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Abstract: Deep learning is a machine learning technique to model high-level abstractions in data
by utilizing a graph composed of multiple processing layers that experience various linear and
non-linear transformations. This technique has been shown to perform well for applications in
drug discovery, utilizing structural features of small molecules to predict activity. Here, we report
a large-scale study to predict the activity of small molecules across the human kinome—a major
family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors
exhibit impressive clinical efficacy in several different diseases, resistance often arises through
adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination
therapies offer potential therapeutic strategies for patients with resistant diseases. Their development
would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across
the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small
molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition
of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural
networks outperformed classical single-task methods, offering the potential for conducting large-scale
virtual screening, predicting activity profiles, and bridging the gaps in the available data.

Keywords: virtual screening; kinase drug discovery; computational kinase profiling; machine
learning; multi-task deep learning

1. Introduction

Precision therapy attempts to optimize the treatment of diseases for specific patient
sub-populations, defined by clinical biomarkers [1]. It is especially promising in the context
of cancer therapy, where patient responses to therapy can vary considerably and often
lack clinical durability, even with the advent of single-targeted therapies that address
specific tumor genomic amplifications and disrupt oncogenic signaling processes [2]. While
patients often respond to targeted therapy initially, resistance is commonly detected as
heterogeneity in the tumor cell population, which allows for the adaptive selection of
sub-populations that are not affected by the drug, or cells effectively rewire their signaling
machinery to bypass the drug inhibition [3]. This paradigm has facilitated the acceptance of
targeted polypharmacology and combination therapy strategies to address drug resistance
and reduce recurrence in cancer patients [4].

The success of small-molecule kinase inhibitors in cancer therapy is evident, with over
70 FDA-approved drugs in this class [5,6]. While receptor tyrosine- and cyclin-dependent
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kinases have been established as target groups, it is increasingly recognized that a much
larger proportion of the human kinome is likely therapeutically relevant [7]. Beyond cancer,
kinase drug discovery programs now span a wide range of targets and disease areas [8].
Despite their efficacy, kinase inhibitor drugs often exhibit limited response rates, and
their effectiveness is of a short duration, necessitating the need for precision therapeutic
approaches as we learn from the integration of clinical data, such as drug responses and
cancer multi-omics characterization, and which features of these molecules are likely to
provide the best outcome [9–11].

In silico methods, such as ligand-based virtual screening, have been applied to kinase
activity modeling and have shown that the utilization of known kinase small-molecule
topological and bioactivity information can lead to the enrichment of novel kinase active
compounds [12]. The advantage of ligand-based virtual screening is that compounds can
be readily evaluated for interactions across all kinases for which applicable bioactivity
data are available. If such models were sufficiently accurate, they could support the
prioritization of compounds with a desirable polypharmacology profile while deprioritizing
those compounds that may inhibit kinases that are therapeutically less relevant or lead to
toxicity in a specific disease or patient [13,14].

Classification approaches for ligand-based virtual screening, also called target predic-
tion or target fishing, include a variety of single-task machine learning algorithms, such as
logistic regression, random forests, support vector machines, and naïve Bayesian classifiers
that aim to separate each kinase target individually, whether a compound belongs in the
active or inactive class [15–17]. Although these single-task methods perform relatively well
in many instances, they do not take into consideration the membership of molecules in
multiple classes and therefore do not adaptively learn across different categories, limiting
their applicability to predict profiles. To achieve a better performance, machine learning
methods must combine diverse sources of bioactivity data across multiple targets [18]. This
is especially relevant for kinases, where there is a large degree of similarity across many
different kinases and their inhibitors [19].

Motivated by previous advancements in multi-task neural network architectures,
we conducted an evaluation of multi-task deep neural networks (MTDNN) for kinome-
wide small-molecule activity prediction, comparing their performance to single-task meth-
ods [20]. We compiled an extensive dataset comprising over 650,000 aggregated bioactivity
annotations for more than 300,000 unique small molecules, covering 342 kinase targets. We
evaluated the machine learning methods using reported actives and reported inactives as
well as using the reported actives and considering all other compounds in the global dataset
as inactives. Our results indicate that multi-task deep learning results in a substantially
better predictive performance compared to single-task machine learning methods using
various cross-validation strategies. Additionally, the performance of the multi-task method
continues to improve with the addition of more data, whereas single-task methods tend
to plateau or diminish in performance. Our work extends the contribution of prior stud-
ies, which employed deep learning techniques for broad target classification and specific
benchmarking datasets [19,21–27], by evaluating MTDNN on a much larger dataset than
previously explored, utilizing real-world datasets from both public and private sources.
Through thorough characterization and evaluation, our study provides practical insights
into the applicability of kinome-wide multi-task activity predictors for virtual profiling and
compound prioritization.

2. Results

To investigate the implications and applicability of multi-task deep learning to kinome-
wide small-molecule activity prediction, we addressed the following research questions:

1. Can multi-task neural network architectures enhance the predictive performance of
kinase classification compared to single-task methods and non-deep learning multi-
task approaches?
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2. Compared to single-task methods, how effectively do multi-task models generalize,
and what is the impact of data availability on their performance? Do these models
exhibit an improved performance with larger data or a diminished performance with
smaller data points?

3. Are multi-task neural network architectures applicable to account for domain-specific
differences between kinase groups? In other words, do they perform across the
kinome despite large variations in available data?

4. Can the multi-task models be utilized to prioritize small molecules with kinase
polypharmacology in new datasets, or are they limited to the specific dataset they
were trained on?

2.1. Predictive Performance Comparison

To address our first question, we built and evaluated single- and multi-task classi-
fiers using aggregated kinase bioactivity data obtained from ChEMBL [28] and KKB [27].
Together, our dataset comprised 668,920 activity data points, covering 342 targets across
the human kinome and featuring 315,604 unique compounds (Figures 1 and 2 and S2).
The known active–known inactive (KA–KI) models were evaluated first, which employed
only the reported active and inactive compounds for each task. To address the issue of
limited samples when using only the KA–KI set to train the model, we created the known
active–presumed inactive (KA–PI) set based on reported actives and considering all other
compounds in the set as inactive to fulfill the purpose of virtual screening by leveraging
the entire dataset. Given that deep learning approaches tend to perform better with larger
datasets, we expected that the model performance would be better to retrieve a small subset
of actives from a larger dataset using the KA–PI assumption. This approach is also a more
realistic scenario for virtual screening where the vast majority of compounds are inactive.

