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Abstract

The hypothalamus is the central regulator of reproductive hormone secretion. Pulsatile

secretion of gonadotropin releasing hormone (GnRH) is fundamental to physiological stimu-

lation of the pituitary gland to release luteinizing hormone (LH) and follicle stimulating hor-

mone (FSH). Furthermore, GnRH pulsatility is altered in common reproductive disorders

such as polycystic ovary syndrome (PCOS) and hypothalamic amenorrhea (HA). LH is mea-

sured routinely in clinical practice using an automated chemiluminescent immunoassay

method and is the gold standard surrogate marker of GnRH. LH can be measured at fre-

quent intervals (e.g., 10 minutely) to assess GnRH/LH pulsatility. However, this is rarely

done in clinical practice because it is resource intensive, and there is no open-access,

graphical interface software for computational analysis of the LH data available to clinicians.

Here we present hormoneBayes, a novel open-access Bayesian framework that can be

easily applied to reliably analyze serial LH measurements to assess LH pulsatility. The

framework utilizes parsimonious models to simulate hypothalamic signals that drive LH

dynamics, together with state-of-the-art (sequential) Monte-Carlo methods to infer key

parameters and latent hypothalamic dynamics. We show that this method provides esti-

mates for key pulse parameters including inter-pulse interval, secretion and clearance rates

and identifies LH pulses in line with the widely used deconvolution method. We show that

these parameters can distinguish LH pulsatility in different clinical contexts including in

reproductive health and disease in men and women (e.g., healthy men, healthy women

before and after menopause, women with HA or PCOS). A further advantage of hormone-

Bayes is that our mathematical approach provides a quantified estimation of uncertainty.

Our framework will complement methods enabling real-time in-vivo hormone monitoring

and therefore has the potential to assist translation of personalized, data-driven, clinical

care of patients presenting with conditions of reproductive hormone dysfunction.
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Author summary

Pulsatile hormone secretion is a widespread phenomenon underlying normal physiology

and is also disrupted in many common endocrine disorders. To aid assessment and quan-

tification of hormonal pulsatility, we developed hormoneBayes, a novel open-access Bayes-

ian framework for analyzing hormonal measurements. The framework uses mathematical

models to describe pulsatile dynamics, together with Bayesian methods to infer model

parameter from data. We demonstrate HormoneBayes utility by analysing pulsatility of

luteinising hormone (LH) data in different clinical contexts including in reproductive

health and disease. Our framework in combination with real-time in-vivo hormone moni-

toring has the potential to assist translation of personalized, data-driven, clinical care of

patients presenting endocrine disorders.

Introduction

Pulsatile hormone dynamics are ubiquitous and play a crucial role in the regulation of many

bodily functions related to metabolism, stress, and fertility [1,2]. Hormones are typically

secreted in both a basal manner to maintain steady state levels, as well as with superimposed

interspersed transient bursts (pulses) [3]. It is now established that the pulsatile nature of hor-

monal secretion affects their interaction with receptors and downstream effector action [4–6].

With regards to fertility, the hypothalamus is the central regulator of the reproductive endo-

crine axis. Notably, gonadotropin releasing hormone (GnRH) is secreted in a pulsatile man-

ner, and seminal studies have demonstrated that this pulsatility is fundamental for its action to

stimulate GnRH receptors on pituitary gonadotropes [5]. Moreover, disturbances in GnRH

pulsatility are observed in common reproductive disorders including polycystic ovary syn-

drome (PCOS) in which GnRH pulsatility is increased [7], and hypothalamic amenorrhea

(HA) in which GnRH pulsatility is reduced [8]. However, despite this disparate alteration in

GnRH pulsatility, differentiation of these two common reproductive disorders, which may

both present similarly with menstrual disturbance, can be challenging [9]. LH is measured rou-

tinely in clinical practice using an automated chemiluminescent immunoassay method and is

the gold standard surrogate marker of GnRH. Furthermore, LH can be measured at frequent

intervals (eg 10minutely) to assess GnRH/LH pulsatility, and accurate assessment of LH pulsa-

tility could help facilitate diagnosis and treatment of patients presenting with reproductive

endocrine disorders [9]. However, this is rarely done in clinical practice because it is resource-

intensive, inconvenient for patients, and there is a lack of software for computational analysis

of the LH data readily available to clinicians.

