in
Odc1 KO tumors, as evidenced by depletion of 1°N-labeled and total levels of ornithine

and putrescine (Oat KO) or putrescine only (Odcl KO) following infusion of 15N-GlIn

into tumor-bearing mice (Fig. 2g, Extended Data Fig. 7i, j). Although ARG2 is required

for in vivo PDA growth’, the mechanisms of its effects involving enhanced nitrogen flux
through active urea cycle /n vivo, are distinct from that of OAT, which supports polyamine
synthesis both /n vitro and in vivo, independent of urea cycle activity. Indeed, neither ARG2
knockdown nor Arg2knockout led to polyamine depletion in human or murine orthotopic
transplants, respectively, but were rather accompanied by an indirect moderate increase in
polyamine levels (Extended Data Fig. 7k, I). Importantly, the specificity of Oatand OdcI
knockouts was validated /n vitro and in vivo. Overexpression of either gene in KO cell lines
completely rescued cellular proliferation as well as glutamine-derived synthesis of ornithine
(Oaf) and putrescine (Oatand Odcl) (Extended Data Fig. 7m—p), and this rescue was
reflected in the recovered /n vivo growth of Oar-KO orthotopic transplant tumors ectopically
expressing Oat, but not GFP, (Fig. 2h, Extended Data Fig. 7q).

We then asked whether uptake by PDA cells of polyamines from the TME could compensate
for decreased intracellular levels, potentially hindering the success of /n vivotargeting

of polyamine synthesis®-17. We found that impaired DNS, which results in depletion of
intracellular and intratumoral ornithine and putrescine pools (Fig. 2b, ¢, g, Extended Data
Fig. 7c, d, j), leads to a similar decrease in the TIF of orthotopic Oa#null tumors, which

is then rescued by ectopic Oatexpression (Fig. 2i, Extended Data Figure 7r). These results
indicate that polyamines present in the TME are mostly derived from PDA cells, and not
from non-cancer cells, providing a therapeutic window for specific and efficient targeting of
PDA simply via OAT inhibition.

KRAS drives polyamine synthesis in PDA

An in silico search for putative transcription factor (TF) motifs common to all four key
polyamine synthesis genes in PDA (OAT, ODC1, SRM and SMS) revealed 6 potential
candidates conserved between humans and mice that are located near the transcriptional
start site of OAT: ZBTB14, SP1, KLF6, GTF2IRD1, CHURCH1, EGR1 (Extended Data
Fig. 9a, b). Because MYC, a KRAS responsive gene, can transcriptionally induce ODC1
in lymphomal8, we also validated its role, and found it only mildly affects Srm expression
(Extended Data Fig. 9¢). Silencing of K776 however, but none of the other TFs, significantly
decreased the expression of Oat, Odcl, Srm, Sms, but not Arg2 (Extended Data Fig.

9d, e). These effects were abrogated upon Kras©Z2P extinction (Fig. 3g, Extended Data
Fig. 9f), indicating that KIf6 is a downstream effector of Kras®12D, likely at the post-
transcriptional level as K/f6 mMRNA levels were only mildly decreased (Extended Data
Fig. 9g). Consistently, loss of K/f6 suppressed glutamine-derived but not arginine-derived
ornithine or putrescine levels, even in the presence of Kras@Z2P (Fig. 3h, Extended Data
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Fig. 9h). Thus KIf6 is a key player in Kras-driven transcriptional upregulation of de novo
ornithine and polyamine synthesis (Fig. 3i).

Inhibition of OAT mitigates PDA growth

We compared the impact of pharmacological inhibition of OAT to that of ODC1, on

PDA growth. We used the ODC1 inhibitor difluoromethylornithine (DFM0)19:20, which
failed as a single therapeutic agent in cancer clinical trials but displays more promise in
chemoprevention?L, In comparison, we used 5-fluoromethylornithine (5-FMO), a specific
irreversible inhibitor of OAT22, previously used in zebrafish and mice to enhance ammonia
detoxification and protect the liver from toxic agents22-24. Treatment of human or murine
PDA cells with 5-FMO robustly suppressed, to almost undetectable levels, glutamine-
derived, but not arginine-derived, ornithine and putrescine synthesis (Fig. 4a, Extended Data
Fig. 10a), leading to ~3-fold reduction in total ornithine and ~10-fold or 3-fold reduction in
total putrescine pools in human or murine cells, respectively (Extended Data Fig. 10b, c);
conversely, only the synthesis of putrescine, whether derived from glutamine or arginine
(Fig. 4a, Extended Data Fig. 10a), was suppressed by DFMO, which effects on total
putrescine pools were comparable to those of 5-FMO (Extended Data Fig. 10b, c).

Similar to genetic OAT inhibition, the growth of both murine and human PDA cell lines was
impeded by 5-FMO (Fig. 4b). In contrast, and consistent with their preference for polyamine
synthesis from arginine, human breast cancer cells were not affected or mildly affected

by 5-FMO (Fig. 4c). Importantly, either loss of OAT or addition of putrescine (10 pM)
obliterated the anti-proliferative effect of 5-FMO on PDA cells (Extended Data Fig. 10d—f),
demonstrating specificity of 5-FMO in targeting OAT, which is required for polyamine
synthesis. In contrast, impairment of PDA cell growth by DFMO was either maintained

or became further exaggerated upon knockdown or knockout of ODCZ, indicating off-
target effects (Extended Data Fig. 10g, h). Moreover, unlike 5-FMO, DFMO significantly
suppressed the proliferation of HPDE cells, independent of ODCZ expression (Fig. 4d, €)
This indicates that DFMO indiscriminately affects cancer and non-cancer cells, and that the
drug anti-proliferative effects are non-specific to ODC1, perhaps partially contributing to its
limited success in clinical trials.

We then tested whether inhibition of polyamine biosynthesis could promote a compensatory
uptake of extracellular polyamines, attenuating its anti-cancer therapeutic potential®. Genetic
but not pharmacological inhibition of OAT (Extended Data Fig. 10i, j), led to a moderate
(~1.5-fold) increase in uptake within 1 hour of 13C-putrescine addition, indicating that
chronic rather than acute inhibition may be required for compensation to occur. Polyamine
blocking therapy (PBT), which combines polyamine biosynthesis inhibition with blockade
of polyamine transport, has recently emerged as a strategy to circumvent this compensatory
uptakel’. We thus tested the combinatorial effects of 5-FMO and the polyamine transport
inhibitor AMXT-150125-26 on PDA cell growth over 7 days. Whereas the presence of
putrescine had no effect in the absence of inhibitors (Extended Data Fig. 10k, grey

bars), indicating that DNS is sufficient to drive full proliferative capacity, putrescine
addition rescued a 2.3-fold growth suppression resulting from 5-FMO treatment (red bars).
AMXT-1501 alone however, led to a modest (1.3-fold) decrease in cell growth only in
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the presence of putrescine (blue bars), confirming drug specificity and indicating that the
contribution of extracellular polyamines to PDA growth is not fully compensated for by
DNS within this experimental timeframe. Consequently, combinatorial treatment with both
inhibitors led to an additive growth suppressive effect when putrescine was present (3.6-fold,
Extended Data Fig. 10k, grey vs. green bars). Because the total number and nature of
polyamine transport systems remain largely unknown® however, alternative mechanisms for
the observed transport inhibitor effects in the presence of putrescine (Extended Data Fig.
10k, green bars) cannot be currently ruled out. Moreover, although these results suggest

a promising potential of PBT, they require further validation in an /in vivo setting, where
intrinsic OAT expression in PDA cells is the major contributor to polyamines in the TME
(Fig. 2i), and its genetic loss alone is sufficient to significantly suppress tumor growth (Fig.
2f, Extended Data Figs. 6g, h and 7f-h). Consistently, pharmacological inhibition of OAT
in vivo caused a significant and dose-dependent suppression of PDA in iKras mice treated
with 5-FMO alone (~1.4-fold for 10mg/kg and 1.9-fold for 30mg/kg, Fig. 4f), and was
accompanied by almost complete suppression of ornithine and putrescine synthesis with ~
2.3 to 2.5-fold decreases in total pools, respectively (Fig. 4g, Extended Data Fig. 101, m).
Notably, no toxicity-related changes in liver weight were observed (Extended Data Fig. 10n)
and the treated mice maintained their body weights as compared to non-treated controls
(Extended Data Fig. 100), which experienced tumor-associated body wasting. Future in vivo
studies would further validate the effectiveness of combinatorial use of OAT inhibitors

with current therapeutic interventions in pancreatic cancer, as /7 vitro co-treatment of

PDA cells with 5-FMO and the chemotherapeutic agent gemcitabine led to an additive
anti-proliferative effect (Extended Data Fig. 10p).

Polyamines can alter the immune populations in the TME27-28 inducing evasion from anti-
tumor immunity16:29:30_ | ack of either Oator Odc1 in orthotopic iKras PDA tumors did not
alter the frequency of CD8* T cells, but did result in a modest yet significant increase

in CD4™ T cells, along with a reduction in immune suppressive granulocytic MDSCs
(GrMDSCs, Extended Data Fig. 11a), consistent with smaller tumor sizes and reduced
polyamine content in the TME (Fig. 2h, i). However, this is unlikely to be the major anti-
tumorigenic mechanism of decreased polyamine levels because silencing of OAT or ODC1
in human PDA cells resulted in a reduction in tumor burden when grown orthotopically

in RAG1™/~ mice that lack adaptive immunity and are hence devoid of T cells (Fig. 2f,
Extended Data Fig. 6g, h). Moreover, pharmacologic inhibition of OAT with 5-FMO (10 or
30mg.kg™1) in autochthonous immune-proficient iKras tumor-bearing mice failed to induce
any significant changes in any of the immune cell populations analyzed in the tumors or
tumor draining lymph nodes (Extended Data Fig. 11b—f). Although this may seem at odds
with recent findings by Puleston et al. 2021 who showed that polyamine synthesis is critical
for differentiation of Tregs from naive CD4* T cells?’, we propose that maintenance of
existing Treg populations -as is the case in this study- may be less dependent on polyamine
synthesis.

OAT mediates genomic alterations in PDA

Polyamines can affect transcription, translation®31, chromatin structure?7.28:32.33 gngd
epigenetically modulate the activation and specification of immune cells?7:28:32 However,

Nature. Author manuscript; available in PMC 2024 March 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Leeetal.