The receiver operating characteristic (ROC) curve is a widely used performance metric
in machine learning, particularly for binary classifications. It shows the relationship
between the true positive rate and the false positive rate at different classification thresholds.
A higher area under the ROC curve, referred to as the ROC score, indicates a better model
performance in distinguishing between positive and negative samples. Figures 3 and 4
provide visual representations of the ROC score distribution and the impact of active
compounds on the ROC score, respectively, for each machine learning method applied to
all kinase tasks. Both the MTDNN model and single-task methods were evaluated using
the random stratified splitter, as outlined in Section 4. For the MTDNN model, a random
cross-validation strategy was employed, and it was compared to traditional single-task
machine learning methods in both figures.

As expected, the KA–PI models performed significantly better than the KA–KI models
across all machine learning methods based on ROC scores. Figures 3 and 4 clearly illustrate
that the KA–PI MTDNN model achieved the highest ROC score among all the machine
learning methods used, outperforming the performance of the single-task models, and
the KA–PI models performed especially well for tasks containing large amounts of active
compounds compared with the KA–KI models. A statistical analysis was conducted using
a Mann–Whitney U test to compare the performance of MTDNN vs classical single-task
learning methods based on the ROC score metric (Table 1).

KA–PI MTDNN’s performance was compared further with single-task deep neural
networks (STDNNs) to provide a thorough assessment of the model performance. We
found that the MTDNN generally outperformed the STDNNs (Figure S3). Particularly,
MTDNN performs better than the STDNNs for tasks with lower data points, especially for
kinases in the TK and AGC groups (Figure S4). This difference in performance is likely
due to the inherent differences between multi-task and single-task learning, where the
multi-task model leverages shared knowledge and representations across various tasks,
leading to an enhanced overall performance compared to the more specialized single-task
learning approach.
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Figure 1. Data aggregation workflow and overlap between test datasets. (A) Overlap between 
ChEMBL and KKB unique kinase inhibitors and targets. (B) ChEMBL and KKB small-molecule bi-
oactivity data aggregation workflow. 

Figure 1. Data aggregation workflow and overlap between test datasets. (A) Overlap between
ChEMBL and KKB unique kinase inhibitors and targets. (B) ChEMBL and KKB small-molecule
bioactivity data aggregation workflow.
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KI) datasets shown on the left and right, respectively. The receiver operating characteristic ROC 
area under the curve (AUC) is a metric to evaluate how well the model predicts active compounds 
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Figure 3. Differences in ROC score for kinase learning methods. Split violin plots with ROC score data
distribution for all 342 kinase tasks. Each split violin plot represents a different modeling method with
Known Active–Presumed Inactive (KA–PI) and Known Active–Known Inactive (KA–KI) datasets
shown on the left and right, respectively. The receiver operating characteristic ROC area under the
curve (AUC) is a metric to evaluate how well the model predicts active compounds (true positives) vs
the rate of incorrectly predicted actives (false positives). A higher score dictates a better discrimination
of the model between true and false predictions.
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Figure 4. Effect of the number of active compounds model performance. Scatter plots ROC score data
distribution for all 342 kinase tasks. Each box represents a specific model using either the Known
Active–Known Inactive (KA–KI) or Known Active–Presumed Inactive (KA–PI) datasets.

Table 1. Statistical Significance Analysis of Model Performance using ROC Scores.

Machine Learning Methods p-Value vs. KA–PI MTDNN Average ROC

KA–PI LR <2.2 × 10−16 0.887

KA–PI RF <2.2 × 10−16 0.842

KA–PI NB <2.2 × 10−16 0.852

KA–PI MTDNN 0.958
Abbreviations: LR = logistic regression; RF = random forest; NB = naïve Bayes; MTDNN = multi-task deep
neural networks.

Additionally, to discern whether the enhancement in the model performance resulted
from the deep learning algorithm or the multi-task learning approach, we conducted a
comparison between the KA–PI MTDNN model and a multi-task random forest (MTRF)
model (Figure S3). While previous comparisons demonstrated the superiority of multi-task
over single-task learning, this comparison with MTRF points out that these results also
attribute the performance improvement to the deep learning algorithm rather than solely
to the multi-task approach.

2.2. Data Efficiency and Generalization of Multi-Task Models

To investigate our second research question, which focuses on the generalization
capabilities of the multi-task neural network models, we assessed their performance on
tasks with varying numbers of active compounds. Interestingly, compared to single-task
methods, the multi-task neural network predictions did not degrade as rapidly on tasks
with smaller numbers of actives and continued to perform well even for tasks with less
than 50 active compounds (Figure 4). Enrichment of recovered actives out of a set of
mostly inactives is the most relevant performance indicator in virtual screening. The KA–
PI models are most relevant in that context. When comparing the model performance
based on the normalized enrichment factor (EF/EFmax) at 0.1% of the tested compounds
across all kinase tasks, the multi-task deep learning approach consistently outperformed
single-task classification methods (Figure 5). This superiority is likely due to the utilization
of shared hidden representations among various kinase prediction tasks. By sharing the
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weights of hidden layers across tasks, only the output weights are task specific, which
allows for the network to leverage commonalities between different tasks and to achieve
better generalization with reduced overfitting. Our hyperparameter optimization strategy
revealed that networks with two hidden layers, consisting of 2000 and 500 neurons, resulted
in the best performance across all evaluated metrics for all kinase tasks. Networks with
three or more hidden layers did not yield any major improvements nor did they decrease
in the predictive performance. However, it is worth noting that training networks with
a larger batch size did result in a decrease in performance. While a larger batch size can
reduce the model training time, this increase in efficiency is not justified, as the weighting
parameters are not able to adequately fine-tune themselves through each epoch.
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each kinase task.

To further evaluate the KA–PI models, which we considered more generally applicable,
we evaluated the model performance as a function of the number of active compounds
based on the ROC score from a five-fold cross-validation (Figure 6). Multi-task deep
learning consistently outperformed the single-task classification methods. Indeed, the
MTDNN model continued to perform well even for tasks with fewer active compounds.
Figure S5 illustrates that enrichment decreased for single-task modeling methods for
kinase tasks with fewer than 100 active compounds, while the MTDNN model was less



Int. J. Mol. Sci. 2024, 25, 2538 8 of 20

affected. Moreover, for classes with less than 50 active compounds, the multi-task method
achieved close to the maximum enrichment (1000 for kinase tasks with less than 0.1%
actives), surpassing the performance of the single-task methods. We validated that the
KA–PI MTDNN model indeed learns the small-molecule activity data as a function of
topological indices of the chemical structure by randomizing the kinase activity labels while
maintaining the number of actives in each dataset. As expected, this validation process
resulted in 5-fold cross-validation ROC scores of approximately 0.5. This corresponds
to random classification, indicating the modeling approach did not overfit the data and
reinforcing the applicability of the KA–PI MTDNN method.
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Figure 6. The effect of the number of active compounds on performance across learning methods.
ROC score for different machine learning methods binned by ranges of active compounds across
342 kinase tasks (ROC score averaged over 5 repetitions of 5-fold random cross-validation).