Analysis of hormone pulsatility is a challenging computational problem, primarily due the

stochastic nature of hormone dynamics and the consequent pulse-to-pulse variability, but also

due to extrinsic factors (such as measurement error) obscuring the observed hormone dynam-

ics [3]. Several computational methods for the analysis of endocrine data have been proposed

in the literature [3,10–15], and deconvolution analysis, is the current gold-standard method

for analyzing LH pulsatility in humans [3]. However, all methods lack open-access software

implementation, with a user-friendly graphical interface that can be readily used by clinicians.

To meet these challenges, we have developed HormoneBayes, a novel, open-access Bayesian

framework for the analysis of hormone pulsatility data. HormoneBayes uses a stochastic

model, describing hormone levels in the circulation incorporating measurement error, and

leverages Bayesian statistics [16] to infer model parameters and latent variable dynamics. We
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note that this approach is distinct to the deconvolution-based approach [3,14,15], which

employs a single-pulse model to represent the data as a sequence of independent pulses. In this

deconvolution-based method, the number of pulses becomes a model parameter that needs to

be inferred from the data. In a Bayesian context, this leads to a posterior with unknown dimen-

sions, hence posing significant challenges to inference [17,18]. We show that HormoneBayes

can be used to accurately identify LH pulses and estimates clinically relevant measures such as

inter-pulse intervals and secretion rates. The framework also provides a handle on estimation

uncertainty via Bayesian posterior distributions. We showcase how this feature can be used to

enable the understanding of alterations in LH pulsatility by analyzing the effect of direct hypo-

thalamic stimulation using the neuropeptide kisspeptin on a subject-by-subject basis. We also

demonstrate that HormoneBayes can be used to analyze LH pulsatility in different clinical con-

texts/reproductive states (including healthy men, women before and after menopause, and

women with reproductive disorders such as HA or PCOS). Importantly, the framework comes

with an open-access graphical interface that make the core functionality of the framework eas-

ily accessible to clinicians and clinical researchers.

Results

Analyzing pulsatile hormone dynamics using the hormoneBayes

framework

The hormoneBayes framework allows inference of key physiological parameters describing

pulsatile hormone dynamics. The framework utilizes stochastic mathematical models describ-

ing circulating hormone levels and state-of-the-art Bayesian machinery to calibrate these mod-

els to data of hormone profiles and infer model parameters. Fig 1 presents a parsimonious

model (a simple model with great explanatory power) describing circulating LH levels. The

model assumes that there are two modes of LH secretion, namely pulsatile and basal. The

Fig 1. HormoneBayes: a Bayesian framework for analyzing pulsatile LH dynamics. The framework uses a

parsimonious mathematical model to describe LH levels in circulation as the net effect of secretion and clearance. In

the model secretion is driven by a basal hypothalamic signal and a pulsatile signal (mimicking the dynamics of the

GnRH pulse generator which can be turned ‘on’ or ‘off’). An efficient Markov-Chain Monte-Carlo (MCMC) method

performs the Bayesian inference and extracts model parameters and latent hypothalamic dynamics, which are

compatible with the observed data.

https://doi.org/10.1371/journal.pcbi.1011928.g001
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former corresponds to an on/off signal that randomly switches between two states (corre-

sponding to a high and a low activity) while the latter corresponds to a continuous noisy signal.

Furthermore, the model incorporates LH clearance as a linear first order process leading to an

exponential decay of LH levels following a pulse [3]. We note that more detailed clearance

models, such as the bi-exponential model [3], could be easily integrated. By considering the

processes of LH release and clearance, the model predicts LH circulating dynamics in terms of

five key parameters that can be recovered from data: 1. LH clearance rate; 2. maximum LH

release rate; 3. strength of the pulsatile signal relative to the basal signal; 4. mean time in the on

state; 5. mean time in the off state. Moreover, the model incorporates measurement error as an

additional parameter that is determined based on the assay coefficient of variation (CV).