Page 9

how polyamines alter the open chromatin landscape and transcriptome in cancer cells,
particularly PDA, remains unknown. We used RNA-Seq to profile transcripts in human
AsPC-1 PDA cells that either express or lack ODC1, OAT or ARGZ, allowing us to

assess the differential contribution of glutamine-derived vs. arginine-derived polyamines

to transcriptional alterations in PDA. We found that the numbers of differentially expressed
genes (g < 0.05) common to cells with knockdown of OAT or ODC1 are approximately
double those shared among cells with ARG2or ODC1 knockdown (Extended Data

Fig. 12a). Unsupervised A-means clustering of differentially expressed genes with ODC1
knockdown (g < 0.05) demonstrated higher similarity in transcriptional changes in cells with
knockdown of OAT rather than ARGZ, with the latter being more similar to control (Fig.
4h). Given that ODC1 is the main rate-limiting enzyme for polyamine synthesis, these data
consolidate our findings of greater contribution for OAT rather than ARG2 in providing
ornithine for polyamine synthesis and further indicate significant effects of OAT inhibition
on polyamine-induced transcriptional changes.

To investigate a potential epigenetic basis for these transcriptional alterations, we performed
assays for transposase-accessible chromatin with high throughput screening (ATAC-Seq)
on the PDA cells and identified subtle but significant changes in chromatin access (g <
0.05) upon silencing of ODC1I, including gains and losses at 137 and 175 enhancer regions,
respectively (Extended Data Fig. 12b). Zooming into the largest clusters of differentially
expressed genes that hold consistent common changes upon ODCZ and OAT knockdown
(Fig. 4h, cluster I: 561 genes and cluster V: 403 genes), we found that reduced mRNA
levels for ODC1 and OAT but not ARGZ2knockdown, are concordant with decreases in
chromatin access in cluster | (Fig. 4i) and vice versa in cluster V (Extended Data Fig. 12c),
implying a role for OAT but not ARG2 in polyamine-driven alterations in chromatin access
that correspond to significant changes in gene expression.

Gene set enrichment analysis (GSEA) on all 2,698 differentially expressed genes in PDA
cells with ODCZ1 knockdown (Fig. 4h) identified top 18 negatively enriched pathways
involving 122 genes related to cellular proliferation, differentiation, response to growth
factors, cytokines and response to starvation (Fig. 4j, Extended Data Fig. 12d, e), consistent
with suppressed tumor growth upon OAT or ODC1 silencing (Fig. 2, 4, Extended Data
Figs. 5, 6, 7). About half of these genes (58/122) form part of cluster | (Fig. 4h), and their
expression correlates with nearby (< 25kb) chromatin accessibility (Fig. 4i, dark blue dots,
Extended Data Fig. 12f). Importantly, expression of a randomly selected sample (7 genes)
from this group can be restored upon supplementation with putrescine (Extended Data Fig.
12g), further confirming a significant role for OAT but not ARG2 in polyamine-driven
transcriptional and epigenetic changes related to PDA growth.

Altogether, these results highlight a distinct dependency of PDA on glutamine-derived
ornithine for polyamine synthesis. This dependency contrasts with that of the majority of
normal tissues and other cancer types, which rely on arginine-derived ornithine. Because
polyamines are involved in fundamental cellular processes that are critical for both normal
and tumor cells, the unique dependency of PDA on OAT-mediated DNS provides a specific
and effective strategy to tackle pancreatic cancer with minimal toxicity.
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Discussion

We propose that PDA dependence on glutamine-derived DNS stems from both its major
oncogenic driver KRAS and its TME arginine depletion!2. The latter is consistent with PDA
enrichment with myeloid-derived ARG114.15 but could also result from PDA reliance on
protein and amino acid turnover34, enhancing flux into the urea cycle’ for the disposal of
excess nitrogen and the use of arginine for protein synthesis. This would then direct the
OAT-catalyzed reaction, as in infancy and the adult fasting intestine®, towards ornithine
synthesis from glutamine, which is abundant in the TME22 (Fig. 1i).

Therapeutic failure of ODCL1 inhibition in the clinic was attributed to a compensatory
increase in polyamine uptake by cancer cells, with current efforts directed towards
concomitant inhibition of polyamine transport®17. We find however that PDA cells are the
major contributors to TME polyamines via DNS and propose that the limited effectiveness
of DFMO may have stemmed from its off-target effects, potential harm on normal cells3®,
and poor pharmacokinetics. The latter may partly result from DFMO rapid /n vivo
clearance3® and the short half-life (~20 min) of its target ODC137, which contrast with a
more stable OAT protein (~24 h half-life)38 and slower clearance of its inhibitor 5-FMO?22.

Although ODCL1 inhibitors with higher specificity could be developed, this enzyme is also
required for polyamine synthesis in normal cells. In contrast, OAT presents as a more
attractive target, with its inhibition suppressing polyamine levels in PDA but not normal
cells, without inducing compensatory increases in arginine-derived polyamine synthesis.
It is noteworthy that OAT deficiency causes gyrate atrophy, a rare autosomal recessive
disorder that can lead to vision loss by mid to late adulthood®39. However, given the
slowly progressing nature of this disease, and that it takes decades for ocular lesions

to manifest, acute systemic inhibition of OAT is expected to be safe and effective, as
reported in mice22:23.40.41 With the exception of one study linking murine hepatocellular
carcinoma (HCC) to enhanced Oat-mediated ornithine degradation to generate glutamine?2,
no correlation had previously been reported between OAT and cancer and none were
described in the direction of DNS and polyamine synthesis, perhaps justifying the lack

of 5-FMO testing in cancer patients.

Importantly, MEK activation may not fully account for all downstream metabolic effects

of KRAS in PDA, including OAT activity. MEK inhibition could also result in release

of negative feedback loops, activating compensatory pro-tumorigenic signaling®3, partially
explaining lack of efficacy in using AZD6244 as a single agent or a second-line treatment

in patients with advanced pancreatic cancer*4°, Instead, available OAT inhibitors such as
5-FMO, or more potent specific inhibitors developed in the future could be used as a novel
strategy, in combination with chemotherapy, to treat pancreatic cancer patients with minimal
toxicity.
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Methods

Reagents.

Antibodies for immunoblots, immunostaining and flow cytometry are described in Sl Table
1; Chemicals and other reagents are described in Sl Table 2.

Animal work.

All animal studies and procedures were approved by and performed in compliance with

the Institutional Animal Care and Use Committee (IACUC) at Boston Children’s Hospital.
No statistical methods were used to predetermine sample size. For experiments using
autochthonous models of PDA, the established Dox-inducible 7etO-L SL-KrasC2P:ROSA-
tTA;p53"1:p48-Cre or i Kras®22P mouse model was used®. iKras®12P mice and littermates
harboring p53™"1:p48-Cre alleles but not 7etO-L SL-KrasG12P transgene, herein termed
iKrasWT were administered 2g. L1 Dox in the drinking water at 5 weeks of age for 3
weeks, prior to euthanasia and tissue harvest.

For human orthotopic xenografts of PDA (except those with or without ARGZ expression),
500,000 AsPC-1 cells suspended in 25 ul 33% Matrigel (BD Biosciences 356231) in
HBSS were injected into the pancreas of 67 week-old male immune-deficient B6.129S7-
Rag1tmIMom/j mice termed Ragl™~ mice (Jackson Laboratory #002216) and grown for 4
weeks; For xenografts of PDA with ARGZsilencing, 100,000 AsPC-1 cells were injected
into the pancreas of 12—-14 week old male Ragl™~ mice and grown for 6 weeks. For
immune-proficient murine orthotopic transplant models of PDA (except those with or
without ARG2 expression), 500,000 iKras cells previously derived from male iKras¢12D
mice were injected into the pancreas of 10-week old male mice of the same strain that
however lack p48-Cre. Transplant mice were then administered 2g. L™ Dox in the drinking
water to maintain tumor Kras®12D expression. For murine orthotopic transplants that lack
or express Arg2, Arg2** or Arg2~~ KPC cell lines previously derived from KPC; Arg2*/*
or KPC; Arg2™~ mice’, respectively, were injected (2.5 x 10° cells) into the pancreas of
11-13 week old male C57BL/6J-129 svJae mice and grown for 2 weeks. KPC;Arg2*/* and
KPC;Arg2~/~ mice had been generated by crossing KPC#6:47 mice (LSL-Kras®12D;p53fl/
fl:ndx-1-Cre) to Arg2~/~ mice (Arg2tM1Weo/3 Jackson Laboratory #020286). In all in vivo
experiments, tumor burden did not exceed the maximum permitted by the IACUC, that is
15% of the mouse body weight or 1.5 cm in combined sum of diameters of all tumors (if
multiple are present), whichever comes first. The experiments were not randomized. The
investigators were not blinded to allocation during experiments or outcome assessment.

Ultrasound imaging.

In vivo ultrasound imaging (Vevo 3100, FujiFilm, MS559D Scanhead) was used to detect
and quantify pancreatic tumors in mice at the Small Animal Imaging Lab (SAIL) at Boston
Children’s Hospital. An abdominal 3D scan was performed to measure tumor dimensions
and volume as previously described?8.
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Mice were euthanized at the beginning of the light cycle after retroorbital blood withdrawal
for plasma preparation. Tumors were harvested and weighed, followed by measurement

of their dimensions (termed a, b and ¢) with a caliper and tumor volume was estimated
according to the ellipsoid formula®®: 4/3 x 1t x (a/2 x b/2 x ¢/2). Tumors were then either
immediately frozen in liquid nitrogen or fixed in formalin for subsequent processing.

Isolation of interstitial fluid.

Cell culture.

Pancreatic tumor interstitial fluid (TIF) and normal pancreas interstitial fluid (NIF) were
collected by centrifugal methods as described previously!2. Rapidly dissected tumors and
pancreas were quickly rinsed in saline, blotted on filter paper (Whatman, 1001) and placed
on top of a 20 um nylon filter (Spectrum Labs, Waltham, MA, 148134) followed by
centrifugation (10 min, 200 x g, 4 °C). Interstitial fluids and tissues were collected and
snap-frozen in liquid nitrogen for LC-MS analysis. NIFs were pooled from 2—3 healthy
pancreas to get sufficient amounts (>10 pL) for LC-MS analysis, whereas TIF did not
necessitate pooling (each tumor yielded 20-150 pL).