To explore how well MTDNN models generalize compared to the single-task methods,
we investigated the impact of different cross-validation strategies. Specifically, we split the
data based on the chemical scaffold, by molecular weight, and randomly. We evaluated
different strategies for splitting compounds by scaffold, including Murcko scaffolds and
clustering based on topological descriptors. We found that clustering our dataset into
approximately 300 clusters with an average of around 1000 compounds each resulted in
chemically distinct clusters (Figure S7), which worked better than Murcko fragments. This
was mainly due to the large number of Murcko scaffolds in our dataset (>100,000), which re-
sulted in training and test sets that resembled random splitting. Across all cross-validation
strategies, which involved splitting the dataset based on chemical scaffold/cluster, molecu-
lar weight, and random order, we trained the model five times, each time training on four
subsets, and evaluated the held-out subset. Hyperparameter optimization was employed
for all models, and a 10% validation split was used for validation and testing purposes. The
hyperparameters exhibited stability across different data splits, ensuring a consistent and
reliable performance. As expected, ROC scores were higher for models cross-validated by
random splitting and worse for models evaluated with a different scaffold (Figure S7). As
observed before, the single-task model performance decreased significantly for kinases with
fewer active compounds in contrast to the MTDNN approach, which continued to correctly
classify active compounds even for those kinases that have a low number of actives.
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In addition to ROC scores and arguably more relevant to virtual screening, we eval-
uated the different cross-validation splitting strategies based on enrichment; specifically,
we evaluated how many true positives are recovered in 0.1% of tested samples depending
on the ratio of actives in a dataset (Figure 7). As the number of active compounds in the
test set increased, the ability to correctly rank the active compounds within the top 0.1%
of the test set improved. Therefore, as anticipated, the fraction of true positives in a 0.1%
test set on average increased with the ratio of actives to total compounds and reached close
to 100% as the latter reached above 0.1%. Considering the maximum possible enrichment
as the inverse of the ratio of actives to total compounds, many of the models achieved
a nearly complete recovery of all actives in the test set. In practical terms, if a selection
of 1000 compounds was made from a pool of one million, the best models would have
identified between 10 and close to 1000 actives. However, it should be noted that the best
models assume the training set to be representative of the test set. Cross-validation after
splitting by scaffold or molecular weight performs worse than random splitting. Never-
theless, even for new scaffolds, the MTDNN models exhibited potential applicability for
virtual screening.
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Figure 7. The fraction of recovered true positives among 0.1% tested compounds depending on
the fraction of actives in the total dataset. Scatterplot of the fraction of true positives at 0.1% of the
test set for all 342 Known Active–Presumed Inactive (KA–PI) MTDNN kinase tasks across different
cross-validation splitting strategies shown in different colors. Each point represents a specific kinase
task. The size indicates an enrichment factor at 0.1%. The shapes correspond to non-protein, protein,
and unclassified kinases. The axes are log–log scale.

In addition to the different cross-validation splitting strategies, we also explored how
the model performance would scale with the available data by generating an additional
dataset that contained the same number of total compounds but only kept class labels
exclusively for the top 100 kinase classes with the most active molecules. To assess data
dependence, we randomly selected 10%, 20%, 30%, 50%, and 100% of that data. An
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evaluation of models across these different data thresholds revealed a consistent pattern.
The multi-task method exhibited sustained increases in enrichment as the amount of
available data increased, indicating its ability to leverage a larger dataset for improved
performance (Figure S8). Conversely, the performance of single-task methods displayed
more gradual and softer increases, eventually plateauing or even decreasing in performance.
These findings highlight the superiority of the multi-task approach in utilizing available
data effectively, resulting in enhanced performance across a range of data thresholds.

2.3. Multi-Task Neural Networks for Kinase Profiling across the Kinome

To gain deeper insights into the performance of multi-task and single-task machine
learning models for kinome-wide small-molecule prediction, we examined the impact
of dataset similarities on the model performance (Figure 8). All active compounds for
each kinase task were compared globally to all other kinase task actives, and the average
maximum chemical similarities were calculated (see Section 4. Figure 8 illustrates the
relationship between the ROC score and chemical similarity to other kinase tasks. Notably,
the multi-task DNN, in contrast to the single methods, performs particularly well for kinase
tasks that share similar compounds with other kinase datasets.
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Known Active–Presumed Inactive (KA–PI) model performance across machine learning methods
measured by ROC score as a function of the average maximum similarity of compounds of one kinase
task compared to all other kinase classes.
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We also investigated the model performance across kinase target protein families,
defined by kinase groups in the Drug Target Ontology (DTO) [29]. Each kinase task was
organized into its corresponding group based on the DTO (see Section 4), and model evalua-
tion metrics were visualized accordingly to illustrate differences in predictive performance.
We observed that the multi-task models maintained high predictive performance across
and within all kinase groups, even for those tasks that do not contain many active examples
and are underrepresented globally when compared to single-task methods (Figure S9).
In contrast, single-task methods exhibited a higher degree of variability in their results
across and within each kinase group task. While they performed well for kinases with a
substantial number of active compounds, their performance decreased for groups with
fewer actives. On average, single-task methods showed better performance for groups
that have many kinase tasks with a large number of actives. However, these methods
were unable to effectively leverage information from even the most similar kinases, as they
lacked the ability to cross-leverage data from other tasks.

2.4. Applicability of the Multi-Task Model on External Datasets

To assess the general applicability of the MTDNN model to novel experimental data,
we evaluated the performance of the KA–PI models in predicting the activity of compounds
used in the LINCS KINOMEscan profiling data available from the LINCS Data Portal [30,31]
(see Section 4 for details). The multi-task deep learning model achieved an accuracy of
approximately 85% in classifying compound activity across the various kinases. This
accuracy level indicates that the majority of the predicted actives are indeed true actives,
suggesting that the model can predict external independent compound activity across a
diverse set of kinases with a reasonably high level of precision (Figure S10). Additionally, a
spreadsheet and an upset plot were included in the supporting document (Document S2),
which contains a list of true active compounds sourced from LINCS KINOMEscan profiling
data, together with their SM_LINCS_ID obtained from the LINCS Data Portal (LDP),
highlighting potential candidates that exhibit activity against multiple kinase tasks.