HormoneBayes relies on the Bayesian paradigm to extract information from the observed

data. Using the Bayes theorem, the method revises our prior beliefs regarding model parame-

ters by transforming the parameters’ prior probability density distributions into posterior dis-

tributions. Parameter prior distributions enable the user to input context-specific information

into the analysis, hence enhancing the flexibility of the method to handle different datasets.

For example, when dealing with data from post-menopausal women the user could choose to

adjust the parameter priors to acknowledge a higher LH secretion rate and/or more sustained

basal secretion. Fig 1 illustrates how the Bayesian machinery allows us to calibrate the model

to the data and extract information regarding model parameter and latent hypothalamic sig-

nals with an estimate of certainty. As we explain in the sections to follow, this information can

be used to identify pulses; summarise the data (e.g., providing mean and standard deviation

estimates); and perform statistical tests.

Identifying LH pulses

Using data to infer the latent hypothalamic signal provides a transparent way to identify pulses

based on their likelihood under the model. As explained above, the model assumes LH pulses

are partly driven by an on/off hypothalamic signal. This latent variable (i.e., inferred variable)

takes two values indicating the ‘on’ (1) and ‘off’ (0) state of the hypothalamic pulse generator,

and therefore the expected posterior estimate (inferred from LH profiling data) can be inter-

preted as the probability that at any given time the hypothalamic pulse generator is ‘on’. This

quantitative measure for accessing the likelihood of a pulse can significantly ease the job a cli-

nician trying to decide whether an upstroke in the LH profile represents a pulse or not. Fig 2

Fig 2. Pulse identification using HormoneBayes. (A) Pulses can be identified using the expected value of the pulsatile

hypothalamic signal, which can be interpreted as the probability of a pulse at a given timepoint. Here, we mark the

onset of a pulse when the pulsatile hypothalamic signal crosses the 0.5 threshold, indicating that at this point a pulse is

the most likely event. (B) The majority of the identified pulses (89%, 77/87) are in line with those obtained using the

deconvolution method. For the analysis we used LH data obtained from healthy pre-menopausal women in early

follicular phase (n = 16).

https://doi.org/10.1371/journal.pcbi.1011928.g002
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illustrates a representative example of an LH trace with two obvious pulses occurring at times

100min and 300min. These are indeed identified by inspecting the hypothalamic signal profile

which peaks at around those times. At time 200min a less pronounced bump in LH could be

indicative of an LH pulse, however the inferred pulsatile hypothalamic signal remains well

below 0.5, indicating that under the current model there is higher probability that the bump is

a measurement artefact rather than a pulse.

To validate our pulse identification method, we used a database of LH profiles obtained

from healthy pre-menopausal women and compared the identified pulses with those previ-

ously obtained by the deconvolution method [19], which uses a maximum likelihood approach

to fit a series of pulses to the data [3]. Here, we identify a pulse when the posterior probability

that the hypothalamic signal is ‘on’ exceeds a threshold value. We use 0.5 as the threshold

value, which signifies there is higher probability that the hypothalamic pulse generator is on

(rather than off). This value yields the highest agreement between hormoneBayes and the

deconvolution method (see Fig D in S1 Text). We find that hormoneBayes agrees with the

deconvolution method in 77 out of 87 identified pulses (89%). Moreover, 13 pulses identified

by hormoneBayes were not identified by the deconvolution method. Overall, this suggests a

good agreement between the two methods, with hormoneBayes having the added advantage of

providing a measure for the likelihood of each pulse that clinicians and researchers can use to

inform their clinical decision making.

