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Abstract: This systematic review addresses the use of Lactiplantibacillus (Lactobacillus) plantarum in
the symptomatological intervention of neurodegenerative disease. The existence of gut microbiota
dysbiosis has been associated with systemic inflammatory processes present in neurodegenerative
disease, creating the opportunity for new treatment strategies. This involves modifying the strains
that constitute the gut microbiota to enhance synaptic function through the gut–brain axis. Recent
studies have evaluated the beneficial effects of the use of Lactiplantibacillus plantarum on motor and
cognitive symptomatology, alone or in combination. This systematic review includes 20 research
articles (n = 3 in human and n = 17 in animal models). The main result of this research was that the use
of Lactiplantibacillus plantarum alone or in combination produced improvements in symptomatology
related to neurodegenerative disease. However, one of the studies included reported negative effects
after the administration of Lactiplantibacillus plantarum. This systematic review provides current and
relevant information about the use of this probiotic in pathologies that present neurodegenerative
processes such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis.

Keywords: neurodegenerative disease; probiotics; Alzheimer’s disease; Parkinson’s disease; Multiple
Sclerosis; neurodegenerative process; Lactiplantibacillus plantarum; Lactobacillus plantarum

1. Introduction
1.1. The Neurodegenerative Disease

Neurodegenerative diseases refer to a group of pathologies that mainly affect the
Nervous System (NS), and which involve tissue degeneration and cell death [1,2]. Lesions
can be located in any region of the NS (spinal cord, brain, nerves, etc.), and affect cognitive
and/or motor functioning. The impact of these pathologies is very significant [3,4]. For
example, it is estimated that in 2050, 153 million people will have dementia [5]. The
prevalence of Alzheimer’s disease is particularly relevant and currently affects almost
47 million people worldwide. Regarding Parkinson’s disease, 8.5 million people currently
suffer from it [5,6].

One characteristic that is usually present in neurodegenerative diseases is the damage
associated with oxidative stress [7–10]. Thus, it is traditionally studied in relation to
cognitive impairment and neurodegeneration processes [11,12]. This phenomenon occurs
when there is an imbalance between pro-oxidant and antioxidant chemicals. These pro-
oxidants contain free electrons (which are also called free radicals) that have the ability to
produce oxidative damage in fractions of a millisecond. However, this damage is sufficient
to cause apoptosis and necrosis [13,14]. These mechanisms of action are involved in a
number of degenerative pathologies, although it is not possible to confirm exactly whether
they are the cause or effect of the clinical disease [15–17].

More than 100 neurodegenerative diseases or conditions associated with neuronal
death have been described, among which Alzheimer’s Disease (AD), Parkinson’s Disease
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(PD) and Multiple Sclerosis (MS) stand out due to their prevalence [18,19]. AD is the most
common form of dementia among older adults, with a prevalence of more than 46 million
people affected worldwide [20,21].

Regarding PD, it is a neurodegenerative disease with premature death of dopamin-
ergic neurons in the substantia nigra pars compacta in the midbrain [22,23]. In addition,
atrophy of the basal ganglia is present, as well as dysfunction of communication between
these subcortical regions and the prefrontal cortex [24–27]. Common symptoms in this
disease are parkinsonism (bradykinesia and tremor or rigidity), postural instability and gait
disturbances [28,29]. In terms of non-motor symptoms, these patients frequently present
neuropsychiatric disorders, sleep disorders, autonomic dysfunction and gastrointestinal
symptoms, among others [30–32].

Finally, MS is an autoimmune disease, although it causes degeneration in the brain
and spinal cord. The damage is caused by an inflammatory process, which occurs when
the immune system’s own cells attack the NS [33,34]. Because the lesions can be located in
different regions, the symptoms are heterogeneous [35–37]. The same happens with each
flare-up, when new lesions occur anywhere in the brain, optic nerve or spinal cord [38].
Among the most frequent symptoms, we find intestinal symptoms, such as urinary urgency
or incontinence; muscular symptoms, such as spasms, stiffness, difficulty in coordination
and gait; ocular symptoms such as discomfort, nystagmus or loss of vision; neurological
symptoms such as impairment of executive functions such as memory or attention and
difficulty in problem solving, among others [39–42].

1.2. The Impact of Gut Microbiota in Neurodegenerative Disease

There is growing evidence linking the gut microbiota (GM) with neurodegenerative
diseases, but it is unclear if it is the consequence or the cause of the disease. The GM is
formed by more than 100 million bacteria and more than 300 different species which live in
our digestive tract [43–46]. Bacteria belonging to the phylum Bacillota (Eubacterium, Dorea,
Ruminococcus), the phylum Actinomycetota (Bifidobacterium) and the phylum Bacteroidota (Alis-
tipes, Bacteroides) are essential in the gut microbiota [47–49]. In addition, the bacteria, the GM
is comprised of other microorganisms such as archaea, viruses, fungi, and protozoa [50,51].

It is known that the GM metabolites are involved in the onset and/or evolution
of neurodegenerative diseases through different action mechanisms that alter endocrine
pathways, immunological signals or neurological factors, among others [52,53]. When the
GM is preserved, we talk about eubiosis; however, in some patients there is an alteration of
the ratios of different species, and in this case, we speak of dysbiosis [54–57]. GM dysbiosis
has been associated with neurodegenerative processes related to pathologies such as PD,
AD or MS [58,59], and is usually accompanied by an increase in Bacteroidota as well as a
reduction in the levels of Bacillota and Bifidobacterium [60–62].

This field of study is currently seen as an opportunity for intervention in these patients.
The results obtained with the use of probiotics (live microorganisms that can be orally
administrated as a food supplement or medicine) indicate that it is possible to modulate
the microbiota, reducing organic inflammation and the symptoms associated with these
neurodegenerative diseases [63–65]. Finally, the gut microbiota can modify the expression of
certain genes that have been associated with different neurodegenerative diseases, as well as
those involved in the mechanisms of cognitive functioning [66,67]. In addition, GM modulates
metabolic functions, downregulating the low-grade inflammatory processes [68,69].