We further expanded our investigation to include the IDG-DREAM round 1 and
round 2 kinase inhibitor datasets, which were obtained from the IDG-DREAM Challenge, a
collaborative effort aimed at mapping the unexplored target space of kinase inhibitors [32]
(see Section 4). By including these datasets, we aimed to evaluate the performance of our
MTDNN model on a diverse range of novel kinase inhibitors, thereby broadening the scope
of our analysis of model applicability. The model performance using IDG datasets yielded a
mean ROC score of 0.78, which can likely be attributed to differences in the kinase inhibitor
chemical structures but also to the nature of the models intended for virtual screening.

As illustrated in Figure 8, the average maximum similarity between compounds from
different kinase classes tended to be above or around 0.8. In contrast, Tanimoto similarities
between the training data and the IDG dataset compounds were mostly below 0.5, with
only a small fraction (less than 10) exhibiting scores above 0.8. The IDG datasets consisted
of primarily actives (63%, according to our definition outlined in the Section 4), leading to
less favorable ROC statistics compared to our model. Looking at the model precision, we
found ~70% of the predicted actives were actual actives.

3. Discussion

In this study, we investigated the MTDNN approach for one of the largest protein fam-
ilies of drug targets, kinases, which are particularly relevant in cancer. We leveraged large
numbers of available public and private small-molecule activity data, modeled the data in
different ways, and compared deep learning and multi-task learning to classical single-task
machine learning methodologies. Our analysis involved exploring the applicability of
heterogeneous and sparse datasets of small-molecule kinase inhibitors to develop such
models and how the various characteristics of these datasets impact model performance.
The applicability and reusability of large public datasets are of considerable interest because
of the wide diversity of screening technologies and data processing pipelines and available
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metadata annotations [31]. These datasets encompass a diverse array of factors, including
assay methods, detection technologies, assay kits, reagents, experimental conditions, nor-
malization, curve fitting, and more, as described in BioAssay Ontology [33]. It is worth
noting that these details often vary considerably among the tens of thousands of protocols
and thousands of laboratories that generated these datasets. In many cases, these details
are not available in a standardized format and must be manually curated from publications
or patents.

We compare the performance of this MTDNN method against more traditional single-
task machine learning approaches in the scope of virtual screening. While it is ideal to
build models only from confirmed actives and inactives (KA–KI approach), published
data extracted from journal publications and patents, which underlie our datasets, tend to
exhibit a strong bias towards reporting active compounds, while inactive compounds are
typically not considered as interesting. In practice, as evident, for example, in experimental
high-throughput screening (HTS), even of focused libraries, most compounds are typically
inactive. Therefore, the utilization of the KA–KI approach, while highly predictive in
many contexts, is of limited practical relevance in the context of the virtual screening of
very large datasets. While considering all data tested against unique protein kinases that
do not have reported biological activity as presumed inactives (KA–PI approach) may
introduce some errors, they are likely not overwhelming because active compounds are
typically screened against the most similar likely off targets and the activity (including
a lack thereof) is typically reported to characterize selectivity. Any errors introduced by
the KA–PI assumption would be expected to degrade model performance. Therefore, the
reported results could be considered conservative in the context of these assumptions.

Our results demonstrated a consistent and reliable predictive performance across
most kinase tasks when a sufficient number of active compounds or structure–activity
data points were available. The MTDNN exhibited a strong performance across all kinase
groups, which considerably vary with respect to the available data. Kinases within the
same group exhibit a higher similarity to one another by sequence compared to kinases
across different groups [34]. The MTDNN demonstrates its ability to effectively leverage
information from similar tasks, improving predictions for all tasks, including those that are
underrepresented, by capturing shared knowledge and leveraging the similarities between
closely related kinase groups. This is a capability that single-task methods cannot achieve.
This characteristic of MTDNN is likely advantageous in the case of kinase-focused datasets,
where the pronounced similarities of kinase ATP-binding sites and the well-established
cross-activity of many small-molecule kinase inhibitors come into play.

Similarity in molecular structure plays an important role in the performance of
MTDNNs [35]. Our investigation highlighted that the MTDNN performs particularly
well for kinase tasks that share similar compounds with other kinase sets. One of the key
factors contributing to the superior performance of MTDNN could be its ability to adap-
tively learn molecular feature representations for active compounds across different classes,
allowing for the model to better learn the distinct representation between all compounds.
Specific reasons for such a performance remain elusive, emphasizing the need for further
investigation to delve deeper into those observations.

The primary goal of this study was to explore the applicability of this method in dig-
ging out small numbers of actual actives from a very large pool of inactives through virtual
screening. This exploration involved leveraging diverse, target family-focused datasets of
small-molecule kinase inhibitors. Importantly, our focus diverged from emphasizing the
perfect classification of tested compounds into active and inactive classes. In this context,
the enrichment factor (EF) stood out as a better choice to evaluate the model performance
among various metrics available. The EF measures the ratio of the proportion of active
compounds found within a very small fraction of predicted most likely actives in the library
to the proportion of active compounds in the overall library. In other words, it quantifies
how efficiently a model can enrich the active compounds at the top of the ranked list.
When conducting virtual screening, the primary objective is to identify a small subset of
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compounds from a large library that is most likely to be active against a specific target. In
this context, the EF provides a direct measurement of how well a model performs in priori-
tizing potentially active compounds. Enrichment is essentially a measurement of precision
and recall for the initial small fraction considered. It is a useful measurement for highly
imbalanced datasets and is particularly practical and established in virtual screening. The
relative enrichment factor normalizes absolute enrichment based on the maximum possible
enrichment, which depends on the ratio of active vs. inactive compounds and can be used
to compare across different datasets. By considering unknown activity for any kinase as
inactive, our approach can be considered practically relevant, as inactives vastly outnumber
actives and many inactives are highly similar to actives; in some cases, presumed inactives
may be active, leading to a degraded performance and more conservative results.

In this study, we utilized a pActivity threshold of 6 (corresponds to 1 µM) to distinguish
between active and inactive inhibitors. The rationale behind selecting this specific cut-off
value primarily originates from our comparison to previous high throughput screening
hit-finding campaigns, where hits of greater than 1 µM are often deprioritized due to
assay artifacts and solubility concerns. Upon analyzing the model performance across
different cut-off values (pActivity of 7, 8, and 9) in conjunction with the threshold of
6 (Figures S11 and S12), we found that there is a modest improvement from cutoff 7
(100 nM). However, further improvement with cutoff 8 (10 nM) and cutoff 9 (1 nM) do
not seem to yield a better performance. This may be attributed to the insufficient data
for cutoffs 8 and 9 to demonstrate a better performance, whereas cutoff 7 may be close
to optimal for minimizing the false negatives in the training data while still keeping a
substantial number of actives. The optimal active classification threshold requires careful
consideration, and future investigations are essential to understand the trade-offs and
limitations associated with varying thresholds, considering both the model performance
and practical implications.