Human pancreatic, breast, colon and prostate cancer cell lines were obtained from the
American Type Culture Collection or ATCC (pancreatic: AsPC-1, BxPC-3, HPAC, MIA
PaCa-2, PANC-1 and SW1990; breast: BT-474, MCF7, MDA-MB 157, MDA-MB 361,
T-47D and ZR-75-1; lung: A549, Calu-1, NCI-H596, NCI-H838, NCI-H1299 and NCI-
H1975; colorectal: SW480, SW620; prostate: PC3, DU-145); except for pancreatic cancer
cells SUIT-2 which were from the Japanese Collection of Research Bioresources; PA-
TU-8902 and PA-TU-8988T were from the German Collection of Microorganisms and

Cell Cultures; PI3K-wild-type and mutant isogenic colorectal cancer cells HCT116WT

and HCT116P!K3CA a5 well as DLD-1WT, were kindly provided by Bert Vogelstein®°

(Johns Hopkins University, MD). Non-transformed immortalized cells were obtained as
follows: human pancreatic ductal epithelial (HPDE) cells were a gift of Ming-Sound Tsao

at University Health Network, Princess Margaret Hospital (Toronto, Canada); mammary
epithelial cells (MCF10A) were from the Karmanos Cancer Institute (Michigan, USA); lung
bronchial epithelial (BEAS-2B), colonic epithelial (FHC) and prostate epithelial (RWPE-1
and RWPE-2) cells were from ATCC. Prevalent genetic mutations in the above cancer cell
lines are described in SI Table 3. All cancer cell lines were grown in RPMI-1640 (Sigma)
supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin (Gibco). HPDE,
RWPE-1 and RWPE-2 were grown in keratinocyte serum-free media supplemented with 5
ng ml~1 of human recombinant epidermal growth factor and 50 mg ml~1 of bovine pituitary
extract (Invitrogen, 17005042); BEAS-2B was grown in bronchial epithelial cell medium
(Lonza, CC-3170). MCF10A and FHC cells were maintained as previously described®1:52,
Human PDA cell lines were authenticated by STR profiling at ATCC. Murine PDA cell lines
(iKras #1 and iKras #2) were established from two independent iKrasGZ2P,p53% primary
tumors as previously described® and maintained in RPMI-1640 medium containing 10%
fetal bovine serum, 1% penicillin-streptomycin (Gibco) and 1pg mi~ of Dox. The same Dox
concentration (1ug ml~1) was used to induce gene knockdown in Tet on-shKRAS vs. Tet on-
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shGFP cells. All PDA cell lines tested negative for mycoplasma using LookOut Mycoplasma
PCR Kit (Sigma, MP0035). Cells were maintained at 37 °C in a humidified incubator with
5% CO», and passaged every 48h to 72 h so they do not exceed 70% confluency.

Cell proliferation and cell death assays.

Cells were seeded on day 0 in their respective maintenance culture medium in 96-well
plates, at a density of 1,000 cells per well except for MIA PaCa-2, PA-TU-8988T, SUIT-2
(500 per well) and iKras cells (200 per well), and were grown for 7 days. On day 1, the
cells were washed twice with serum-free RPMI medium and incubated in their experimental
medium supplemented with 10% dialyzed FBS and propidium iodide (P1, 2 pg mi~1) for
up to 7 days without media replenishment. Cells were imaged and counted on the indicated
days using the Celigo Image Cytometer (Nexcelom Bioscience). For live cell proliferation
curves, the number of Pl-negative cells on each day was normalized to day 1 and fitted

to the exponential growth equation Y=Y oe*X) to obtain the rate constant (k), where X is
time (in hours) and Y is fold change in live cell number. Then, the equation DT = In(2)/k
was used to compute doubling time. For growth inhibition curves upon drug treatment, fold
changes in live cell number for 7 days (day7/day1) of PDA cells treated with inhibitors
were normalized to fold changes of untreated control cells. Dead cells were presented as
percentage of Pl-positive cells per total cell number.

Infusion of labeled metabolites.

Mice were infused via the jugular vein®3 with 1°N(amine)-glutamine (99% enrichment;
Cambridge Isotope Laboratories) as a bolus of 0.28 mg g~1 body weight (0.3 ml)
administered over 1 min, followed by continuous infusion of 0.005 mg g~ min~1 for

180 min; alternatively, mice were infused with1°N-arginine (98% enrichment; Cambridge
Isotope Laboratories) as a bolus of 0.084 mg g1 body weight (0.3 ml) administered over 1
min, followed by continuous infusion of 0.0015 mg g~! min~1 for 180 min. Tail blood was
collected at 30 min intervals and used to quantify plasma enrichment of labeled nutrients

by LC-MS. Mice were euthanized after 1h-, 2h- or 3h-infusion and the tumors or normal
pancreas rapidly harvested, weighed and snap-frozen in liquid nitrogen for LC-MS analysis.

Metabolic tracing and analyses.

In all tracing studies, M+1 and M+2 indicate mass shifts of 1 or 2 nitrogens, respectively.
For in vitro 1°N-based stable isotope labeling studies, cultured cells were incubated for

24 h with ®N(amine)-glutamine or 1°Ny-arginine in RPMI medium supplemented with
0.1% FBS and 100 ng mI~1 IGF-1, in lieu of 10% FBS, so as to exclude serum arginase
activity, as previously established”. Cells were then rinsed in ice-cold PBS and metabolites
extracted with ice-cold 80% methanol, vortexed and centrifuged (10 min, 13,300 x g, 4
°C). Supernatants were transferred and dried with Speedvac. Dried extracts were suspended
in 100 plI of extraction solution containing isotope-labeled internal standards (acetonitrile:
methanol: formic acid at 75:25:0.2, v:v:v), 0.2 ng pl~1 d8-phenylalanine and d8-valine
followed by centrifugation and analysis of the supernatant by LC-MS.

For in vivo tracing of 15N(amine)-glutamine or 1°N-arginine: tissues (20-30 mg) were
homogenized using a Qiagen TissueLyzer Il in water at 1:4 (w:v). 10 pl of each tissue
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homogenate was combined with 90 ul of the above extraction solution and the supernatants
were analyzed using a liquid chromatography tandem mass spectrometry (LC-MS) method
designed to measure polar metabolites as described previously®#. Briefly, hydrophilic
interaction liquid chromatography (HILIC) analyses of water-soluble metabolites in the
positive ionization mode were conducted using an LC-MS system comprised of a Shimadzu
Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled to a Q Exactive mass
spectrometer (Thermo Fisher Scientific; Waltham, MA). The samples were centrifuged (10
min, 10,000 x g, 4°C), and the supernatants were injected directly onto a 150 x 2 mm,

3 um Atlantis HILIC column (Waters; Milford, MA). The column was eluted isocratically
at a flow rate of 250 pl min~1 with 5% mobile phase A (10 mM ammonium formate

and 0.1% formic acid in water) for 0.5 min followed by a linear gradient to 40% mobile
phase B (acetonitrile with 0.1% formic acid) over 10 min. MS analyses were carried

out using electrospray ionization in the positive ion mode using full scan analysis over
55-750 m/z at 70,000 resolution and 3 Hz data acquisition rate. Other MS settings were:
sheath gas 40, sweep gas 2, spray voltage 3.5 kV, capillary temperature 350°C, S-lens

RF 40, heater temperature 300°C, microscans 1, automatic gain control target 1e6, and
maximum ion time 250 ms. All 15N-isotopologues were corrected for natural abundance and
normalized by protein concentration, and are indicated in figures as “relative abundance”
comparing each metabolite among the different conditions. Abundance of total pools in the
15N-isotope tracing experiments indicates the sum of all 1°N-labeled isotopologues corrected
for natural abundance and 14N-isotopologues (unlabeled) that are then normalized to protein
concentration.

For global steady-state metabolite profiling, data were generated by Metaboanalyst 4.05),
median-normalized, log-transformed, mean-centered and divided by the s.d. of each
variable.

Generation of cells with stable gene knockdown or knockout.

Sequences for the short hairpin (sh)RNAs and single guide (sg)RNAs used in this study are
described in Sl Table 4; For generation of PDA and HPDE cells with stable knockdown

of the indicated genes, lentiviral supernatants produced from pLKO plasmids encoding

the corresponding hairpins were used, and infected cells were selected for at least 7 days
with 2 pg mL=1 puromycin or 10 mg mL~1 blasticidin. For generation of PDA cells with
Dox-inducible KRAS knockdown, two distinct human KRAS hairpins were cloned into
Tet-pLKO-puro plasmid (21915; Addgene). AsPC-1 and MIA PaCa-2 were infected with
lentiviral supernatants from the above constructs (Tet on-shKRAS #1 and #2) and selected
with puromycin.

To generate CRISPR/Cas9-mediated gene knockout in iKras cells, sgRNAs were cloned
into the empty backbone construct pSpCas9(BB)-2A-Puro (PX459). 24 h after seeding,
iKras cells were transfected with either the PX459 guide construct or empty PX459
plasmid for generation of sgCtrl cells using FUGENE 6 (Promega, E2691) according to

the manufacturer’s protocol. Two days after transfection, cells were selected for 72 h with 2
pg mL~1 puromycin and then allowed to recover for 1 week in medium without puromycin
before clonal selection. Individual clones that survived selection were validated by qPCR
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and Western blotting. At least two distinct single clones of OdcZ KO (#3 and #10) and Oat
KO (#10 and #11) were expanded and used in experiments.

Ectopic expression in PDA cells.

For ectopic re-expression of ODCZ or OAT in human PDA cells with stable knockdown of
either gene, cDNAS resistant to the respective hairpins were used as follows. Human ODC1
cDNA sequence from pCMV6-ODC1-Myc-DDT (Origene, RC 206858) was subcloned into
the lentiviral vector pLIM15-neo-GFP (a gift from D.M. Sabatini, Whitehead Institute,
Cambridge, MA) using the Agel/EcoR1 restriction sites, thus excising the GFP cDNA
from the vector. Because the hairpin sequence is in an intron of ODCI gene, no further
modification was made to this cDNA, which is inherently resistant to the hairpin. Human
OAT cDNA sequence from pCMV6-OAT-Myc-DDT (Origene, RC201610) was subcloned
into the lentiviral vector pLIM15-neo-GFP as described above and the target sequence in
the cDNA modified by mutating three codons for threonine 26 from ACA to ACT, valine
28 from GTT to GTA and threonine 30 ACT to ACA using site-directed mutagenesis
(QuikChange 11 Site-Directed Mutagenesis Kit, Agilent 200521).