Among the most studied probiotics in different pathologies are Bifidobacterium (mainly
longum and bifidum spp.) and the Lactobacillaceae family (mainly Lactobacillus paracasei,
Lactobacillus casei and Lactoplantibacillus plantarum spp.) [70–72]. Bifidobacterium is a genus of
gram-positive, anaerobic bacilli, and they utilize the fructose-6-phosphate phosphoketolase
pathway. Lactobacillaceae is a family of long, curved or straight, gram-positive, anaerobic,
lactic acid-forming bacilli [73–77]. Of these, Lactiplantibacillus (Lactobacillus) plantarum
appears to have the most promising results in the intervention of symptoms associated with
neurodegeneration [78–80]. Several authors have suggested that the use of Lactiplantibacillus
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plantarum, alone or in combination, improves specific symptoms such as motor, cognitive
and psychiatric signs in neurodegenerative processes [81–89]. Research regarding these
effects has increased in the last decades, making it necessary to compare with the results
obtained. It is important to note that the term Lactobacillus plantarum was modified in 2020
for Lactiplantibacillus plantarum. Thus, in this Systematic Review, studies that included both
terms were registered to ensure that all potential studies have been included.

The main objective of this Systematic Review was to collect all significant findings from
both human and animal studies investigating the impact of Lactiplantibacillus plantarum
administration on the improvement of motor and/or cognitive symptomatology in patients
with neurodegenerative disease. This review will provide the most current data on the use
of Lactiplantibacillus plantarum and intends to facilitate future research in this area.

2. Methods
2.1. Literature Search

The review followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [90,91]. We searched for articles published between 2000
and 2024 in the following databases: ScienceDirect, Scopus and Web of Science. We
used the following search: (Lactobacillus plantarum OR Lactiplantibacillus plantarum) AND
Neurodegenerative disease. Two authors independently conducted the literature search in
January 2024 (A.I.B.-V and S.U.), including the initial review of titles and abstracts, and the
evaluation of retrievable articles for comprehensive review. Included articles were original
research studies in English and Open Access.

2.2. Study Selection

In both human and animal studies, the inclusion criteria required: (i) a direct relation-
ship between the use of Lactobacillus plantarum OR Lactiplantibacillus plantarum and changes
in the symptomatology of neurodegenerative disease; (ii) the use of Lactobacillus plantarum
OR Lactiplantibacillus plantarum as a therapeutic target in the process of neurodegeneration
was addressed; (iii) the studies included any of the pathologies studied in this systematic
review, which involve neuronal death associated with AD, PD, MCI and MS, oxidative
stress and other neurodegenerative processes.

3. Results

A total of 907 articles were retrieved (Figure 1), of which only 29 articles were identified
that fulfilled the eligibility criteria. Once duplicates were removed, the full titles and
abstracts of all articles were examined for eligibility. Studies that addressed Lactobacillus
plantarum OR Lactiplantibacillus plantarum unrelated to the neurodegeneration process were
excluded: 5 were studies that did not include intervention with Lactobacillus plantarum
OR Lactiplantibacillus plantarum and 4 were studies that focused on other pathologies not
studied. Following this detailed review, a total of 20 studies were included. After the
screening phase, all the selected articles were retrieved for comprehensive review, based on
the established inclusion criteria.

3.1. Data Extraction

The data extracted from the included studies were as described below (Table 1):

■ Type of study (human or animal models);
■ Type of probiotic used (Lactobacillus plantarum or Lactiplantibacillus plantarum alone or

in combination);
■ Neurodegenerative pathology addressed in the research;
■ Population (description);
■ Methodology of the research carried out;
■ Intervention (dose administered, time);
■ Results obtained after the intervention with Lactobacillus plantarum or Lactiplan-

tibacillus plantarum.
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Table 1. Effects of Lactiplantibacillus plantarum, alone or in combination with neurodegenerative diseases (in human and animal model).

Probiotics Population Methodology Intervention Results References

Parkinson’s Disease

HUMAN MODEL

Lactobacillus acidophilus NCIMB
30175, Lactobacillus plantarum
NCIMB 30173, Lactobacillus
rhamnosus NCIMB 30174 and
Enterococcus faecium NCIMB 30176

Fecal samples from
six donors (three
healthy control
subjects, three
diagnosed with PD)

In vitro dynamic,
multi-compartment
gastrointestinal
model

Fermentation with
probiotic for 48 h

Increased levels of
Firmicutes,
Actinobacteria and
Bacteroidetes in PD
patients. Modulation of
the intestinal microbiota
that delays pathology
progression

10.1016/j.ijpx.2021.100087 [92]

Lactobacillus plantarum PS128 25 patients
Open-label,
single-arm, baseline-
controlled trial

PS128 (2 capsules
containing 30 billion
colony-forming units
per capsule) daily for
12 weeks

Improved motor scores
and quality of life 10.3389/fnut.2021.650053 [93]

MCI (Mild Cognitive Impairment)

Lactobacillus plantarum BioF-228,
Lactococcus lactis BioF-224,
Bifidobacterium lactis CP-9,
Lactobacillus rhamnosus Bv-77,
Lactobacillus johnsonii MH-68,
Lactobacillus paracasei MP137,
Lactobacillus salivarius AP-32,
Lactobacillus acidophilus TYCA06,
Lactococcus lactis LY-66,
Bifidobacterium lactis HNO19,
Lactobacillus rhamnosus HNO01,
Lactobacillus paracasei GL-156,
Bifidobacterium animalis BB-115,
Lactobacillus casei CS-773,
Lactobacillus reuteri TSR332,
Lactobacillus fermentum TSF331,
Bifidobacterium infantis BLI-02, and
Lactobacillus plantarum CN2018

42 patients Pilot randomized
controlled trial (RCT)

2 g (>2 × 1010

CFU/g) probiotics
daily for 12 weeks

Cognitive function and
sleep quality were
improved

10.1016/j.gerinurse.
2023.03.006 [94]
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Table 1. Cont.