While the MTDNN performed well across the diverse small-molecule datasets investi-
gated and appears applicable for virtual screening, limitations in predicting activities of
highly dissimilar compounds, as observed in the IDG-DREAM Challenge datasets, have to
be acknowledged. Specifically, the disparity in chemical structures between the training
dataset and the IDG kinase tasks posed challenges to the model’s ability to make accurate
predictions. This highlights the need for further studies and improvements to enhance the
performance in scenarios where substantial differences exist in chemical structures between
the training dataset and the target datasets. Future studies should explore strategies to
address this limitation, such as incorporating additional training data that better represents
the chemical space of the target datasets or employing transfer learning techniques to adapt
the model to different chemical contexts.

It is also worth noting that, while the MTDNN approach yielded the best results and
appeared most generalizable, it does come with considerably higher computational costs.
However, with the latest generation of GPUs and as available datasets increase in size and
diversity, deep neural networks are becoming increasingly relevant to fulfill the promise
of virtual screening. Overall, our study contributes to the growing body of research in
the field of virtual screening and underscores the potential of deep neural networks to
further advance this area of drug discovery. Continued improvements and refinements
in the application of these models will undoubtedly pave the way for more accurate and
efficient virtual screening approaches in the future.

4. Methods and Materials
4.1. Data Aggregation

Small-molecule activity data against the human kinome were obtained and curated
from ChEMBL (release 21) and Kinase Knowledge Base (KKB) (release Q12016), which are
large general and kinase-specific bioactivity data sources.

To remove redundancy and inconsistency in the molecular representations, canoni-
calization or standardization is required to generate a unique SMILES representation for
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each molecule. An in-house chemical structure standardization protocol was implemented
using Biovia Pipeline Pilot (version 20.1.0.2208). Salts/addends and duplicate fragments
were removed so that each structure consisted of only one fragment. Stereochemistry and
charges were standardized, acids were protonated and bases deprotonated, and tautomers
were canonicalized. Stereochemistry and E/Z geometric configurations were removed to
compute extended connectivity fingerprints of length 4 (ECFP4) descriptors (see Section 4.3)
for compounds since these are not differentiated by standard ECFP fingerprints.

After small molecules were preprocessed and normalized, UniProt identifiers were
obtained by mapping domain information to UniProt using the Drug Target Ontology
(DTO), resulting in 485 unique UniProt IDs. All UniProt IDs were then mapped to cor-
responding ChEMBL and KKB target IDs. Note that mutants were excluded from the
ChEMBL and KKB datasets based on the existence of their variant labels. The bioactivity
annotations obtained from ChEMBL were filtered by assay annotation confidence score ≥ 5,
and only compounds with activity annotations corresponding to a standard type of Kd, Ki,
IC50, or Potency were accepted. The resulting data were then aggregated by chembl_id,
standard_type, and UniProt_id. The median standard_value was calculated and then
transformed using a –log10-transformation.

Commercial kinase bioactivity data from KKB were also obtained, filtered, and ag-
gregated by unique compounds, endpoints, and targets. The overlapping compound,
target annotations, and endpoints in ChEMBL and KKB data were aggregated by their
median. Compounds were then grouped by canonical SMILES and received an active label
for each kinase where an aggregated pActivity value ≥ 6 was observed and received no
label otherwise. Kinase labels with <15 unique active compounds were removed, leaving
668,920 measurements (315,604 unique compounds) distributed across 342 unique kinase
classes for which to build models. The compounds utilized in this study predominantly
represented pre-clinical compounds (>99%), featuring comprehensive bioactivity data
sourced from the literature and patents (Figure S1). The aggregated dataset distribution
was slightly skewed towards inactive compounds; 47% of the 668,920 training examples
were active (about 315 K). The specific data curation procedure and target and compound
overlap before removing kinase labels with <15 unique active compounds are shown in
Figure 1.

4.2. Dataset Processing

The rationale behind gathering targets from public and commercial sources was to
amass a collection of data that could leverage the power of both deep learning and multi-
task algorithms. Given a set of related tasks, a multi-task network has the potential for
higher accuracy as the learner detects latent patterns in the data across all tasks. This
makes overfitting less likely and makes features accessible that may not be learnable by a
single task.

We built the kinase predictors based on two different methods of handling kinase
datasets. One method trained single- and multi-task classifiers from known actives and
known inactives (KA–KI), which utilized only the reported active and inactive compounds
for each task. The other method built single- and multi-task classifiers using all available
data for unique kinase molecules, termed known active and presumed inactives (KA–PI).
The KA–PI models were built by identifying for each kinase task the active compounds
and treating the remaining compounds as inactive (decoys). For the purpose of this study,
KA–PI was used for model building and evaluation for the KA–PI model, and KA–KI was
trained for the KA–KI model but was evaluated on the larger KA–PI set. Both methods
utilized all datasets and were characterized using the metrics introduced below.

4.3. Small-Molecule Topological Fingerprints (Features)

Extended connectivity fingerprints (ECFP4) were calculated using RDKit toolkits in
Python. The ECFP4 algorithm assigns numeric identifiers to each atom, but not all numbers
are reported. The fingerprints were hashed to a bit length of 1024; therefore, very similar
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molecules can both be assigned the same numeric identifiers. Although increasing the
number of bits reported can reduce the chances of a collision, there are also diminishing
returns in the accuracy gains obtainable with longer fingerprints (e.g., 1024-bit, 2048-bit,
or larger fingerprints can be used). This and computational complexity concerns were the
pragmatic reasons why we chose to use 1024-bit ECFP4 fingerprints.

4.4. Cross-Validation Approach

To evaluate the predictive performance of the multi-task models, we implemented
three different 5-fold cross-validation strategies, including splitting by scaffold, by molec-
ular weight, and randomly. In virtual screening, it is important to consider the chemical
diversity of the training and test sets for domain applicability and for evaluating how
well the classifier generalizes to new chemotypes. For the scaffold-based cross-validation,
we performed hierarchical clustering for all compounds using Biovia Pipeline Pilot (ver-
sion 20.1.0.2208), specifying approximately 300 clusters with an average of approximately
1000 compounds. The pairwise Tanimoto similarities were calculated between all cluster
centers and visualized to ensure that chemical dissimilarity was sufficient (Figure S6).
Each cross-validation held out 1/5 of the scaffolds, and mean performance was calculated.
Molecular weight was another distinguishing feature of compounds that could be used to
estimate classifier performance. This method aims to keep the classifiers from overfitting
on compound size, and molecular weight can also be considered a simple surrogate for
how different compounds are. Molecular weight was calculated in Python using RDKit.
Compounds were sorted by increasing molecular weight, and 1/5 of the dataset was held
out during each training iteration. Randomized 5-fold cross-validation was also performed
using a random stratified splitter to split the ChEMBL and KKB aggregated data into train,
valid, and test sets with 80%, 10%, and 10% accordingly for the evaluation of the multi-task
model performance. By running random stratified cross-validation within one dataset, all
3 sets share common compounds and kinase targets.