For expression of Odc and Oatin knockout iKras cells, mouse OdcZ cDNA (Clone

ID: 2645291) from pCMV-SPORT6-0dcl (Horizon) and mouse OatcDNA (Clone ID:
3498240) from pCMV-SPORT6-0at (Horizon) were subcloned into the lentiviral vector
pLJIM15-neo-GFP as described above and stably transfected into iKras OdcZ KO and Oat
KO cells. Because prior guide RNA expression for Crispr/Cas9 knockout in iKras cells was
only transient, no further modification was made to the cDNAs as they would not be a
target for Crispr/Cas9 deletion. Lentiviral supernatants were generated by transfecting the
above constructs into HEK 293T cells and used to infect target cells. The infected cells were
selected for at least 7 days with 1200 pg ml~1 G418.

Quantitative PCR or qPCR analysis.

Total mMRNA was isolated using RNA STAT-60 according to the manufacturer’s instructions,
treated with DNase | (RNase-free) and reverse-transcribed into cDNA with random
hexamers using the SuperScript Il First-Strand Synthesis System (Invitrogen, 18064071).
The validated qPCR primers used in this study are listed in SI Table 5. gPCR reactions

were performed in triplicates using an Applied Biosystems ViiA 7 Real-Time PCR system
as previously decribed®8. Reactions contained cDNA resulting from reverse transcription

of 25 ng total RNA, 150 nM of each primer and 5 pl 2X-Jump Start SYBR Green PCR

Mix (Invitrogen) in10 pl total volume. Relative mRNA levels were calculated using the
comparative Ct (cycle threshold) method and normalized to cyclophilin.

Immunoblotting.

For western blotting, cells were rinsed once in ice-cold PBS and collected in lysis

buffer containing 50 mM HEPES KOH, pH 7.4, 40 mM NaCl, 2 mM EDTA, 1.5 mM
orthovanadate, 50 mM NaF, 10 mM pyrophosphate, 10 mM glycerophosphate, EDTA-free
protease inhibitors and 1% Triton X-100. Proteins from total lysates were resolved by 8—
12% SDS-PAGE, transferred to polyvinylidene difluoride (PVDF) and the blot was exposed
to film. B-Actin was used as loading control.

Nature. Author manuscript; available in PMC 2024 March 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Leeetal.

Page 16

Immunohistochemistry and analysis of PDA samples.

Formalin-fixed paraffin-embedded murine PDA tumors or normal pancreas, and human
PDA tumors (8 cases, 4 represented) or human PDA tissue microarrays (TMAS, 31 cases)
with 2—4 cores per case, were sectioned and stained with OAT antibody according to the
manufacturer’s protocol. For human samples, patients seeking treatment at Massachusetts
General Hospital (MGH), and having had no neoadjuvent treatment, consented that any
resected tissues, which would otherwise be discarded following diagnosis, be used instead
for research purposes (Institutional Review Board or IRB Protocol Number 2003P001289).
Patients were provided this option irrespective of age, sex/gender, race of any other bias that
could influence study outcomes. A pathologist assessed semi-quantitatively and in a blinded
fashion, the expression of OAT using H score based on the intensity (0-3) of cytoplasmic
staining and extent (%) of positive tumor cells (3 x percentage of strongly staining cells + 2
x percentage of moderately staining cells + 1 x percentage of weakly staining cells) ranging
from 0 to 300.

Analysis of public data.

Gene expression plots in Extended Data Fig. 4a were obtained using RNA sequencing data
of tumors and normal samples from the TCGA and GTEX projects that were analyzed on the
Gene Expression Profiling Interactive Analysis or GEPIAS” web server: http:/gepia.cancer-
pku.cn. For each cancer type, the expression data were first logo(TPM+1) transformed

for differential analysis and the log,FC (fold change) was defined as median(tumor) -
median(normal). One-way ANOVA was conducted and genes were considered differentially
expressed using a log,FC cut-off of 1 and p-value cut-off of 0.01.

Identification of transcription factors regulating ornithine and polyamine synthesis genes.

RNA-Seq.

Transcription factors and their binding sites were predicted using TRANSFAC database
(version 1.9) with the MATCH tools (FMatch for analysis of a set of genes; Match for
analysis of a single gene). The default =500 — +100 bp from of the transcription start site of
each gene (OAT, ODC1, SRMand SMS) was analyzed.

250,000 cells per 10 cm plate were seeded overnight, washed with PBS and incubated in
RPMI medium supplemented with 0.1% serum and 100 ng ml~1 IGF-1 for 24 h. Total
RNA was isolated and purified using miRNeasy Mini Kit (Qiagen-217004) and sent to
Novogene Corporation, Inc. (Sacramento, CA) for sequencing library preparation (polyA).
The libraries were sequenced with the NovaSeq 6000 platform, pair-end mode of 150 bp
to obtain 30 million read sequencing depth per sample. Sequence reads were aligned to a
transcriptome reference by STAR aligner (version 2.7.8a)°8 using the GRCh38 reference
genome supplemented by read-length-specific exon-exon junction sequences (GENCODE
V35 gene annotations) and bam files were generated using Samtools (version 1.11)°.
Differential expression analysis was performed in a pairwise manner across all conditions
using DESeq260. To quantify exon and gene expression, reads per kilobase per million
mapped reads (RPKM) metrics was calculated using DESeq?2 total normalized count.
Pathway enrichment analysis was performed using GSEA (version 4.1)%1 and Molecular
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Signature Database (MSigDB) version 7.4, Gene Ontology (GO) sets c5.all. All figures were
generated by R statistical softwareb2. In heatmaps, red indicates higher expression, blue
lower expression, relative to the mean expression level of each gene across all groups.

100,000 cells per well in 6-well plate were seeded overnight, washed with PBS and
incubated in the optimized RPMI medium that was supplemented with 0.1% serum and 100
ng mi-1 IGF-1 for 24 h. Cells were then trypsinized and 50,000 single cells were washed
twice in ice-cold PBS, resuspended in 50 pl ice-cold ATAC lysis buffer (10 mM Tris-HCI,
pH 7.4, 10 mM NaCl, 3 mM MgCls, 0.1% (v/v) Igepal CA-630), and centrifuged at 500

g at 4°C to isolate nuclear pellets that were treated in 50 L reactions with Nextera Tn5
Transposase (Illumina, FC-121-1030) for 30 min at 37°C. Transposed DNA was purified
using a PCR purification kit (Zymo research, D4034) and then amplified immediately in 50
ul reactions with high-fidelity 2X PCR Master Mix (New England Biolabs) using a common
forward primer and different reverse primers with unique barcodes for each sample. From
the reaction mix, 45 ul was kept on ice after 5 cycles of PCR, while 5 pl was amplified by
gPCR for 20 additional cycles; the remaining 45 pl was then amplified for the 5-7 cycles
required to achieve 1/3 of the maximum gPCR fluorescence intensity. Amplified DNA was
purified over columns and primer dimers (< 100 bp) were removed using AMPure beads
(Beckman Coulter), after which the amplified DNA was quantified using High-sensitivity
Qubit dsDNA Assay Kit (ThermoFisher) and DNA size distribution was determined using
High Sensitivity DNA Assay on Agilent Bioanalyzer. Libraries were sequenced using
NovaSeq 6000 platform (Novogene Corporation, Inc. Sacramento, CA) to obtain 150 bp
pair-end reads. Sequence reads were aligned to GRCh38 using Bowtie2 (version 2.4.2)63
and converted to bam format by Samtools (version 1.11). Sequence reads that aligned to

the same genomic coordinate were counted only once in the profile generation. Enriched
regions were identified using MACS264 in each data with g-value threshold of 0.01. MACS2
identified enriched regions overlapping with ENCODES® blacklist regions were eliminated.
The remaining regions across all data were then merged into a single catalogue of open
chromatin regions. Bedtool (version 2.30)56 and DESeq2 were used to calculate the number
of reads in each region for each library and determine differentially marked regions (q <
0.05) across all samples, respectively. Normalized signal across each region was calculated
as reads per kilobase per million mapped reads (RPKM) using DESeq2 normalized total
reads. Heatmap of ATACseq signal was generated using Deeptools (version 3.5.1)%7 with 1X
normalization.

Flow cytometry.

Tissues were prepared for flow cytometry analysis using the protocol adapted from previous
work®8. Briefly, pancreas was excised, weighed, then pancreatic draining lymph nodes were
removed and pancreatic head and tail were separated. Samples were minced then placed

in RPMI-1640 containing collagenase type IV and soybean trypsin inhibitor at 37°C for

30 min. Tumors were filtered through a 40-micron cell strainer, washed with PBS and
centrifuged at 300g for 5 min. The cell pellet was resuspended in FACS buffer (PBS with
2% fetal calf serum) and stained with a master mix of antibodies purchased from Biolegend,
as described in Sl Table 1. Draining lymph nodes were crushed through a 40-micron
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cell strainer and resuspended FACS buffer for staining. Cells from pancreatic draining
lymph nodes, pancreas head and pancreas tail were incubated with extracellular staining
mix in FACS buffer for 30 min on ice, washed once with PBS and either resuspended

in 1% formalin/PBS for extracellular analysis or fixed, permeabilized and stained with
intracellular antibodies against specific cytokines (eBioscience Foxp3/Transcription Factor
Staining Buffer Set). Analysis was performed on a BD Fortessa flow cytometer using
FlowJo v10.8 Software (BD Life Sciences). Gating details are provided in Extended Data
Fig. 11 legend.

Statistical analysis.