Probiotics Population Methodology Intervention Results References

Alzheimer’s Disease

ANIMAL MODEL

SLAB51: Streptococcus thermophilus
DSM 32245, Bifidobacterium lactis
DSM 32246, B. lactis DSM 32247,
Lactobacillus acidophilus DSM 32241,
Lactobacillus helveticus DSM 32242,
Lactobacillus paracasei DSM 32243,
Lactobacillus plantarum DSM 32244
and Lactobacillus brevis DSM 27961

48 AD male mice
triple-transgenic, B6;
129-Psen1tm1Mpm Tg
(amyloid precursor
protein [APP] Swe,
tauP301L) 1Lfa/J
(named 3xTg-AD)
and the wt
B6129SF2 mice

Treatment with
probiotic vs. Sham

SLAB51 (200 billion
bacteria/kg/d) daily
for 16 and 48 weeks

It improved impaired
brain glucose
metabolism implicated
in AD pathogenesis,
delaying disease
progression

10.1016/j.neurobiolaging.
2019.11.004 [95]

NK151: Lactobacillus plantarum;
NK173: Bifidobacterium longum

35 specific
pathogen-free
C57BL/6 mice

Treatment with
probiotic vs. Sham

Escherichiacoli K1 (EC,
1 × 109 CFU per
mouse per day) were
orally gavage daily
for 5 days

Reduced memory
impairment and
modulated gut
microbial profile

10.1039/d1fo02167b [96]

Lactobacillus plantarum MTCC1325 48 healthy adult male
Wistar rats

The hippocampal
(HP) and cerebral
cortex (CC) brain
regions of each
animal were isolated

Lactobacillus
plantarum MTCC1325
daily for 60 days

Neurodegeneration was
reduced by the protective
effect on the ATPase
system in the brain

10.15171/bi.2016.27 [97]

VSL#3 ®: Lactobacillus plantarum,
Lactobacillus delbrueckii subsp.
Bulgaricus, Lactobacillus paracasei,
Lactobacillus acidophilus,
Bifidobacterium breve,
Bifidobacterium longum,
Bifidobacterium infantis and
Streptococcus salivarius subsp.
Thermophilus

140 mice: 70 male
and female
AppNL-G-F (AD)
and 70 male and
female C57BL/6J
(wild type, WT)

Treatment with
probiotic vs. Sham vs.
ABX (antibiotic) vs.
ABX+probiotic

VSL#3 ® (4 × 109

UFC/día/mice) for
8 weeks

All groups of female
mice with intervention
improved mnesic ability
but none affected
memory in male mice;
reduced brain levels of
TNF-α in female
AppNL-G-F mice

10.3390/cells10092370 [98]
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Table 1. Cont.

Probiotics Population Methodology Intervention Results References

Parkinson’s Disease

ANIMAL MODEL

Lactobacillus plantarum PS128 90 six-week-old male
C57BL/6J mice

Treatment with
probiotic vs. Sham

PS128 (109 CFU in
200 µL saline) daily
for 28 days

Motor deficits were
improved and
dopaminergic neuronal
death was alleviated.
Glial reactivity is reduced
and striatal neurotrophic
factors are increased

10.1016/j.bbi.2020.07.036 [99]

Lactobacillus plantarum PS128 40 eight-week-old
male C57BL/6J mice

Treatment with
probiotic vs. Sham

PS128 (109 CFU/d)
(week 1 to 6) and
rotenone

Modified the microbial
profile and maintained
neuroprotective effects
by increasing the
expression of the
suppressor of
cytokine signaling

10.3390/ijms24076794 [100]

Lactobacillus plantarum DP189 90 male C57BL/
6 mice

Treatment with
probiotic vs. Sham

DP189 (0.2 mL) daily
for 14 days

Improved motor
symptoms and
increased levels of
monoamines in the
nervous system. In
addition, it promoted
neuronal survival

10.1016/j.jff.2021.104635 [101]

Lactobacillus plantarum CRL 2130,
Streptococcus thermophilus CRL 808,
and Streptococcus thermophilus
CRL 807

56 eight-week-old
male C57BL/6 mice

Treatment with
probiotic vs. Sham

L. plantarum CRL 2130,
S. thermophilus CRL
808, S. thermophilus
CRL 807 or the
bacterial mixture
(100 µL that contain
8 ± 2 × 108 CFU/mL
of each strain,
individually or as a
mixture daily) for
4 days

Both alone or in
combination, the strains
produced significantly
improved motor skills,
with possible
involvement of vitamin
B interaction, and
protective immune
response to organ
inflammation

10.1016/j.nut.2020.110995 [102]
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Table 1. Cont.

Probiotics Population Methodology Intervention Results References

ANIMAL MODEL

Lactobacillus plantarum CRL2130,
Lactobacillus plantarum CRL725

35 neuro-2a (N2a)
neuroblastoma cell
line (ATCC
CCL131) mice

In vitro: Half of each
brain was removed
for the determination
of cytokines; The
other half of the brain
was stored in 10%
paraformaldehyde/
PBS during 24 h and
then embedded in
paraffin; In vivo:
Treatment with
probiotic vs. Sham

In vitro: N2a cells
were incubated with
intracellular extract
from L. plantarum
CRL2130. In vivo:
Lactobacillus
plantarum CRL2130,
Lactobacillus
plantarum CRL725
(100 µL) once

In vitro: cells-maintained
viability and significantly
decreased IL-6 release
and reactive oxygen
species (ROS) formation.
In vivo: attenuated
motor deficits and
prevented dopaminergic
neuronal death

10.1007/s11064-021-
03520-w [103]

Lactobacillus plantarum KJ01,
Acetobacter pomorum KJ02,
Lactobacillus brevis KJ03, and
Acetobacter pasteurianus KJ04

30 to 40 adult
Drosophila

Treatment with
probiotic vs. EGCG

Lactobacillus plantarum
o Acetobacter pomorum
(5 g food/1 mL of
bacterial suspension)
for 20 days (OD600 = 1,
approximately 5 × 107

viable cells/mL)

LP KJ01 exacerbated PD
symptoms and
eliminated EGCG
(eigallocatechin-3-
gallate)-mediated
symptom enhancement.
In addition, it
aggravated neuronal
loss and hindered
EGCG-mediated
enhancement.