4.5. Model Construction
4.5.1. Multi-Task Artificial Neural Network Architecture

Neural networks can produce impressive non-linear models for classification, regres-
sion, or dimensionality reduction and are applicable in both supervised and unsupervised
learning situations. Neural networks take as input numerical vectors and render input to
output vectors with repeated linear and non-linear transformations experienced repeatedly
at simpler components called layers. Internal layers project distributed representations of
input features that are useful for specific tasks.

More specifically, a multiple hidden layer neural network is a vector-valued function
of input vectors x, parameterized by weight matrices Wi and bias vectors bi:

x0 = x

zi = Wixi−1 + bi

xi = fi(zi)

where fi is nonlinear activation function, such as rectified linear unit (ReLU) (max[0, zi]),
xi is the activation of layer i, and ziis the net input to layer i. After traversing L layers, the
final layer xL is output to a simple linear classifier (in our case, the softmax) that provides
the probability that the input vector x has label t:

P(y = t| x) =
e(wt)

T(xL)

∑M
m=1 e(wm)T(xL)

where M is the number of possible labels in our case of binary prediction for each task
(M = 2) and wt, wm are weight vectors; wTx is the scalar (dot) product. Our network
therefore takes a numerical chemical fingerprint descriptor of size 1024 as input, one or
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multiple layers of ReLU hidden units, and softmax output neurons for each kinase class or
task. Given the known input and output of our training dataset, we optimized network
parameters (x, y) = ({Wi}, {bi}) to minimize a defined cost function. For our classification
problem, we used the cross-entropy error function for each task:

C(xL, y) = −
T

∑
t

wt(ytlog( ft(xL)) + (1 − yt)log(1 − ft(xL) ))

where T is the total number of tasks, kinase classes in our implementation. The training
objective was therefore the weighted sum of the cross-entropies over all kinase targets.

The algorithm was implemented in Python using the Keras package with Theano
backend and was run on Nvidia GeForce GTX 1650 GPUs with 32GB RAM to increase
performance. Hyperparameter optimization included adjustments of momentum, batch
size, learning rate, decay, number of hidden layers, number of hidden units, dropout rate,
and optimization strategy. The best-performing model consisted of training a batch size of
128 with two hidden layers of size 2000 × 500 using a dropout rate of 25% and a learning
rate of 0.0003 across each hidden layer for stochastic gradient descent learning. These
initially tuned hyperparameters were consistently applied throughout the study, revealing
a commendable level of stability and robustness across various data split strategies. Model
training varied in time from 1 day for all kinase classes to 2 h for the 100 kinases with the
most active compounds.

4.5.2. Single-Task Deep Neural Networks

A single-task deep neural network (STDNN) model architecture is designed to ad-
dress a specific task or singular objective. The key distinction lies in the number of output
tasks. An MTDNN has multiple output tasks, each consisting of two neurons, representing
whether a compound is active against the target or not, whereas an STDNN is characterized
by a single output task, emphasizing its focus on individual targets. The same set of hyper-
parameters used for MTDNN was applied for STDNNs. All STDNNs were executed on the
Pegasus supercomputer at the University of Miami (https://idsc.miami.edu/pegasus/).

4.5.3. Other Single-Task Methods

All single-task methods were implemented in Python using the Sci-kit Learn machine
learning library. Methods included logistic regression, random forests, and Bernoulli naïve
Bayes binary classifiers. Each method was implemented on the Pegasus supercomputer
using stratified 5-fold cross-validation strategies and both KA–KI and KA–PI datasets but
training each class individually.

4.5.4. Multi-Task Non-DL Approach

A multi-task random forest was performed in Python as the multi-task non-DL method
to compare the performance with the MTDNN model. The aggregated ChEMBL and KKB
data were used to train the model, and the randomized cross-validation strategy was
performed to split the dataset randomly into 5 folds, which would perform the fitting
procedure five times in total, with each fit being performed on 90% as the train set and
remaining 10% as the test set. Random forest fitted a total number of 100 decision tree
classifiers on the train set. Two-sample t-test was used to compare the model performance
between this random forest model with MTDNN based on their ROC score.

4.6. Metrics and Model Evaluation

To adequately evaluate the machine learning models, we used a variety of metrics.
The commonly used receiver operating characteristic (ROC) classification metric is defined
as the true positive rate (TPR) as a function of the false positive rate (FPR). The TPR is the
number of actives at a given rank position divided by the total number of actives, and the
FPR is the number of inactives at a given rank position divided by the number of inactives

https://idsc.miami.edu/pegasus/
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for a given class. The area under the curve (AUC) was calculated from the ROC curve and
is the metric we report. The calculation from a set of ranked molecules is given as follows:

AUC =
1

n(N − n)

N

∑
i=2

Ai(Ii − Ii−1)

where n is the number of active compounds, N is the total number of compounds, A is the
cumulative count of actives at rank position i, and I is the cumulative count of inactives at
rank position i.

Metrics including accuracy, precision, recall, and F1-score were also utilized to evaluate
the model performance. The imbalanced datasets pose a significant challenge for binary
classification models, as they can result in biased predictions towards the majority class.
Accuracy measures the proportion of correctly classified samples over the total number of
samples. However, accuracy can be misleading in the case of highly imbalanced datasets,
as it can result in high scores even when the model fails to correctly classify minority class
samples. Precision, recall, and F1-score are more suitable metrics for imbalanced datasets.
F1-score considers both precision and recall in its calculation, where precision measures
how accurate the model is in predicting the positive class, and recall measures how well
the model identifies the positive class among all positive samples. The formulas for the
specific evaluation indicators are as follows:

Accuracy =
TruePositive+TrueNegative

TruePositive+FalsePositive+TrueNegative+FalseNegative

Precision = TruePositive
TruePositive+ FalsePositive

Recall = TruePositive
TruePositive+ FalseNegative

F1 Score = 2∗Precision∗Recall
Precision+Recall

Although precision, recall, and F1-score are suitable for imbalanced data, for the
purpose of this study, in which we focused on virtual screening, the enrichment factor
(EF) was a more preferred and popular metric used in the evaluation of virtual screening
performance. EF denotes the quotient of true actives among a subset of predicted actives
and the overall fraction of actives and can be calculated as follows:

EF(X) =
∑N

i=1 δ(ri)

nX
, with δ(ri) =

{
1, ri ≤ XN
0, ri > XN

where ri indicates the rank of the ith active, n is the number of actives, N is the number
of total compounds, and X is the ratio within which EF is calculated. We evaluated
the EF at 0.1% (X = 0.001) and 0.5% (X = 0.005) of the ranked test set. To evaluate the
maximum achievable enrichment factor (EFmax), the maximum number of actives among
the percentage of tested compounds was divided by the fraction of actives in the entire
dataset. To more consistently quantify enrichment at 0.1% of all compounds tested, we
report the ratio of EF/EFmax (Figure 5). This normalized metric is useful because EF values
are not directly comparable across different datasets due to the maximum possible EF being
constrained by the ratio of total to active compounds and the evaluated fraction as shown
in the equation above.

4.7. Kinase Task Similarities

To evaluate how similar chemical structures in one kinase task are compared to those
in all other kinase tasks, 25 diverse active compounds in each kinase task were selected
using the diverse molecule component in Pipeline Pilot (version 20.1.0.2208). This algorithm
defines diverse molecules by maximum dissimilarity using the Tanimoto distance function
and ECFP4 descriptors. For each kinase task, the average maximum Tanimoto similarity to
all other kinase tasks was calculated based on the 25 diverse samples from each class. This
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task-based similarity refers to the average maximum similarity of the reference class to all
other kinase tasks as shown in Figure 8.

4.8. KINOMEscan and IDG Predictions

KINOMEscan datasets were obtained from the LINCS Data Portal (http://lincsportal.
ccs.miami.edu/). The initial datasets contained 85 compounds with defined/known chem-
ical structures and 387 different kinase targets. Kinase activity was screened at 10 µM
compound concentration. Kinase domain targets were curated and standardized using the
Drug Target Ontology (DTO, http://drugtargetontology.org/), and datasets were joined
into a data matrix of unique kinase targets (domains) and standardized small-molecule
canonical smiles. Of the total 387 kinase targets, a subset of 291 targets shared commonality
with those included in the training data, which was utilized to evaluate the model’s perfor-
mance; null values were introduced where no data was available. Kinase activity values
were binarized for each small-molecule kinase inhibition value [0, 1], where 1 indicated
active (≥80% inhibition) and 0 indicated inactive. The resulting dataset was imbalanced
with ~83% inactives and ~17% actives. Accuracy was calculated as described above.

IDG-DREAM round 1 and 2 pKd kinase inhibitor datasets were collected from Drug
Target Commons (https://drugtargetcommons.fimm.fi/). After mapping kinase domain
information to the UniProt identifiers via DTO, a total number of 808 data points was
obtained for 94 compounds with 288 unique kinase targets in the dataset. From these,
223 kinase targets, which aligned with the targets present in the training data, were kept
for testing purposes. An amount of ~63% of data points were labeled as actives using a
cut-off of pKd (−logM) of 6, where the actives were defined as data points with pKd greater
than or equal to 6 and inactives (~37%) were those with pKd less than 6. ROC scores were
calculated as described above. For both KINOMEscan and IDG chemical structures, the
same ECFP fingerprint descriptor of size 1024 was used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25052538/s1.

Author Contributions: Data curation—J.H. and B.K.A.; Develop code, perform computational mod-
eling, and data analysis—J.H. and B.K.A.; Build multi-task non-deep learning model (MTRF)—J.H.
and V.S.; Perform model performance analysis for different activity cut-offs—J.H.; Evaluate MTDNN
model using LINCS and external IDG-DREAM Challenge datasets—J.H.; Figure visualization—J.H.
and B.K.A.; Project design—S.C.S.; Project advisement—S.C.S. and N.G.A.; Original drafting—J.H.,
B.K.A. and S.C.S.; Manuscript revising—J.H. and S.C.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by National Institutes of Health (NIH) grants U24TR002278 (Illu-
minating the Druggable Genome) administered by NCATS, the data curation projects U01LM012630
and R01LM01339 from the National Library of Medicine (NLM), and by the State of Florida Bankhead-
Coley Cancer Research Program, grant 23B16.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: ChEMBL (https://www.ebi.ac.uk/chembl/) and KKB (www.kinasedb.
com) aggregated dataset is available in the Raw data folder on GitHub. The IDG Challenge Round
1 and 2 pKd dataset obtained from DrugTargetCommons (https://drugtargetcommons.fimm.fi/)
and the KINOMEscan dataset obtained from LINCS Data Portal (http://lincsportal.ccs.miami.edu/)
are available in the same Raw data folder. The codes for reproducing the results are available
on GitHub (https://github.com/jxh10111/Kinome-wide-Virtual-Screening-by-Multi-task-Deep-
Learning). Key packages used and their versions are listed in the GitHub repository.

Acknowledgments: The authors would like to thank ChemAxon (Headquarters: Budapest, Hungary)
for providing the academic research license for their Cheminformatics software tools including
Instant JChem, JChem for Excel, and the Marvin tools (ver 22.19.0). We thank Eidogen-Sertanty for

http://lincsportal.ccs.miami.edu/
http://lincsportal.ccs.miami.edu/
http://drugtargetontology.org/
https://drugtargetcommons.fimm.fi/
https://www.mdpi.com/article/10.3390/ijms25052538/s1
https://www.mdpi.com/article/10.3390/ijms25052538/s1
https://www.ebi.ac.uk/chembl/
www.kinasedb.com
www.kinasedb.com
https://drugtargetcommons.fimm.fi/
http://lincsportal.ccs.miami.edu/
https://github.com/jxh10111/Kinome-wide-Virtual-Screening-by-Multi-task-Deep-Learning
https://github.com/jxh10111/Kinome-wide-Virtual-Screening-by-Multi-task-Deep-Learning


Int. J. Mol. Sci. 2024, 25, 2538 19 of 20

access to the KKB. SCS acknowledges the computational resources of the Institute for Data Science
and Computing and support from the Sylvester Comprehensive Cancer Center (SCCC).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dugger, S.A.; Platt, A.; Goldstein, D.B. Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 2018,

17, 183–196. [CrossRef] [PubMed]
2. Yan, L.; Zhang, W. Precision medicine becomes reality-tumor type-agnostic therapy. Cancer Commun. 2018, 38, 6. [CrossRef]