Data are presented as mean + .s.d. or = s.e.m., unless otherwise indicated. For each /n

vitro assay, the number of biological replicates (3 to 8) per experiment, and the number

of independent experiments (2 to 6) are indicated within the legend. When comparing two
groups, a two-tailed non-paired Student’s #test was conducted, unless the data were paired,
S0 a paired #test was performed instead. For three or more groups, one-way ANOVA was
conducted, unless 2 independent variables existed (e.g. proliferation curves), so two-way
ANOVA was conducted. ANOVA was followed by post hoc Tukey’s multiple-comparison
test. p< 0.05 was considered statistically significant.
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Extended Data
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Extended Data Fig. 1 |. PDA favorsthe use of glutamine over argininefor polyamine synthesis.
a, Schematic depicting all 3 pathways leading to synthesis of the polyamine precursor

ornithine: De novo ornithine synthesis (DNS) via OAT in red, urea cycle via ARG2 in

yellow and creatine synthesis via GATM in purple. ARG, arginase; ASL, argininosuccinate

lyase; ASS1, argininosuccinate synthase 1; CPS1, carbamoyl-phosphate synthase 1;
GAMT, guanidinoacetate N-methyltransferase; GATM, glycine amidinotransferase; GLS,
glutaminase; GSA, glutamate-y-semialdehyde; a-KG, a-ketoglutarate; NOS, nitric

oxide synthase; OAA, oxaloacetate; OAT, ornithine aminotransferase; ODC1, ornithine
decarboxylase 1; OTC, ornithine transcarbamoylase; P5C, pyrroline-5-carboxylate; P5CS,
pyrroline-5-carboxylate synthase (product of ALDH18A1 gene or aldehyde dehydrogenase
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18 family member Al); PSCDH, pyrroline-5-carboxylate dehydrogenase (product of
ALDHA4A1 gene or aldehyde dehydrogenase 4 family member Al); PRODH, proline
dehydrogenase 1; PYCR, pyrroline-5-carboxylate reductase; SMS, spermine synthase; SRM,
spermidine synthase. b, ¢, Schematics tracing the fates of 15N-(amine) of glutamine (b)

or all 4 nitrogens of 1°N,-arginine (c) into ornithine and polyamine synthesis (left), or the
urea cycle (right). Circles in White: 12C; in Red (b) or Green (c): 1°N; in Gray: 1*N; in
Black: 14N when the urea cycle is off, as in PDA cells in vitro, but 1°N when the urea

cycle is on, as in PDA tumors /n vivo'. Thicker arrows indicate enhanced flux into DNS

and polyamine synthesis (b) or into generation of argininosuccinate, urea, ornithine and
polyamines (c). d, Percent 1°N-labeled metabolites in AsPC-1 cells fed 15N-(amine)Gln for
24 h. n= 6 biological replicates. e, Percent 15N-labeled metabolites in AsPC-1 cells fed

15N 4-Arg for 24 h. Consistent with urea cycle inactivity, only 1°N,-Arg-derived citrulline
(M+3), the result of nitrogen oxide synthase (NOS) activity, but not citrulline (M+2),
product of ornithine transcarbamoylase (OTC) in the urea cycle, was detected (see schematic
in c). Furthermore, arginine-derived 1°N-argininosuccinate (As, M+4) but not (M+2) was
detected, indicating reverse argininosuccinate lyase (ASL) reactionl, rather than transfer of
15N from citrulline via argininosuccinate synthetase (ASS1) in the urea cycle (see schematic
in €). n= 4 biological replicates. f, g, Percent labeled °N-ornithine (f) and 1°N-putrescine
(9) in 29 cancer cell lines representing 5 cancer types (PDA; BRCA: breast carcinoma;
LUAD, COAD and PRAD: adenocarcinomas of the lung, colon and prostate, respectively)
with tissue-matched normal cell lines, indicated by arrowheads, that were fed 1°N4-Arg

for 24 h. n= 4 biological replicates per cell line. h, i, Relative abundance of 1°N-labeled
ornithine (h) or 1°N-labeled putrescine (i) normalized to 15N-labeled glutamate in cell lines
fed 15N-(amine)GIn for 24 h, as described in Fig. 1b, c. 7= 4 biological replicates. M+1
and M+2 indicate a mass shift of 1 or 2 nitrogens, respectively. Data represent the mean

+ s.d. pvalues were obtained by one-way ANOVA, followed by Tukey test. Stars indicate
statistical significance between each cancer cell line and its tissue-matched normal cell
line/s. Data are representative of six (d), three (e) or two (f-i) independent experiments.
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Extended Data Fig. 2 |. Enhanced de novo ornithine synthesisis a distinct feature of PDA.
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a, Doubling times of cell lines in Fig. 1b, c. 7= 8 biological replicates. b, Percent labeled

15N-proline in 1°N-(amine)GIn-fed cells from Fig. 1b, c. 7= 4 biological replicates. c,

Percent labeled °N-argininosuccinate (M+4) in 1°N,-Arg-fed cells described in Extended
Data Fig. 1f, g. 7= 4 biological replicates. d, e, Percent 1N-labeled metabolites in AsPC-1
cells fed for 24 h, either 650 uM 1°N-(amine)GIn (d) or 64 pM 15N4-Arg () in the presence

of 64 UM unlabeled arginine (d) or 650 pM unlabeled glutamine (€). These amino acid

concentrations reflect levels found in human plasma. 77 = 4 biological replicates. f, g, Percent
labeled 1°N-ornithine and 15N-putrescine in 11 cancer cell lines representing 3 cancer types

(PDA; BRCA: breast carcinoma; LUAD, lung adenocarcinoma) with tissue-matched normal
cell lines (arrowheads), that were fed 1°N-(amine)GIn (f) or 1°N,-Arg (g) and maintained

for 24 h in plasma glutamine and arginine levels as described in d, e. n= 4 biological

replicates. h, i, °N enrichment in plasma glutamine (h) and percent 15N-labeled glutamine

in normal pancreas or PDA tumors (i) derived from tumor-bearing iKras®12P mice and
non-tumor-bearing iKrasT mice treated with Dox (2g =1 drinking water) for 3 weeks
prior to infusion with 1°N-(amine)GIn for 1, 2 or 3 hours as described in Fig. le—g. 7=
4 mice per group. j, 15N enrichment in plasma arginine of iKras mice described in Fig.
1g, that were treated with Dox for 3 weeks prior to infusion with 1°N4-Arg for 3 h. n=
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4 mice per group. K, |, Percent 15N-labeled arginine (k) and relative abundance of total
ornithine and putrescine (1) in normal pancreas or PDA tumors derived from either control
or tumor-bearing mice described in Fig. 1g, that were infused with 1°N4-Arg for 3h. n=4
mice per group. Data represent the mean + s.d. p-values were obtained by one-way (b, c, f,
g) or two-way (h-j) ANOVA, followed by Tukey test, or unpaired two-tailed #test (k, I). In
b, f, g, statistical significance is for each cancer cell line vs. its tissue-matched normal cell
line/s. In a-g, data are representative of two independent experiments.
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Extended Data Fig. 3 |. Polyamines are enriched in PDA cellsand their tumor microenvironment.
a, Principal component (PC) analysis of the abundance of 263 polar metabolites in plasma

or tumor interstitial fluid (TIF) or normal interstitial fluid (NIF) from PDA tumors or normal
pancreas of iKras®12P or iKrasWT mice, respectively, described in Fig. 1h, i. Data were
obtained by Metaboanalyst 4.0. 7= 6 biological replicates. b, Top 10 enriched metabolic
pathways in TIF compared to plasma (top); or TIF compared to NIF (bottom) based on
abundance of metabolites in a. FDR false discovery rate. ¢, Volcano plot illustrating the fold
change (log,-transformed) in metabolite levels between TIF and plasma of tumor-bearing
iKras®12D mice described in a. 7= 6 biological replicates. Pink dots indicate significantly
altered metabolites (> 1.5-fold; p< 0.01). d, Heatmaps listing in descending order of
statistical significance (p < 0.05 by unpaired two-tailed #test), metabolites in arginine
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metabolism from TIF vs. plasma of iKras®12P mice (left) or TIF vs. NIF (right) described
in a. n= 6 biological replicates. g, f, Relative live cell number (€) percent dead cells (f)

in 4 KRAS-mutant and 1 non-KRAS-mutant (BxPC-3) PDA cell lines as well as normal
HPDE cells grown in TIF arginine levels (2 uM). n= 8 biological replicates. g, Principal
component (PC) analysis of the abundance of intracellular polar metabolites (263) in PDA
tumors of iKras®12P mice vs. normal pancreas of iKrasWT mice from a. 7= 6 biological
replicates. h, Top 10 enriched metabolic pathways in PDA tumors compared to normal
pancreas of mice from g. i, Heatmap listing in descending order of statistical significance
(0 < 0.05 by unpaired two-tailed #test), metabolites involved in arginine metabolism from
PDA tumors and normal pancreas described in g. 7= 6 biological replicates. j, Relative
abundance of intracellular ornithine, putrescine, and spermidine in PDA tumors or normal
pancreas described in g. /7= 6 biological replicates. Data in a-d and g-i were obtained

by Metaboanalyst 4.0. In d, i, Red indicates higher level and blue lower level, relative to
the median. Data in g, f, j represent the mean + s.d. p-values were obtained by two-way
ANOVA followed by Tukey test (e, f) or by unpaired two-tailed £test (j). In e, f, statistical
significance is for days 3, 5 or 7 vs. dayl. Data are representative of two independent
experiments.
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Extended Data Fig. 4 |. OAT isenriched in human and murine PDA tumors.
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a, Gene expression analysis showing higher mRNA levels of OAT but not ALDH18A1
(aldehyde dehydrogenase 18 family member Al), ARG2or ODCI in human tumors
compared to normal tissues. Data were derived from TCGA and GTEX datasets

and represent 5 cancer types including pancreatic adenocarcinoma (PAAD), breast
carcinoma (BRCA), lung, colon and prostate adenocarcinomas (LUAD, COAD and PRAD,
respectively). TPM, transcript per million. T, tumor and N, normal tissue. Number of tissue
samples nis indicated at bottom of panel. Box plots represent the interquartile range of
data with the middle line being the median and whiskers spanning the minimum and
maximum values. Plots and statistics were generated by GEPIAS software. *p < 0.01
(one-way ANOVA). b, mRNA levels of genes in a quantified by gPCR, in 20 human
cancer cell lines and 3 tissue-matched normal cell lines from the panel described in Fig.
1b, c. Ctindicates cycle threshold for each gene in the normal cell lines and is inversely
proportional to mRNA levels. Data represent the mean of 3 technical replicates and are
representative of two independent experiments. ¢, Representative immunohistochemical
staining of OAT in PDA tumors and normal pancreas of tumor-bearing iKras®12P or
non-tumor-bearing iKrasWT mice treated with Dox (2g 1=1 drinking water) for 3 weeks.
Scale bar: 100um. d, Representative immunohistochemical OAT staining in human PDA,
pancreatic intraepithelial neoplasia (Panin) and adjacent normal cells in whole tissue
sections of resected tumors from 4 different patients (Cases 1-4). Scale bar: 100um. In

¢, d, framed top corner insets represent a 5-fold magnification of the area delineated by a
dashed square; data are representative of 2 independent experiments. e, H scores of OAT
staining in PDA tumors and patient-matched normal pancreatic tissue performed on tissue
microarrays (TMAS) of resected tumors from 1= 31 patients. Data represent the mean + s.d
and o = 0.0003 was obtained by paired two-tailed #test.
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Extended Data Fig. 5|. OAT isreqguired for PDA growth.
a, Levels of ODC1, OAT or ARG2 proteins in AsPC-1 cells with knockdown of

ODCI1, OAT, ARGZ2or GATM (left) and mRNA levels of GATM (right) in AsPC-1

cells with GATM knockdown as compared to Scramble (Scr). 2 hairpins per gene were
used. b, Percent 15N-labeled metabolites in proline synthesis, urea cycle and creatine
synthesis pathways in AsPC-1 cells with knockdown of ODCI1, OAT, ARGZ or GATM
(described in Fig. 2b, c), that were fed 15N,-Arg for 24 h. n= 4 biological replicates.