10.1096/fj.201903125RR [104]

PROBIO: Lactobacillus casei W56,
Lactobacillus acidophilus W22,
Lactobacillus paracasei W20,
Lactobacillus salivarius W24,
Lactobacillus lactis W19,
Lactobacillus plantarum W62,
Bifidobacterium lactis W51,
Bifidobacterium lactis W52, and
Bifidobacterium bifidum W23

120 adult (6–8 months)
wild-type AB (WT,
genetic line) zebrafish

Treatment with
probiotic vs. Sham

PROBIO
(3 g × 28 envelopes)
were dissolved
directly into 100 mL
distilled water as a
unique dose per day

ROT triggers apoptosis
and increases PARKIN
and PINK1 expression.
LEV/CARB and
PROBIO maintain
neurogenesis and
angiogenesis, exerting
neuroprotective
functions and decreasing
the impact of ROT

10.3390/antiox11102040 [105]
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Table 1. Cont.

Probiotics Population Methodology Intervention Results References

ANIMAL MODEL

Multiple Sclerosis

Lactobacillus paracasei DSM 24734,
Lactobacillus plantarum DSM 24730,
Lactobacillus acidophilus DSM 24735,
Lactobacillus delbruckeii subspecies
bulgaricus DSM 24734,
Bifidobacterium longum DSM 24736,
Bifidobacterium infantis DSM 24737,
Bifidobacterium breve 24732 and
Streptococcus thermophilus
DSM 24731

Fecal samples freshly
obtained from each
mouse on day 70
and 85

Treatment with
probiotic vs. Sham

2 times a week:
3 × 108 CFU (100 µL)
of Vivomixx for 70 to
85 days

Motor function was
improved. Increased
anti-inflammatory
activation in the
microglia

10.1080/19490976.
2020.1813532 [106]

Oxidative Stress

Se-enriched Lactobacillus plantarum
CCFM8610

270 Luciobarbus
capito

Treatment with
probiotic vs. Sham

Diet of 1–2% body
weight twice a day
for 30 days

Reversed Cd toxicity in
the blood and brain,
improving antioxidant
capacity and reducing
memory loss

10.1016/j.ecoenv.
2022.113890 [107]

Lactobacillus plantarum ST-III
AB161 (CGMCC 22782) 24 male ICR mice Treatment with

probiotic vs. Sham
Free access for
28 days

Significantly improved
cognitive dysfunction
(memory and learning).
Modifications in
hippocampal
morphology and
synaptic dysfunction
were found, reducing
the impact of
oxidative stress

10.3389/fnins.2022.976358 [108]
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Table 1. Cont.

Probiotics Population Methodology Intervention Results References

ANIMAL MODEL

Lactobacillus plantarum NCIMB
8826 (Lp8826), Lactobacillus
fermentum NCIMB 5221 (Lf5221)
and Bifidobacteria longum spp.
infantis NCIMB 702255 (Bi702255)

Wildtype Drosophila
melanogaster
(Oregon R)

Treatment with
probiotic vs.
synbiotic

Probiotic formulation:
3.0× 109 CFU/mL
of probiotics with
equal distribution
between Lp8826
(1.0× 109 CFU/mL),
Lf5221
(1.0× 109 CFU/mL)
and Bi702255
(1.0× 109 CFU/mL).
Synbiotic formulation:
probiotic formulation +
0.5% of TFLA powder

The probiotic and
synbiotic reduced
metabolic stress levels
and inflammation,
improved oxidative
stress and loss of
mitochondrial integrity.
Synbiotic formulation
maintains results better
than separate
formulation

10.1038/s41598-018-
25382-z [109]

Cognitive decline and
oxidative stress

Lactobacillus plantarum DR7 6 Male Sprague
Dawley rats

Treatment with
probiotic vs. Sham

DR7 (109 CFU/day)
for 12 weeks

Memory capacity
improved. Anxiety also
improved in the
DR7-treated group. In
addition, protective
effects on serotonergic
pathways were
demonstrated

10.3920/BM2019.0200 [110]

Neurodegenerative process

Lactobacillus plantarum AR113 32 male C57BL/
6J mice

Treatment with
probiotic vs. Sham

AR113
(1 × 109 CFU/mL)
daily

It significantly reduced
oxidative stress injury
induced by D-galactose,
decreasing its
cytotoxicity. In addition,
cell membrane integrity
was maintained and
antioxidant enzyme
activity was increased

10.26599/fshw.2022.
9250076 [111]
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3.2. Human Model

Three studies were conducted in humans: two address PD and the impact of the use of
Lactobacillus plantarum or Lactiplantibacillus plantarum in the intervention of neurodegenera-
tive processes in PD patients [92,93] (n = 2), and 1 of them explored MCI (Mild Cognitive
Impairment) [94] (n = 1).

3.2.1. Parkinson’s Disease

Ghyselinck et al. (2021) used stool samples from three PD patients to create an in vitro
intestinal model and dosed Symprove, a probiotic consisting of Lactobacillus acidophilus
NCIMB 30175, Lactobacillus plantarum NCIMB 30173, Lactobacillus rhamnosus NCIMB 30174
and Enterococcus faecium NCIMB 30176 [92]. After 48 h of probiotic dose, the microbial
community analysis showed significant changes, with elevated levels of Firmicutes, Acti-
nobacteria and Bacteroidetes. In addition, the production of short-chain fatty acids (SCFA)
and lactate was stimulated. Levels of anti-inflammatory cytokines (IL-6, IL-10) were also
increased and levels of pro-inflammatory cytokines and chemokines (MCP-1, IL-8) were
decreased (TEER-transepithelial electrical resistance (110.3 ± 1.3, p < 0.001)).