Variation of model parameter within and across groups

To test the applicability of hormoneBayes in different contexts we compile a database of LH

profiles from four groups with diverse LH dynamics (men, healthy pre-menopausal women

with regular menstrual cycles, post-menopausal women, women with HA, and women with

PCOS). As illustrated in Fig 3, the model successfully captures the differences in LH dynamics

in all four groups. Moreover, the model allows us to summarize LH data through model

parameters and assess the variability across and within groups. We find that two model param-

eters explain most of the variability between groups, namely the maximum secretion rate and

pulsatility strength (Fig 3C). The first parameter describes how much LH can be secreted over

time, whilst the second parameter quantifies the strength of the pulsatile signal relative to the

basal signal. Based on these two parameters there is a strong distinction between women with

PCOS and women with HA, who have lower LH secretion rates and/or diminished LH pulsati-

lity strength (i.e., pulsatile signal is weak relative to the basal signal). Furthermore, post-meno-

pausal women display higher secretion rates compared to pre-menopausal women but also

reduced pulsatility strength (i.e., pulses are less pronounced when higher level of LH are estab-

lished post menopause). Interestingly, healthy men and women illustrate a much lower param-

eter variability as compared to HA and post-menopausal women, which could be indicative of

various degrees of severity of HA/PCOS and tighter LH regulation in healthy individuals of

reproductive age.

Discussion

We have presented HormoneBayes, a novel computational framework for analyzing hormone

pulsatility. The framework combines (i) mathematical (mechanistic) models describing hor-

mone dynamics with (ii) computational Bayesian machinery for inferring model parameters

from data. HormoneBayes, comes with an open-access graphical user interface that make the

core functionality of the framework easily accessible, a feature lacking from currently available

analysis methods.
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Using a parsimonious mathematical (generative) model of LH secretion, we have demon-

strated the clinical utility of HormoneBayes in accurately describing LH profiles in various

contexts (healthy men, healthy pre-menopausal women, post-menopausal women, women

with PCOS and women with HA), and for identifying pulses. A novel feature of hormoneBayes

is that it summarizes hormone profiles in terms of model parameters that can be used to pre-

dict the underlying clinical conditions or reproductive state. Therefore, in the clinic hormone-

Bayes could assist diagnosis based on hormonal profiles by evaluating how well the profile is

described by different model/prior configurations, representing distinct physiological states

corresponding to different clinical conditions (e.g., PCOS, HA).

Ultimately, data analysis using HormoneBayes is as credible as the underlying generative

model used to describe hormonal dynamics. Unlike deconvolution methods, where the num-

ber of pulses is one of the model parameters to be inferred from the data, our approach relies

on a generative model that assumes two modes of LH secretion: pulsatile and basal. This

assumption is in par with current physiological understanding of the system and the hypotha-

lamic pulse generator hypothesis [20,21]. Furthermore, to model LH circulation levels the

model assumes a linear clearance rate. At least one other model used for the analysis of LH pul-

satility has used more complex (multiple timescale) clearance dynamics, however we expect

this assumption should have a minimal impact for the purpose of assessing LH pulsatility.

Nevertheless, the modular design of HormoneBayes allows future extensions of the model

with the scope of comparing how well different models capture LH dynamics as well as

enabling the analysis of hormone dynamics beyond LH [22,23].

HormoneBayes utilizes the Bayesian paradigm to infer model parameters from the data.

Within this paradigm, for each profile the method will output a (posterior) density distribution

of model parameters, quantifying how probable parameter values are given the observed pro-

file. This is fundamentally different from non-Bayesian methods, which provide point-

Fig 3. HormoneBayes handles LH pulsatility analysis in different contexts. (A) Inferred pulsatility strength and maximum

secretion rate parameters for different individuals: healthy men (n = 10); healthy post-menopause women (n = 13); healthy

pre-menopausal women (n = 4). (B) Inferred parameters for healthy pre-menopausal women (n = 4); women with PCOS

(n = 6) and women with HA (n = 5) illustrating how the assessment of LH pulsatility could help facilitate diagnosis of patients

presenting with reproductive endocrine disorders. (C) Representative fits of the model are given for one subject in each

dataset.

https://doi.org/10.1371/journal.pcbi.1011928.g003
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estimates of model parameters, as it allows for statistical testing. For instance, inferred poste-

rior distributions can be used to evaluate the impact of hormonal interventions on LH secre-

tion parameters, and crucially, this statistical evaluation can be conducted not only at the

population level but also on an individual basis (see Fig E in S1 Text for an example of this

type of personalised analysis). We expect these features of our method regarding personalized

analysis will be crucial as measurement technologies mature enabling cheap sampling of hor-

mone levels in real time [22,24].