¢, Schematic demonstrating reversal of the OAT reaction upon ODCI loss, accompanied

by a compensatory increase in ARG2 and GATM activities to re-generate ornithine as
demonstrated in b. d, e, Proliferation of AsPC-1 cells with knockdown of ODC1, OAT,
ARGZ, GATM or Scr (d) or those with knockdown of ODC1, OAT, or Scr, that were
grown in the presence or absence of 10 uM putrescine (€). /7= 8 biological replicates. f,
Levels of ODCL1 and OAT proteins in MIA PaCa-2 cells harboring ODC1, OAT or Scr
knockdown. Arrowhead indicates non-specific band detected by ODC1 antibody (ab97395).
g, h, Relative abundance of 15N-labeled putrescine (g) or total putrescine or ornithine (h) in
cells from f, that were fed 1°N-(amine)GIn or 1°N,-Arg for 24 h. 1= 4 biological replicates.
i, mMRNA levels of ODC1 and OAT genes in SUIT-2 cells with control Scr, ODCZ, or OAT
knockdown. j, Proliferation of MIA PaCa-2 and SUIT-2 cells with either ODCI, OAT, or
Scr knockdown that were grown in the presence or absence of 10 uM putrescine. n=8
biological replicates. Data represent the mean = s.d. in a, b, g-i, or mean + s.e.m. in d,

e, j. p-values were obtained by one-way ANOVA (a, b, g-i) or two-way ANOVA (d, g,
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i), followed by Tukey test. In aand f, B-Actin was used as a loading control. Data are
representative of three (a, d, e, f, i, j) or two (b, g, h) independent experiments.
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Extended Data Fig. 6 |. Silencing of OAT decr eases polyamine poolsin PDA cells and suppresses
proliferation.

a, Levels of ODC1 and OAT proteins in AsPC-1 cells with control Scramble (Scr), ODC1 or
OAT knockdown overexpressing either GFP control or respective rescue cDNAs for ODC1
or OAT. b, ¢, Relative abundance of 1°N-labeled (b) or total (c) ornithine and putrescine

in AsPC-1 cells described in a, that were fed 1°N-(amine)GIn for 24 h. 7= 4 biological
replicates. d, Proliferation of AsPC-1 cells in a. 7= 8 biological replicates. e, Levels of
ODC1 and OAT proteins in HPDE cells with control Scr, ODCI or OAT knockdown. f,
Proliferation of HPDE cells from e. 7= 8 biological replicates. g, Representative ultrasound
images of orthotopic xenografts 3 weeks post-injection of AsPC-1 cells bearing knockdown
of Scr, ODC1 or OAT into the pancreas of Ragl™~ mice, as described in Fig. 2f. T, Tumor;
S, Spleen; K, Kidney. h, Volumes by ultrasound, of orthotopic human PDA tumors from g
and Fig. 2f. n=9 except for shODCL1 #2, n= 8 mice per group. i, Levels of ODC1 and
OAT proteins in 2 iKras cell lines with control Scr, Odc or Oat knockdown (2 hairpins per
gene). j, k, Relative abundance of 15N-labeled (j) or total (k) ornithine and putrescine in
iKras cells from i. 7= 4 biological replicates. I, Proliferation of iKras cells from i, grown in
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the presence or absence of 10 UM putrescine. 7= 8 biological replicates. Data represent the
mean + s.d. (b, ¢, h, j, k) or mean £ s.e.m. (d, f, ). p-values were obtained by one-way (b, c,
i, k) or two-way (d, f, h, ) ANOVA, followed by Tukey test. In d, I, statistical significance
is for each condition vs. control “shScr + GFP” (d) or each gene knockdown vs. Scr control
in the presence or absence of putrescine (1). In g, i, Arrowhead indicates non-specific band
detected by ODC1 antibody (ab97395). In &, €, i, B-Actin was used as a loading control.
Data are representative of two (a-c, i-k) or three (d, e, f, ) independent experiments.
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Extended Data Fig. 7 |. OAT maintainsin vivo tumor polyamine pools supporting PDA growth.
a, Generation of murine orthotopic PDA transplants lacking OdcZ or Oat. iKras clonal

cell lines with CRISPR/Cas9 knockout of OdcI (clones #3 and #10) or Oat (clones #10
and #11) using single guide (sg) RNAs each, or sgControl (sgCtrl) were injected (5 x

10° cells) into the pancreas of non-Cre-expressing iKras mice. All mice were treated with
Dox (2g 171 drinking water) and monitored for tumor growth by ultrasound over 3 weeks,
prior to subjecting them to a 3-hour infusion with °N-(amine)GIn. b, Levels of ODC1 and
OAT proteins in iKras cells from a. ¢, d, Relative abundance of 1°N-labeled (c) or total

(d) ornithine and putrescine in iKras cells from a that were fed for 24 h 1°N-(amine)GIn
or 15N,-Arg. 7= 4 biological replicates. e, Proliferation of iKras cells described in a.

n= 8 biological replicates. f-h, Volumes (ultrasound) of orthotopic iKras tumors with
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control (Ctrl), Odc1 or Oatknockout from a, injected into non-tumor-bearing mice (f),
with representative ultrasound images (g), and weights (h), 3 weeks post-injection of iKras
cells. n=9 (sgCtrl); n= 10 (sgOdcl #10; sgOat #10); n= 6 (sgOdcl #3; sgOat #11). T,
Tumor; S, Spleen. i, 1°N enrichment in plasma glutamine of tumor-bearing mice in f-h,
that were infused with 1°N-(amine)GIn over 3 hours, 3 weeks post-tumor cell injection
(related to Fig. 2g). 7= 4 mice per group. j, Relative abundance of indicated metabolites

in orthotopic tumors derived from iKras cells with knockout for Odc1, Oat, or control,
described in a. 7= 6 mice per group. k, Relative abundance of putrescine and spermidine
in human orthotopic PDA tumors derived from AsPC-1 cells with ARGZ2or Scramble (Scr)
knockdown, that were injected (10° cells) into the pancreas of Rag1 ™'~ mice and grown

for 6 weeks. n7=7 mice per group. |, Relative abundance of the indicated metabolites in
murine orthotopic transplant tumors derived from KPC cells (see Methods) expressing or
lacking Arg2 (Arg2*/* or Arg2~/~, respectively) that were injected (2.5 x 10° cells) into the
pancreas of mice of the same strain and grown for 2 weeks. /7= 6 mice per group. In j-I,
Box plots represent medians + 10-90 percentile and whiskers span minimum and maximum
values. m, Levels of OAT and ODC1 proteins in iKras cells with control (sgCtrl) or Odc1
or Oatknockout (sgOdcl or sgOat) that are overexpressing GFP control or the respective
gene cDNA (Odcl or Oal. n, o, Relative abundance of 1°N-labeled (n) or total (0) ornithine
and putrescine levels in iKras cells described in m, that were fed 1°N-(amine)GIn for 24 h.
n= 4 biological replicates. p, Proliferation of iKras cells described in m. 7= 8 biological
replicates. g, Volumes of syngeneic orthotopic tumor transplants derived from iKras cells
described in m that were grown and quantified by ultrasound, 2 and 3 weeks post-cell
injection (related to Fig. 2h). 7= 8 mice (sgCtrl + GFP); n=7 (sgCtrl + Oat); n= 9 (sgOat
#10 + GFP; sgOat #10 + Oat). r, Metabolite abundance in TIF or plasma of mice related

to Fig. 2i. n=8 except sgCtrl + Oat (7). Ini, j, m-r, sgOdcl clone #10 and sgOat clone
#10 from a-h were used. Data represent the mean £ s.d. (c, d, f, h, i, n, 0, g, r) or mean +
s.e.m. (e, p). p-values were obtained by one-way (c, d, h, j, n, 0) or two-way (e, f, i, p, q, r)
ANOVA followed by Tukey test, or by unpaired two-tailed #test (k, 1). In e, n-p, statistical
significance is for each condition vs. control knockout “sgCtrl” (€) or each condition vs.
“sgCtrl + GFP” (n-p). In b, m, Arrowhead indicates non-specific band detected by ODC1
antibody (ab97395) and B-Actin was used as a loading control. Data are representative of
two (b-d, m-o) or three (g, p) independent experiments.
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Extended Data Fig. 8 |. Oncogenic KRAS inducesthe expression of OAT and polyamine synthesis

genes.

a, mRNA levels of Srm, Smsand ArgZ2in iKras cell lines #1 and #2 maintained in Dox (1ug
ml~1) for 24 h prior to Dox deprivation for 24, 48, or 72 hours. 7= 3 biological replicates. b,
¢, MRNA levels of KRAS, OAT, ODC1, SRM, SMS and ARGZin human PDA AsPC-1 (b)
or MIA PaCa-2 (c) cells with Dox-inducible knockdown of GFP (Tet on-shGFP) or KRAS
(Tet on-shKRAS hairpins #1 and #2) that were cultured in Dox (1ug mI~1) for 24, 48 or

72 hours. In b, n=3and in ¢, n=2 biological replicates. d, mRNA levels of ornithine

and polyamine synthesis genes (OAT, ODC1, SRM, SMSand ARGZ2) in AsPC-1 and MIA
PaCa-2 cells treated with vehicle control DMSO or inhibitors of: PI3K (BKM 120, 150 nM);
AKT (MK2206, 200 nM); MEK (AZD6244, 50 nM); mTORC1 (Rapamycin, 20 nM) for 72
h. n= 3 biological replicates. Data represent the mean £ s.d. (a, b, d) of biological replicates
from 3 independent experiments or the mean of biological replicates from 2 independent
experiments (c). p-values were obtained by two-way (a, b) or one-way (d) ANOVA followed

by Tukey test. Statistical significance is for Off Dox vs. On Dox (a) or for shKRAS vs.