Another study conducted by Lu et al. (2021) analyzed the use of Lactobacillus plantarum
PS128 for 12 weeks. The results showed that after 12 weeks of PS128 supplementation,
UPDRS (Unified Parkinson’s Disease Rating Scale) motor scores improved significantly
in both the OFF (−0.80 ± 1.85, p = 0.04) and ON (−2.56 ± 5.36, p = 0.007). In addition,
PS128 intervention significantly improved ON and OFF period duration as well as PDQ-39
(Parkinson’s Disease Questionnaire) values (−5.68 ± 8.55, p = 0.031). However, no apparent
effect of PS128 on non-motor symptoms of PD patients was observed [93].

It can be concluded that Lactiplantibacillus (Lactobacillus) plantarum improves motor
symptomatology in PD due to its neuroprotective action through its microbial profile [92].
Although a significant effect on non-motor symptomatology could not be established, mi-
crobial modulation allows for the modification of the protective effects of anti-inflammatory
cytokines [93].

3.2.2. Mild Cognitive Impairment

Fei et al. (2023) conducted a study with 42 patients diagnosed with ICM to whom
they administered a probiotic mixture (Lactobacillus plantarum BioF-228, Lactococcus lactis
BioF-224, Bifidobacterium lactis CP-9, Lactobacillus rhamnosus Bv-77, Lactobacillus johnsonii
MH-68, Lactobacillus paracasei MP137, Lactobacillus salivarius AP-32, Lactobacillus acidophilus
TYCA06, Lactococcus lactis LY-66, Bifidobacterium lactis HNO19, Lactobacillus rhamnosus
HNO01, Lactobacillus paracasei GL-156, Bifidobacterium animalis BB-115, Lactobacillus casei
CS-773, Lactobacillus reuteri TSR332, Lactobacillus fermentum TSF331, Bifidobacterium infan-
tis BLI-02 and Lactobacillus plantarum CN2018), for 12 weeks. The results showed that
the probiotic mixture improved cognitive function as well as sleep quality (Mini-Mental
State Examination-MMSE (24.75 ± 2.47); Montreal Cognitive Assessment Scale-MoCA
(22.05 ± 2.14 vs. a 20.10 ± 1.45); Pittsburgh Sleep Quality Index-PSQI (5.35 ± 2.78 vs.
8.40 ± 1.76,) (* p < 0.001).

In conclusion, the evidence suggests that treatment with this mixture of bacterial
strains, which includes different species of Lactobacillaceae, can improve mild cognitive
impairment and sleep quality [94].

3.3. Animal Model

A total of 17 studies were conducted using different animal models. Of these, 4 fo-
cused on AD [95–98] (n = 4); 7 focused on PD [99–105] (n = 7); 1 analyzed MS [106],
(n = 1); 3 studied oxidative stress [107–109] (n = 3); 1 on cognitive impairment and ox-
idative stress [110] (n = 1); and 1 on neurodegenerative process [111] (n = 1). All of them
addressed the intervention with Lactobacillus plantarum or Lactiplantibacillus plantarum for
the improvement of symptoms associated with neurodegenerative pathologies.
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3.3.1. Alzheimer’s Disease

Bonfili et al. (2020) conducted a study with a transgenic mouse model and adminis-
tered the probiotic SLAB51 for a period of 16 to 48 weeks [95]. It contained eight different
live bacterial strains: Streptococcus thermophilus DSM 32245, Bifidobacterium lactis DSM
32246, Bifidobacterium lactis DSM 32247, Lactobacillus acidophilus DSM 32241, Lactobacillus
helveticus DSM 32242, Lactobacillus paracasei DSM 32243, Lactobacillus plantarum DSM 32244
and Lactobacillus brevis DSM 27961. The results obtained indicate that the ingestion of
probiotics leads to an improvement in the altered brain glucose metabolism associated
with the pathogenesis of AD, thereby delaying the progression of the disease (SLAB51
(* p < 0.05) vs. control and Veh.).

The study conducted by Lee et al. in 2021 in a transgenic mouse model addressed the
impact on AD symptomatology of a probiotic composed by Lactobacillus plantarum NK151;
NK173 and Bifidobacterium longum NK173 [96]. The results showed that the intervention
reduced memory impairment and modulated gut bacterial composition in mice with AD
cognitive impairment.

Mallikarjuna, Praveen, and Yellamma (2016) conducted a study in D-galactose-induced
AD rats, and administered Lactobacillus plantarum MTCC1325 for 60 days [97]. The results
demonstrated that, within a 30-day period, rats in the probiotic group exhibited a rever-
sal of all ATPase enzyme components to normal levels. These data indicates that these
probiotics exerts a protective action on the ATPase system in the brain, reducing the neu-
rodegeneration (Alleviated Escherichia coli K1-induced cognitive impairment (# p < 0.05 vs.
NC. * p < 0.05 vs. EC.).

A study conducted by Kaur et al. in 2021 in an AppNL-G-F (AD) mouse model ana-
lyzed the impact of the probiotic compound VSL#3® (Lactobacillus plantarum, Lactobacillus
delbrueckii subsp. Bulgaricus, Lactobacillus paracasei, Lactobacillus acidophilus, Bifidobacterium
breve, Bifidobacterium longum, Bifidobacterium infantis and Streptococcus salivarius subsp. Ther-
mophilus) for 8 weeks [98]. This research was focused on finding differences by gender,
and the results indicated that female mice had improved mnesic function, although no
improvement was found in male mice. Similarly, a reduction in TNF-α levels in the brain
was found in female mice (*Significant difference at p < 0.05 vs. control group. #Significant
difference at p < 0.05 vs. AD group).

These results suggest that Lactiplantibacillus plantarum improves mnesic function, acts
as a neuroprotectant in hippocampal cells delaying the neurodegenerative process [95,96],
and reverses the action of ATPases in the brain [97]. Moreover, the study that focused
on gender differences underscores the importance of conducting studies to analyze po-
tential differences in the effects of probiotic use based on gender and to comprehend the
mechanisms involved in these effects [98].