Methods

Ethics statement

Data included in this manuscript were obtained from five different clinical research studies,

involving healthy men [25], healthy pre-menopausal women [19], post-menopausal women

[26], women with PCOS and women with HA [8]. Ethical approval for these studies was

granted by: the Hammersmith and Queen Charlotte’s and Chelsea Hospitals Research Ethics

Committee (registration number 05/Q0406/142) [8,19]; the UK National Research Ethics

Committee-Central London (Research Ethics Committee number 14/LO/1098) [25]; and the

West London Regional Ethics Committee (15/LO/1481) [26]. Written informed consent was

obtained from all subjects. All studies were conducted according to Good Clinical Practice

Guidelines.

Data collection

Participants attended a clinical research facility for 8 hour study visits hat included baseline

(vehicle treatment) LH measurements according to the relevant trial protocol as previously

described [8,19,25,26]. A cannula was inserted into a peripheral vein under aseptic conditions

(time at least -30 minutes), through which all subsequent blood samples were taken every 10

minutes from time 0 until 480 minutes. All participants were ambulatory and could eat and

drink freely during the study visit. All blood samples were left to clot for at least 30 minutes

prior to centrifugation at 503 rcf for 10 minutes, after which the serum supernatant was

extracted and immediately frozen at -20˚C prior to subsequent analysis using an automated

chemiluminescent immunoassay method (Abbott Diagnostics, Maidenhead, UK) in batches

after study completion. Reference ranges were as follows: LH 4–14 IU/L; respective intra-assay

and inter-assay coefficients of variation were 4.1% and 2.7%; analytical sensitivity was 0.5 IU/L.

Stochastic model of LH

We used a discrete-time, stochastic model to describe pulsatile LH dynamics. The model com-

prises of three dynamical variables, Pt, Bt, and LHt, that describe the pulsatile and basal hypo-

thalamic signals and the LH concertation in circulation, respectively.

The pulsatile hypothalamic signal Pt can take two values: Ht = 0 corresponding to the ON

state; and Ht = 1 corresponding to the OFF state. The stochastic dynamics of Ht are governed

by the following probability matrix

Hs+δt

Hs

0 1

0 1 � 1

tON
� dt 1

tON
� dt

1 1

tOFF
� dt 1 � 1

tOFF
� dt

https://doi.org/10.1371/journal.pcbi.1011928.t001
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i.e., parameters τON and τOFF govern the probabilities that the value of H will either flip or

remain the same over the time interval (s, s+δt).
The evolution of the basal hypothalamic signal, Bt, is described using a discrete time autore-

gressive model obeying the following equation

Xtþdt ¼ Xt �
dt
2

Xt þ
ffiffiffiffiffi
dt
p
� εt;

Bt ¼
1

1þ e� Xt
;

where εt is a normally distributed random variable with zero mean and unit variance. Note

that both Bt and Ht are bounded in the interval [0,1].

The two hypothalamic signals drive LH secretion, and along with LH clearance dictate the

circulating LH levels, LHt. The equation describing the time evolution of LHt, is

LHtþdt ¼ LHt þ ½kðPt � f þ Bt � ð1 � f ÞÞ � d � LHt� � dt

where d denotes the clearance rate, k denotes the maximum secretion rate, and parameter f
(termed pulsatility strength) describes the relative strength of the two hypothalamic signals.