shGFP (b) at each indicated time, or for each inhibitor vs. DMSO (d). e, Levels of proteins
in cells from d. B-Actin was used as loading control and data represent two independent
experiments.
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Extended Data Fig. 9|. Transcription factor KL F6 mediates KRAS-driven polyamine synthesis
in PDA.

a, b, Putative transcription factor (TF) binding sites identified and scored by FMatch tool

in the promoter regions of all 4 ornithine and polyamine synthesis genes responsive to
KRASC12D je. OAT, ODC1, SRMand SMS. Predicted TFs are listed in descending order
of statistical significance (p-value cut-off of 0.01), with matrix score similarity ranging from
0-1, where 1 is a perfect match. Eight are conserved in human (a) and mouse (b), out of
which six (in blue) have binding sites present in the OAT promoter. ¢, mMRNA levels of
Myec, Oat, Odcl, Srm, Smsand ArgZ2in 2 iKras cell lines with Scramble control (Scr) or
Myec knockdown (2 distinct hairpins). 7= 2 biological replicates. d, mRNA levels validating
knockdown (2 or 3 hairpins per gene) of each of the 6 conserved TFs with binding sites

for OAT (blue in a, b), and assessing their effects on expression of Oat, Odc1, Srm, Sms
and ArgZin iKras #1 cell line. n= 3 biological replicates. e mRNA levels of ornithine and
polyamine synthesis genes (Oat, Odc1, Srm, Smsand Arg2) in iKras #2 cells with Scr or
Kif6 knockdown (2 distinct hairpins). 7= 3 biological replicates. f, Levels of OAT, ODC1,
SRM, SMS proteins in iKras cells with K776 or Scramble (Scr) knockdown, with or without
Dox (72 h). p-Actin was used as loading control. g, Fold change in mRNA levels of Myc
and each of the 6 TFs from d in iKras #1 cell line deprived of Dox for 48 h. n= 3 biological
replicates. h, Relative abundance of total ornithine and putrescine in iKras#1 cells described
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in Fig. 3h. Cells were fed 1°N-(amine)GIn or 1°N,-Arg 24 h before harvest. /7= 4 biological
replicates. In c-e, g, h, data represent the mean + s.d. p-values were obtained by one-way (d,
€) or two-way (h) ANOVA followed by Tukey test, or paired two-tailed #test (g). In d, €,

g, statistical significance is for each TF knockdown vs. control Scramble (d, €), or for Off
Dox vs. On Dox (g). Data represent the mean of biological replicates from 2 independent
experiments (c) or mean + s.d. of biological replicates from 3 independent experiments (d, e,
0). In f, h, data are representative of 2 independent experiments.
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Extended Data Fig. 10 |. 5-FM O suppresses polyamine synthesis and PDA growth similar to

DFMO but without off-target effects.

a, Relative abundance of 1°N-labeled ornithine and putrescine in iKras cells #1 treated for 72
h with inhibitors of OAT (5-FMO) or ODC1 (DFMO) and fed 15N-(amine)GIn or 1°N4-Arg
24 h before harvest. n= 4 biological replicates. b, ¢, Relative abundance of total ornithine
and putrescine in AsPC-1 (b, related to Fig. 4a) or iKras (c) cells treated as in a. 7=

4 biological replicates. d, Percent growth of human PDA cells AsPC-1 and MIA PaCa-2
with knockdown of OAT#1 or Scramble (Scr) that were treated with 5-FMO (0, 0.001,
0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2.5 mM) for 7 days. e, Percent growth over 7 days of
AsPC-1 cells treated with 5-FMO as in d, in the presence or absence of putrescine (10 uM).
f, Percent growth of iKras #1 cells with control (Ctrl) or Oatknockout, that were treated
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with 5-FMO as in d. g, h, Percent growth of human PDA cells with Scramble or ODC1 #1
knockdown (@) or murine iKras #1 cells with Ctrl or OdcI knockout (h) that were treated
with DFMO (0, 0.001, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2.5 mM) for 7 days. In f, h,
sgOdc1 clone #10 and sgOat clone #10 from Extended Data Fig. 7a were used. In d-h,

n= 8 biological replicates and arrowheads indicate concentrations used in a-c. i, Relative
abundance of 13C-labeled (M+4) and total putrescine in AsPC-1 cells with knockdown of
control Scramble (Scr), ODC1 or OAT that were treated with vehicle control (water) or 10
UM 13C4-putrescine for 1 h. 7= 4 biological replicates. j, Relative abundance of 13C-labeled
(M+4) and total putrescine in AsPC-1 cells that were pre-treated (or non-pre-treated) for 15
min with 1 uM AMXT-1501, then fed 10 uM 13C,-putrescine for 0, 50, 100, 150, 200 and
240 min while continuing the same AMXT-1501 treatment (0 or 1 uM) but in absence or
presence of 5-FMO (0 or 100 uM). n = 4 biological replicates. In i, j, data represent the
mean of 7= 4 biological replicates from two independent experiments. k, Proliferation of
AsPC-1 cells that were treated or not treated with 1 yM AMXT-1501 and/or 100 uM 5-FMO
for 7 days in the presence or absence of 10 uM putrescine. Data represent the mean of n

= 32 biological replicates from four independent experiments with /7= 8 per experiment. I,
15N enrichment in plasma glutamine of tumor-bearing male iKras®12P mice from Fig. 4f
that were treated with control saline or 5-FMO (10 mg kg~ and 30 mg kg™1) for 14 days,
prior to infusing them for 3 h with 15N-(amine)GIn, as described in Fig. 4g. 7= 4 mice

per group. m, Relative abundance of total ornithine and putrescine in tumors of 5-FMO
treated male iKras mice, related to Fig. 4g. 7= 4. n, o, Weights of livers (n) and growth
curves (0) of male or female iKras®12P mice described in Fig. 4f. Male mice: 7= 11 per
dose; Female mice: n= 10 for saline, 7=9 for 10mg kg™t and /7= 11 for 30mg kg~2. p,
Proliferation fold increase in number over 7 days of AsPC-1 cells treated with gemcitabine
at0,0.1,0.2,0.4,0.6,0.8, 1, 2 uM in the presence or absence of 5-FMO (0, 100 or 500
uM). n= 8 biological replicates. Data represent the mean * s.d. (a-c, i-n, p) or mean £ s.e.m.
(d-h, 0). p-values were obtained by one-way (a-c, m, n) or two-way (i-l, o, p) ANOVA
followed by Tukey test or paired two-tailed #test (d-h). In i, indicated p-values are for each
knockdown in the presence vs. absence of putrescine at the indicated times; T and ¥ indicate
significance of p < 0.0001 for each gene knockdown vs. Scr knockdown in absence () of
putrescine; or in presence (%) of putrescine, except for 13C,-putrescine in ShOAT #1 and
total putrescine in shOAT #2, where p=0.0003. In j, significance is for each drug condition
vs. vehicle control (black line). In p, T (p=0.0006) and  (p < 0.0001) indicate statistical
significance between each gemcitabine-treated group and non-treated control in the absence
of 5-FMO (grey bars). Data are representative of two (a-c, g, h), three (d-f, p) independent
experiments.
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Extended Data Fig. 11 |. Immune profiling reveals no major differencesin immune subsets upon
genetic or pharmacological inhibition of OAT.
a, Analysis of select immune populations in orthotopic tumors derived from iKras cells

with knockout of Odcl, Oat. or control (Ctrl) that were injected (5 x 10° cells) into the
pancreas of non-Cre-expressing iKras mice and grown for 3 weeks. b-f, Immune profiling
of PDA tumors from male and female iKras®2P mice that were treated with Dox (2g

I-1 drinking water) for 7 days, then daily intraperitoneally injected with control saline or
5-FMO (10 mg kg™t and 30 mg kg™1) for 14 days while under continuous treatment with
Dox. Single cell infiltrates from tumors and draining lymph nodes were analyzed by flow
cytometry. Analysis of select immune populations (b), ratio of Tregs to CD8" T cells and
percent PD1* CD8* T of total CD8+ T cells (c) in PDA tumors. Analysis of select immune
populations in pancreatic draining lymph nodes (dLN, d). Representative flow plots showing
Tregs (CTLA-4" and FOXP3*) in PDA tumor (€) and pancreatic draining lymph node (f)
derived from saline-treated iKras®12P mice. For tumor samples, values indicate the average
of 2 replicate samples obtained from different regions of the tumor mass. 7= 9-10 mice per
group using both sexes (male: 7= 5 per group; female: 7= 4 for saline and 10 mg kg1
5-FMO, n=5 for 30 mg kg1 5-FMO). In a-d, Data represent the mean + s.d. p-values were
obtained by one-way ANOVA followed by Tukey test. For gating details, analysis of select
immune populations gated out of CD45* live, single cells: CD11b*/~ = CD45*; MoMDSCs
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= CD11b* Gr1'oW: GrMDSCs = CD11b* Gr1high: macrophages = CD11b* SiglecF™ Gr1~;
eosinophils = CD11b* SiglecF*; CD103*/MHCIIMd"; DCs = CD11b~ CD4~ CD8™ CD11c*
MHCII*; CD4 T cells = CD11b™ CD4*; CD8 T cells = CD11b~ CD8*; Tregs = CD11b™~
CD4* FOXP3* CTLA4*; B cells = CD11b™ CD4~ CD8~ B220*. All positive gates were
set based on clearly separated populations except in the case of Gr-1 staining, which was
divided into tertiles based on mean fluorescence intensity. Unstained cells were used to
define negative gates. Forward scatter and side scatter were used to identify cell-sized
objects. Fragments with FSC less than 10% of the sample median were excluded from
analysis. Cell doublets were excluded based on deviation from the diagonal of FSC area vs
FSC height.
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Extended Data Fig. 12 |. OAT silencing resultsin transcriptional and epigenetic changes similar
to those of ODC1 knockdown.

a, Venn diagrams showing a higher overlapping number of differentially expressed genes
(g<0.05) in AsPC-1 cells with knockdown of OAT or ODCZ (608 down-regulated

and 599 up-regulated), as compared to ARGZand ODCI or ARGZand OAT. Numbers
reflect differential expression common to 2 hairpins per gene. b, ATAC-Seq data showing
significant changes (¢ < 0.05) in chromatin access at enhancers located < 20 kb from
transcription start sites in AsPC-1 cells with knockdown of ODCZ1, compared to control
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Scramble (Scr), OAT, or ARGZ (2 hairpins per gene). n= 2 biological replicates per
hairpin. Significant changes detected include losses and gains of chromatin accessibility
near 175 and 135 enhancers, respectively. ¢, Correlation of changes in gene expression and
nearby (< 25 kb) chromatin accessibility for 403 genes that were consistently up-regulated
upon ODCI and OAT silencing in AsPC-1 cells (cluster V, Fig. 4h). Each dot represents

a gene. Gene-linked enhancers (< 25 kb) show gains in accessibility upon knockdown of
ODC1 or OAT, but not ARGZ. d, List of top 18 pathways in descending significance (FDR
0.003-0.30) that were differentially altered at the transcriptional level (either negative or
positive enrichment) upon ODCZ knockdown compared to Scr control in AsPC-1 PDA cells
described in a, b. Negatively enriched pathways related to growth factors, cytokines and
response to starvation are highlighted in yellow and those involved in cell shape, migration,
differentiation and ion transport are highlighted in blue. Asterisks indicate representative
pathways illustrated in e and Fig. 4j. e, Heatmaps of genes from representative pathways
(blue) in d displaying negative enrichment upon knockdown of ODCI compared to Scr
control (n= 3), with corresponding GSEA plots. NES normalized enrichment scores, FDR
false discovery rate, Nom. Nominal. f, List of differentially expressed genes from top 18
negatively enriched pathways in d, that are part of Cluster | in Fig. 4h and are indicated
with dark blue dots in the correlation plots of Fig. 4i. Genes in Quadrant (Q) Il of Fig.