3.3.2. Parkinson’s Disease

Liao et al. (2020) conducted an investigation with a mouse model of MPTP-induced
PD [99]. They administered Lactobacillus plantarum PS128 for 28 days and an increase in DA
and norepinephrine were found in the striata. In addition, Lactobacillus plantarum PS128 was
shown to reduce the death of nigrostriatal dopaminergic neurons. Similarly, Lactobacillus
plantarum PS128 reduced MPTP-induced glial reactivity, and increased striatal neurotrophic
factors (PS128 increased the DA levels and significantly improved the DOPAC (p < 0.05),
HVA (p < 0.001), NE (p < 0.01) and MHPG (p < 0.001) levels in the MPTP-treated group).

Lee et al. (2023) conducted a study in a mouse model of PD [100]. Lactobacillus plan-
tarum PS128 was administered for 6 weeks and the results showed a significant reduction in
motor deficits and higher dopamine levels (PS128 significantly increased DA levels vs. ROT
group (p < 0.05)). Similarly, a reduction in the loss of dopaminergic neurons and microglial
activation was found. Levels of inflammatory factors were also reduced and an increase
in the expression of neurotrophic factor was shown in the brain. Ingestion of Lactobacillus
plantarum PS128 modified the microbial profile of PD mice and sustained neuroprotective
effects by increasing the expression of the suppressor cytokine signaling 1 (SOCS1).
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Along the same lines, Wang et al. in their 2021 study in a mouse model of PD induced
by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) [101], administered Lactobacillus
plantarum DP189 for 14 days. The results indicated that this product exerted a signifi-
cant neuroprotective effect on dopaminergic neurons, which improved motor symptoms
(activities increased by 13.8% vs. model group (p < 0.05)). In addition, an increase in
the levels of monoamines in the nervous system, namely 5-HT (5-hydroxytryptamine)
and DA (dopamine) was also described. Another interesting result was that Lactobacillus
plantarum DP189 promoted neuronal survival through a modulation of the ERK2 and
AKT/mTOR pathways.

Pérez Visñuk, et al. conducted a study in 2020 [102], in a mouse model of PD induced
by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. They administered Lactobacillus plantarum
CRL 2130, Streptococcus thermophilus CRL 807 and Streptococcus thermophilus CRL 808 alone
or in combination. The results revealed a notable enhancement in the motor skills of
mice under both individual and combined administrations; however, the combined form
appeared to be more effective. Moreover, the mechanisms of action did not appear to be
entirely clear.

Pérez Visñuk et al. in 2022 conducted another study in a mouse model with PD
induced by MPTP and probenecid, to whom they administered Lactobacillus plantarum
CRL2130 [103]. The results showed that motor deficits were reduced, in addition to
preventing the death of dopaminergic neurons. A reduction in proinflammatory cytokines
and an increase in IL-10 were also observed compared to the control group, showing a
neuroprotective effect. In this same study an in vitro analysis was conducted in which N2a
cells were incubated with an intracellular extract of Lactobacillus plantarum CRL2130 and
showed that viability was maintained and IL-6 release and reactive oxygen species (ROS)
formation, all affected by MPP+, were significantly reduced (In vitro: CRL2130 reduced
the oxidative stress and IL-6 (p < 0.05); In vivo: CRL2130 improved the motor deficits
(p < 0.05)).

The study conducted by Xu et al. in 2020 addressed the impact of individual strains of
Lactobacillus and Acetobacter in a Drosophila model with PINK mutations, and administered
the prebiotic EGCG (eigallocatechin-3-gallate) [104]. The individual strains used were Lac-
tobacillus plantarum KJ01, Acetobacter pomorum KJ02, Lactobacillus brevis KJ03, and Acetobacter
pasteurianus KJ04. The prebiotic EGCG substantially modified the intestinal microbiota,
restoring bacterial abundance, in addition to ameliorating existing dopaminergic deficits.
On the other hand, the administration of individual strains of Lactobacillus or Acetobacter
exacerbated the neuronal dysfunction reduced by EGCG (prolonged climbing latency in
the PINK1B9 (p = 0.013) and PINK1B9+EGCG (p = 0.005) flies).

Another recent study was carried out in 2022 by Ilie et al. In this research, an adult
zebrafish model (wild-type AB; WT, genetic line) with ROT-rotenone-induced motor im-
pairment was used [105]. Then, the administration of different compounds was included to
study their impact on these deficits. The PROBIOTIC group (Lactobacillus casei W56, Lacto-
bacillus acidophilus W22, Lactobacillus paracasei W20, Lactobacillus salivarius W24, Lactobacillus
lactis W19, Lactobacillus plantarum W62, Bifidobacterium lactis W51, Bifidobacterium lactis W52,
and Bifidobacterium bifidum W23) and LEV+CARB (levodopa and carbidopa) group showed
similar neuroprotective effects, decreasing the toxic effects of ROT, favoring neurogenesis
and angiogenesis and their maintenance (PROBIO group: positive marking for PCNA,
S100b, and GFAP, p53 and cox4i1; ROT+VPA, ROT+LEV/CARB, and ROT+PROBIO: in-
crease in all IHC markers; ROT+PROBIO: PCNA marked a small number of cells).

Evidence suggests that the use of Lactiplantibacillus plantarum significantly reduces
motor deficits. It also reduces levels of inflammatory factors and maintains neuroprotective
effects on dopaminergic neurons, both in vivo and in vitro [99–105].

3.3.3. Multiple Sclerosis

Research carried out by Mestre et al. in 2020, in an experimental model of MS infected
with TMEV-IDD (induced demyelinating disease), analyzed the impact of intervention
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with Vivomixx (probiotic composed of Lactobacillus paracasei DSM 24734, Lactobacillus plan-
tarum DSM 24730, Lactobacillus acidophilus DSM 24735, Lactobacillus delbruckeii subspecies
bulgaricus DSM 24734, Bifidobacterium longum DSM 24736, Bifidobacterium infantis DSM
24737, Bifidobacterium breve 24732 and Streptococcus thermophilus DSM 24731) during the
chronic stage of the disease. It was administered to mice for 70 to 85 days [106].