Finally, the model assumes measurement error in the form:

LHobs
t ¼ LHtð1þ ZtÞ

where ηt is a normally distributed random variable with zero mean and std. deviation equal to

the CV of the assay. Throughout our analysis we have used δt = 1 min, hence, assuming the

system dynamics do not change significantly over shorter times.

Bayesian inference

The hormoneBayes framework uses Bayesian inference to obtain model parameters Θ = (τON,

τOFF, k, d, f) and latent variable (Ht, Bt) dynamics from LH profiling data D. In particular, hor-

moneBayes solves the inference problem by sampling from the target posterior distribution:

P Y;Ht;BtjDð Þ ¼
PðD;Ht;BtjYÞ � PðYÞ

PðDÞ
;

where P(Θ) is the prior parameter distribution; PðD;Ht;BtjYÞ ¼ PðDjY;Ht;BtÞ � PðHt;BtÞ is

the likelihood of the data given the parameters; and PðDÞ ¼
R

PðD;Ht;BtjYÞ � PðYÞ is the

marginal likelihood or model evidence.

Sampling from the full posterior distribution is performed using a Gibbs sampler, which is

an iterative Monte Carlo Markov Chain (MCMC) scheme. The algorithm is initialised with

parameter values drawn from the prior distribution, i.e., Θ0~P(Θ) and each subsequent itera-

tion, i = 1,. . .,M involves two steps: (1) sampling latent variables (Ht, Bt)
i given the data, D, and

the current parameter values Θi−1 and (2) sampling new parameter values Θi given D and the

latent variables (Ht, Bt)
i. The first step is performed using Sequential Monte Carlo (SMC) with

ancestral sampling [27]. The second step is further broken down into two parts, first parame-

ters (τON, τOFF) are sampled using an adaptive Metropolis-Hastings sampler and then parame-

ters (k, d, f) are sampled using the simplified version of the manifold Metropolis adjusted

Langevin algorithm (sMMALA) presented in [28].

For the analysis of all datasets in this study we considered the following independent prior

distributions: log
10
tON � Uðlog10ð5Þ; log10ð240ÞÞ and log

10
tOFF � Uðlog10ð5Þ; log10ð240ÞÞ,

based on the sampling rate (10min) and duration (480min) used in the LH profiling studies;

log
10
ðkÞ � N ð0; 5Þ, set as a broad uninformative prior;

logð2Þ
d � N 80; 9:3ð Þ, based on LH half-
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life data; and log(f)~U(0,1), to accommodate analysis of different LH profiles with high or low

pulsatility. Evaluation of the algorithm on synthetic dataset can be found in Fig A-C in

S1 Text.

HormoneBayes also allows the user to access the effect of pharmacological interventions on

LH pulsatility, by fitting in tandem two LH profiling datasets: corresponding to periods before

and after the intervention. In this case a composite model is used to allow inference of parame-

ters Θc = (τON, τOFF, k, d, f), corresponding to the baseline period (before the intervention),

and parameters Θp = (τON,i , τOFF,i , ki, fi) corresponding to the period after the intervention.

Here we assume the intervention does not affect the clearance rate d, hence this parameter

does not appear in Θp. In mathematical terms the target posterior is now given by

P Yc;YpjDc;Dp

� �
¼

PðDc;DpjYc;YpÞ � PðYc;YpÞ

PðDc;DpÞ
;

and sampling from the posterior is performed as described above. An example of this analysis

is Fig E of the S1 Text.

An open access C++ implementation of HormoneBayes accompanied with a graphical

interface implemented in Python and a user manual can be found at https://git.exeter.ac.uk/

mv286/hormonebayes.

Supporting information

S1 Text. Supplementary figures. Fig A: Testing HormoneBayes on synthetic data. Fig B:

Assessing the effect of the prior for the LH clearance rate. Fig C: Tuning HormoneBayes when

pulses are not clear by using a more informative prior on parameter f. Fig D: Pulse identifica-

tion using HormoneBayes. Fig E: Using HormoneBayes to identify the effect of interventions

on LH pulsatility.

(PDF)
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