4i plots associate with decreased chromatin accessibility, and are more numerous in cells
with knockdown of ODC1 (37/58) or OAT (44/58), than ARGZ2 (22/58). g, Relative mRNA
levels (by qPCR) of 7 representative genes in AsPC-1 cells with knockdown of ODCZ,
OAT, or ARGZ (2 hairpins per gene) compared to control Scr, that were maintained for

72 h in the presence or absence of 10 uM Putrescine. Genes were randomly chosen from

Q 11 described in f and Fig. 4i, and display common decreases in expression upon OAT

or ODC1 knockdown but not ARGZ, along with concordant decreases in chromatin access.
Data represent the mean + s.d. of 3 biological replicates from 3 independent experiments.
p-values were obtained by two-way ANOVA followed by Tukey test. Statistical significance
is for knockdown of ODCI1, OAT or ARGZ2vs. Scr under similar putrescine condition, unless
otherwise indicated by lines.
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| data supporting the findings in this study are available within the Article, its

Supplementary Information, Source Data files and from the corresponding author upon
reasonable request. The RNA-Seq and ATAC-Seq data have been deposited in National
Center for Biotechnology Information (NCBI)’s Gene Expression Omnibus and are

ac

cessible through GEO Series accession no. GSE193411. Box plots in Extended Data

Fig. 4a were generated by GEPIAS’ http://gepia.cancer-pku.cn/help.html, which uses a

co

mbination of public datasets from both TCGA and GTEXx for expression analyses. In

Extended Data Fig. 9a, b, bar plots and data were generated using TRANSFAC database
(version 1.9) https://genexplain.com/transfac-2-0/. For gel source data, see Supplementary
Fig. 1.
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Fig. 1|. PDA uses glutaminefor de novo ornithine and polyamine synthesis.
a, Schematic for OAT reaction. b, ¢, Percent 1°N-labeled ornithine (b) and putrescine (c)

in cancer and tissue-matched non-cancer (arrowheads) cell lines fed 1°N-(amine)GlIn for

24 h. (BRCA: breast carcinoma; LUAD, COAD and PRAD: adenocarcinomas of the lung,
colon and prostate, respectively). 7= 4 biological replicates. d, Schematic of tumor-bearing
iKras and control mice treated with Dox, 3 weeks prior to infusion with 1°N-(amine)GIn or
15N,4-Arg. e f, Relative abundance of 15N-labeled () or total (f) ornithine and putrescine

in normal pancreas or PDA tumors from mice in d, infused with 1°N-(amine)GIn for 1 h, 2

h or 3 h. 7= 4 mice per group. g, Percent 1°N-labeled ornithine and putrescine in normal
pancreas or PDA tumors from mice in d, infused with 1°N-(amine)GIn or 1°N4-Arg for 3 h.
n=4 mice per group. h, Schematic for isolation of tumor interstitial fluid (TIF) or normal
interstitial fluid (N1F) from PDA tumors or normal pancreas of iKrasG12P or iKras"WT mice,
respectively. i, Relative abundance of metabolites in TIF and NIF from h. 7= 6 biological
replicates. Data are mean + s.d. p-values were obtained by one-way (b, c, i) or two-way

(e, ) ANOVA, followed by Tukey test or unpaired two-tailed #test (g). In b, c, statistical
significance is for cancer cells vs. tissue-matched normal cells. In i, p-values are for NIF vs.
PlasmaVT or TIF vs. Plasma®12P, unless otherwise indicated by lines. In b, ¢, data represent
two independent experiments.
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Fig. 2|. OAT isrequired for PDA polyamine synthesis and tumor growth.
a, Schematic illustrating enzymatic reactions for glutamine-derived (via OAT) vs. arginine-

derived (via ARG2 or GATM) ornithine synthesis leading to putrescine synthesis (via
ODC1). b, ¢, Relative abundance of 1°N-labeled (b) or total (c) ornithine and putrescine in
AsPC-1 cells with knockdown of genes depicted in a (2 hairpins/gene) or control Scramble
(Scr). n= 4. d, e, Abundance of 1°N-labeled (d) or total (€) ornithine and putrescine

in HPDE cells with knockdown of ODC1, OAT or Scr. 1= 4. In b-g, cells were fed 1°N-
(amine)GIn or 1°N-Arg for 24 h. f, Volumes (caliper) and weights of orthotopic AsPC-1
tumors injected into Ragl~~ mice. 7= 9 except shODC1 #2, n= 8. g, Percent 1°N-labeled
glutamine and relative abundance of 1°N-labeled ornithine and putrescine in murine iKras
orthotopic tumors (from Extended Data Fig. 7a) with control (Ctrl), Odc1 or Oatknockout,
post-infusion with 1°N-(amine)GIn. 7= 4. h, Volumes (caliper) and weights of orthotopic
iKras-sgOat tumors overexpressing GFPor Oat. n= 8 (sgCtrl + GFP); n=7 (sgCtrl + Oat);
n=9 (sgOat #10 + GFP; sgOat #10 + Oat). i, Metabolite abundance in TIF or plasma of
mice from h. n= 8 except sgCtrl + Oat (7). nindicates biological replicates (b-€) or mice
(f-i) per group. Data are mean + s.d. p-values were obtained by one-way (b-h) or two-way
(i) ANOVA followed by Tukey test. Data represent four (b, c), or two (d, €) independent
experiments.
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Fig. 3|. KRAS promotes DNS and polyamine synthesisin PDA.
a, b, Relative abundance of 15N-labeled (a) or total (b) ornithine and putrescine in 2 iKras

cell lines maintained with or without Dox (72 h) and fed 1°N-(amine)GIn or 15N4-Arg 24

h before harvest. n= 4. c, Relative abundance of metabolites in a normalized to abundance
of 15N-glutamate. d, mRNA levels in cells from a deprived of Dox for indicated times. 7

= 3. g, Protein levels in cells from d, off Dox for 72 h. Arrowhead indicates non-specific
band (ODC1 antibody ab97395). f, Protein levels in human PDA cells with Dox-inducible
knockdown of GFP (Tet on-shGFP) or KRAS (Tet on-shKRAS hairpins #1 and #2). g,
MRNA levels of genes in iKras cells with Scramble (Scr) or K/f6 (hairpins #1 and #3)
knockdown, with or without Dox (72 h; 7=3). h, Relative abundance of 1°N-labeled
ornithine and putrescine in iKras cells from g, fed 1°N-(amine)GIn or 1°N4-Arg 24 h before
harvest. 7= 4. i, Model for KRAS transcriptional regulation of polyamine synthesis in PDA.
nindicates biological replicates. Data are mean + s.d. p-values were obtained by one-way
(a-c) or two-way (d, g, h) ANOVA followed by Tukey test. In d, g, statistical significance is
for Off Dox vs. On Dox (d) or shKLF6 vs. shScr (g). In e, f, p-Actin was used as loading
control. Data represent three (a-e, g) or two (f, h) independent experiments.
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Fig. 4 |. OAT inhibition suppresses PDA and altersitstranscriptome similar to ODCL1.
a, °N-labeled ornithine and putrescine in AsPC-1 cells treated (72 h) with OAT (5-FMO)

or ODC1 (DFMO) inhibitors and fed 1°N-(amine)GlIn or 1°N,-Arg 24 h before harvest.
n=4. b-e, Growth (7 days) of 5-FMO-treated PDA (b) or breast cancer (c) cells; or

HPDE cells with OAT #1, ODC1 #1 or Scramble (Scr) knockdown treated with either
5-FMO (d) or DFMO (€). n= 8. f, Weights of tumors from iKras®12D mice pre-treated

with Dox 7 days prior to daily intraperitoneal injection of saline or 5-FMO for 14 days.

n= 11 except female saline (10) or 10mg kg™ (9). g, Percent 1°N-labeled glutamine

and abundance of 1°N-ornithine and putrescine in tumors of male mice from f. 7= 4. h,
Heatmap of differentially expressed genes in AsPC-1 cells with Scr, ODC1, OAT, or ARG2
knockdown (2 hairpins per gene). 7= 3. Clusters I-VI11 were identified by unsupervised
k-means clustering (1-Spearman correlation). i, Correlation of gene expression changes and
nearby (< 25 kb) chromatin accessibility for 561 genes from Cluster I in h. Dark blue

dots indicate genes in negatively enriched pathways (GSEA), with total number indicated

in specific plot quadrants (See Extended Data Fig. 12d, f). j, Heatmaps of genes from
negatively enriched pathways in cells from h (7= 3), with corresponding GSEA plots.

NES normalized enrichment scores, FDR false discovery rate, Nom. Nominal. 72 indicates
biological replicates, or mice per group in f, g. Data are mean + s.d. (a, f, g) or £ s.e.m
(b-€). p-values were obtained by one-way ANOVA followed by Tukey test (a, f, g) or paired
two-tailed test (d, €). Data represent two (a, ¢, €) or three (b, d) independent experiments.
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