Consumption of this probiotic improved motor function, showing an increase in
horizontal and vertical activity of mice as opposed to the more limited activity of the vehicle-
treated mice (p < 0.01 vs. TMEV-mice). In addition, it was shown that mice treated with
Vivomixx underwent subtle changes in the composition of the gut microbiota. Regarding
Vivomixx-TMEV mice group, the relative abundance of Anaerostipes, Dorea, Oscillospira,
Enterobacteraceae or Ruminococcus decreased while Bacteroides, Odoribacter, Lactobacillus or
Sutterella was increased.

This study concluded that the use of a multi-strain probiotic, which includes Lacto-
bacillus plantarum, improves motor function [106].

3.3.4. Oxidative Stress

Shang et al. (2022) conducted a study with Luciobarbus capito (L. capito) in which they
investigated the role of Selenium (Se)-enriched Lactobacillus plantarum on Cadmium (Cd)-
induced oxidative stress [107]. Compared to the control group, the L. capito that received
the product showed a significant decrease in Cd toxicity after one month of diet (p < 0.05),
a decrease in oxidative capacity, and improved memory processes.

Xu et al. (2022) conducted a study with a mice model of alcohol-induced cognitive
dysfunction. They administered Lactobacillus plantarum ST-III (LP-cs) for 28 days [108].
The results showed that LP-cs is able to significantly improve cognitive dysfunction and
improved memory and learning. In addition, modifications were found in hippocampal
morphology and synaptic dysfunction, reducing the impact of oxidative stress (Control vs.
AE and AE vs. AE/LP-cs, * p < 0.05, ** p < 0.01, *** p < 0.001, n = 3–6).

The study by Westfall, Lomis and Prakash in 2018 addressed the impact of a probiotic
compound (Lactobacillus plantarum NCIMB 8826 (Lp8826), Lactobacillus fermentum NCIMB
5221 (Lf5221) and Bifidobacteria longum spp. infantis NCIMB 702,255 (Bi702255)) and a
symbiotic compound (probiotic formulation + 0.5% of TFLA power (Emblica officinalis, Ter-
minalia bellirica and Terminalia chebula)) in an aged male Drosophila melanogaster model [109].
The results obtained indicated that both the probiotic compound alone and the symbiotic
compound had beneficial effects on metabolic markers associated with aging in this animal
model. Specifically, improvements in insulin-like signaling were found, reducing oxidative
stress (p < 0.01).

Evidence suggests that the use of Lactiplantibacillus plantarum improves cognitive
function, memory processes and learning, reducing the effect of oxidative stress [107–109].

3.3.5. Cognitive Decline and Oxidative Stress

Zaydi et al. (2020) conducted a study in a D-galactose-induced aged rat model [110].
They administered Lactobacillus plantarum DR7 for 12 weeks and studied its impact on
cognitive impairment and oxidative stress. The results showed that the ingestion of Lacto-
bacillus plantarum DR7 improved memory capacity. Anxiety level also was reduced in the
DR7-treated group. In addition, the probiotic improved the serotoninergic pathway (MD
5.62; 95% CI 1.78 to 6.11; p < 0.05).

This study suggests that the use of Lactiplantibacillus plantarum improves cognitive
impairment and oxidative stress, memory and anxiety symptomatology [110].

3.3.6. Neurodegenerative Process

Xia et al. (2024) conducted a study in a mice model of D-galactose-induced ageing.
They administered Lactobacillus plantarum AR113 as a pre-treatment [111]. The results
indicated that Lactobacillus plantarum AR113 significantly reduced D-galactose-induced
oxidative stress injury, reducing cytotoxicity while maintaining cell membrane integrity
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and enhancing antioxidant enzyme activity. Furthermore, the results suggested that the
expression of G protein-coupled receptor 78 (GPR78) and C/EBP homologous protein
(CHOP) could be reduced, facilitating the restoration of endoplasmic reticulum (ER) home-
ostasis, thus activating cellular anti-apoptotic pathways (mRNA expression levels of the
marker proteins GPR78 and CHOP were reduced to 0.04 and 0.26 times that of the Mod
group, respectively, while the expression of PERK increased to 2.09 times that of the Mod
group (p < 0.05)).

In conclusion, the use of Lactiplantibacillus plantarum reduced the damage caused by
oxidative stress associated with the neurodegeneration process [111].

4. Discussion

The main objective of this systematic review was to compile all significant findings
from human and animal studies investigating the impact of Lactiplantibacillus plantarum
administration on the improvement of symptomatology in neurodegenerative disease. The
results obtained indicated that Lactiplantibacillus plantarum either alone or in combination,
improves these symptoms.

Regarding PD, motor symptomatology is the diagnostic mainstay of this condition,
and the reduction of these symptoms results in an improvement in the patient’s quality
of life [70,112–114]. Previous studies have shown that the quality of life in PD patients is
not only directly related to motor symptoms but also to cognitive impairment, behavioral
disturbances, and sleep disorders such as REM sleep disturbance [115–120]. The use of
probiotics could have positive effects on the quality of life of PD patients by improving
motor and non-motor symptomatology.

Human studies showed that Lactiplantibacillus plantarum, alone or in combination,
improves motor symptoms and increases the proliferation of beneficial bacteria in the
gut. These strains have shown neuro-modulatory abilities that delay the progression of
PD [92,93]. Similarly, Lactobacillus plantarum improved cognitive function in people with
MCI, as well as the quality and regularity of sleep [94]. Studies in the same line using
different probiotics, such as Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus
reuteri, and Lactobacillus fermentum, have shown a similar result. Thus, the use of this
species produced a reduction in the oxidative stress and showed a neuroprotective effect.
Moreover, the patient who took these probiotics showed a better score on the Movement
Disorders Society–Unified Parkinson’s Disease Rating Scale. Therefore, the use of probiotics,
especially those who belong to the Lactobacillus genus, seems to be useful to treat the motor
and cognitive symptoms associated with PD.

Regarding the use of probiotics in PD animal models, studies showed a significant
improvement in motor deficits following the administration of Lactiplantibacillus plantarum
alone or in combination. Similarly, it showed neuroprotective effects, reducing dopamin-
ergic neuronal death and glial reactivity, and increasing striatal neurotrophic factors. In
addition, neurogenesis and angiogenesis were increased after the probiotic use [99–102].
Moreover, an in vitro study [103] showed a decrease in ROS. The study performed by Xu
et al. in 2020 with a Drosophila model showed opposite results indicating that the PROBIO
combination exacerbated neuronal disfunction that has been previously alleviated with
EGCG (eigallocatechin-3-gallate) [104].

Analyzing other probiotics that could be used in the PD treatment, a recent study
using an established Caenorhabditis elegans (roundworm) model of synucleinopathy was
able to show that worms that received the probiotic strain Bacillus subtilis PXN21 hardly
formed any alpha-synuclein aggregates, reducing the inflammatory response [121]. In other
study conducted by Liu et al. in 2022 in a mouse model of chronic PD, they administered
polymannuronic acid (PM) or Lacticaseibacillus rhamnosus GG (LGG), or their combination,
showing neuroprotective effects independently, and a greater effect when administered
in combination. Neurotrophic factor expression was enhanced and the level of Clostridial
bacteria was increased. In addition, blood–brain barrier integrity was improved, and apop-
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tosis in the striatum was inhibited [122]. It is therefore necessary to identify other strains
that can be administered alone or in combination to enhance the neuroprotective effects.

Analyzing the results obtained from studies addressing AD, the use of Lactiplan-
tibacillus plantarum alone or in combination showed benefits. Specifically, it improved
AD-associated memory function [96], and neurodegeneration was reduced through pro-
cesses in the brain’s ATPase system as well as the neuroprotective role exerted by the
administered probiotic [97]. In addition, brain glucose metabolism, involved in the degen-
erative processes associated with AD, was improved [95]. Moreover, neuronal survival and
synapse function were also protected. Finally, modulation of the gut microbiota led to a
modification of the microbial profile, which exerts a neuroprotective function [95].

On the other hand, the study focused on gender differences, showing that Lactiplan-
tibacillus plantarum improves memory in female mice and reduced TNF-a levels, although
these improvements were not found in male mice [98].

In this line, other probiotics that have shown positive effects in ameliorating the symp-
tomatology of Alzheimer’s disease (AD) include Bifidobacterium longum, which improved
memory and plasticity in rats. Interventions with Lactobacillus acidophilus, Lactobacillus
fermentum, Bifidobacterium lactis, and Bifidobacterium longum have demonstrated positive
effects in both human and animal models [97,123,124].

The study of the impact of Lactiplantibacillus plantarum in MS intervention showed a
significant improvement in the motor symptoms associated with the pathology, as well as an
increase in anti-inflammatory activity in microglia, reducing oxidative stress. Furthermore,
in the study of cognitive function, the administration of Lactiplantibacillus plantarum showed
a decrease in memory loss [106].

Regarding the use of other probiotics in the MS treatment, others Lactobacillus spp.,
Bifidobacteriums (such as B. animalis) and Streptococcus showed a modulation in the CNS
inflammation by T helper type 1 (Th1) and Th17 cells, which produce pro-inflammatory
cytokines that damage the blood–brain barrier [125–128].

Moreover, studies analyzing oxidative stress, cognitive impairment, and neurodegen-
erative processes, along with the impact of various strains of Lactiplantibacillus plantarum,
have shown significant improvements in reducing the loss of mitochondrial integrity; im-
provements in cognitive processes such as learning and memory, an increase in the activity
of antioxidant enzymes, and a reduction in metabolic stress and inflammation [129–133].
As in other studies, the administration of Lactiplantibacillus plantarum was shown to modify
hippocampal morphology and improve synaptic dysfunction [124,134,135].

While the utilization of probiotics appears promising in the treatment of neurodegen-
erative diseases, it is important to note that it is not the sole option available. An alternative
approach involves the modulation of gut microbiota through fecal transplantation from
healthy individuals, which has demonstrated efficacy in restoring eubiosis. This restoration
enhances anti-inflammatory mechanisms and mitigates cellular oxidative processes. No-
tably, the application of this technique has proven to be a valuable treatment for a spectrum
of neurodegenerative conditions, including PD, AD, MS, and neurodegenerative processes
associated with oxidative stress [136–139].

Limitations and Future Research

The main limitation of this systematic review was the lack of clinical studies, which
is consistent with the novelty of this area of study. However, this review is relevant
and significant, as it provides the latest information currently available, focusing on the
probiotic interventions. The inclusion of these details enables us to identify starting points
for future research with a solid and rigorous empirical foundation.

Additional limitations arise from the heterogeneity of the utilized probiotics, as well
as variations in quantities of CFUs and combinations of strains within probiotic formu-
lations. Moreover, the mixture of probiotics with other substances further contributes to
the complexity of these limitations and makes it difficult to reach solid conclusions on the
beneficial effects of Lactiplantibacillus plantarum use alone or in combination. It is essential to
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emphasize that further research is necessary to elucidate the mechanisms of action for each
probiotic. Additionally, determining the most appropriate administration protocol in each
case is crucial to ensure the neuroprotective effects of the probiotic under consideration.

There is also a reduced number of studies indicating non-beneficial or non-existent
effects of probiotics administration and it is necessary to also have information about these
cases, to improve interventions.

This systematic review is the first to report and highlight the effects of Lactiplantibacillus
(Lactobacillus) plantarum, alone or in combination, on the neurodegeneration processes
present in neurodegenerative diseases. This information supports the development of
interventions incorporating this probiotic to alleviate motor, cognitive, and behavioral
symptoms linked to these pathologies.
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62. Ağagündüz, D.; Kocaadam-Bozkurt, B.; Bozkurt, O.; Sharma, H.; Esposito, R.; Özoğul, F.; Capasso, R. Microbiota alteration and
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