[PubMed]
3. Stuhlmiller, T.J.; Miller, S.M.; Zawistowski, J.S.; Nakamura, K.; Beltran, A.S.; Duncan, J.S.; Angus, S.P.; Collins, K.A.; Granger,

D.A.; Reuther, R.A.; et al. Inhibition of Lapatinib-Induced Kinome Reprogramming in ERBB2-Positive Breast Cancer by Targeting
BET Family Bromodomains. Cell Rep. 2015, 11, 390–404. [CrossRef]

4. de Lera, A.R.; Ganesan, A. Epigenetic polypharmacology: From combination therapy to multitargeted drugs. Clin. Epigenetics
2016, 8, 105. [CrossRef]

5. Cohen, P. Protein kinases—The major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 2002, 1, 309–315. [CrossRef]
6. Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol Res 2020,

152, 104609. [CrossRef]
7. Essegian, D.; Khurana, R.; Stathias, V.; Schürer, S.C. The Clinical Kinase Index: A Method to Prioritize Understudied Kinases as

Drug Targets for the Treatment of Cancer. Cell Rep. Med. 2020, 1, 100128. [CrossRef]
8. Ferguson, F.M.; Gray, N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov. 2018, 17, 353–377. [CrossRef] [PubMed]
9. Kleczko, E.K.; Heasley, L.E. Mechanisms of rapid cancer cell reprogramming initiated by targeted receptor tyrosine kinase

inhibitors and inherent therapeutic vulnerabilities. Mol. Cancer 2018, 17, 60. [CrossRef]
10. Singha, M.; Pu, L.; Srivastava, G.; Ni, X.; Stanfield, B.A.; Uche, I.K.; Rider, P.J.F.; Kousoulas, K.G.; Ramanujam, J.; Brylinski, M.

Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response
Prediction in Cancer. Cancers 2023, 15, 4050. [CrossRef]

11. Zhao, X.; Wang, M.Y.; Jiang, H.; Lwin, T.; Park, P.M.; Gao, J.; Meads, M.B.; Ren, Y.; Li, T.; Sun, J.; et al. Transcriptional programming
drives Ibrutinib-resistance evolution in mantle cell lymphoma. Cell Rep. 2021, 34, 108870. [CrossRef]

12. Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J.
Pharmacol. 2007, 152, 9–20. [CrossRef] [PubMed]

13. Allen, B.K.; Mehta, S.; Ember, S.W.J.; Schonbrunn, E.; Ayad, N.; Schürer, S.C. Large-Scale Computational Screening Identifies First
in Class Multitarget Inhibitor of EGFR Kinase and BRD4. Sci. Rep. 2015, 5, 16924. [CrossRef] [PubMed]

14. Schwab, R.; Petak, I.; Kollar, M.; Pinter, F.; Varkondi, E.; Kohanka, A.; Barti-Juhasz, H.; Schönleber, J.; Brauswetter, D.; Kopper, L.;
et al. Major partial response to crizotinib, a dual MET/ALK inhibitor, in a squamous cell lung (SCC) carcinoma patient with de
novo c-MET amplification in the absence of ALK rearrangement. Lung Cancer 2014, 83, 109–111. [CrossRef]

15. Chen, B.; Harrison, R.F.; Papadatos, G.; Willett, P.; Wood, D.J.; Lewell, X.Q.; Greenidge, P.; Stiefl, N. Evaluation of machine-learning
methods for ligand-based virtual screening. J. Comput. Mol. Des. 2007, 21, 53–62. [CrossRef] [PubMed]

16. Klon, A.E. Bayesian modeling in virtual high throughput screening. Comb. Chem. High Throughput Screen. 2009, 12, 469–483.
[CrossRef]

17. Ma, X.H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z.R.; Chen, Y.Z. Comparative analysis of machine learning methods in ligand-based virtual
screening of large compound libraries. Comb. Chem. High Throughput Screen. 2009, 12, 344–357. [CrossRef]

18. D’Souza, S.; Prema, K.V.; Balaji, S. Machine learning models for drug–target interactions: Current knowledge and future directions.
Drug Discov. Today 2020, 25, 748–756. [CrossRef]

19. Rodríguez-Pérez, R.; Bajorath, J. Multitask Machine Learning for Classifying Highly and Weakly Potent Kinase Inhibitors. ACS
Omega 2019, 4, 4367–4375. [CrossRef]

20. Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks for Drug Discovery.
arXiv 2015, arXiv:1502.02072.

21. Avram, S.; Bora, A.; Halip, L.; Curpăn, R. Modeling Kinase Inhibition Using Highly Confident Data Sets. J. Chem. Inf. Model. 2018,
58, 957–967. [CrossRef]

22. Bora, A.; Avram, S.; Ciucanu, I.; Raica, M.; Avram, S. Predictive Models for Fast and Effective Profiling of Kinase Inhibitors.
J. Chem. Inf. Model. 2016, 56, 895–905. [CrossRef]

23. Li, X.; Li, Z.; Wu, X.; Xiong, Z.; Yang, T.; Fu, Z.; Liu, X.; Tan, X.; Zhong, F.; Wan, X.; et al. Deep Learning Enhancing Kinome-Wide
Polypharmacology Profiling: Model Construction and Experiment Validation. J. Med. Chem. 2020, 63, 8723–8737. [CrossRef]

24. Li, Z.; Li, X.; Liu, X.; Fu, Z.; Xiong, Z.; Wu, X.; Tan, X.; Zhao, J.; Zhong, F.; Wan, X.; et al. KinomeX: A web application for
predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics 2019, 35, 5354–5356. [CrossRef]

25. Niijima, S.; Shiraishi, A.; Okuno, Y. Dissecting Kinase Profiling Data to Predict Activity and Understand Cross-Reactivity of
Kinase Inhibitors. J. Chem. Inf. Model. 2012, 52, 901–912. [CrossRef]

26. Schürer, S.C.; Muskal, S.M. Kinome-wide activity modeling from diverse public high-quality data sets. J. Chem. Inf. Model. 2013,
53, 27–38. [CrossRef] [PubMed]

https://doi.org/10.1038/nrd.2017.226
https://www.ncbi.nlm.nih.gov/pubmed/29217837
https://doi.org/10.1186/s40880-018-0274-3
https://www.ncbi.nlm.nih.gov/pubmed/29764494
https://doi.org/10.1016/j.celrep.2015.03.037
https://doi.org/10.1186/s13148-016-0271-9
https://doi.org/10.1038/nrd773
https://doi.org/10.1016/j.phrs.2019.104609
https://doi.org/10.1016/j.xcrm.2020.100128
https://doi.org/10.1038/nrd.2018.21
https://www.ncbi.nlm.nih.gov/pubmed/29545548
https://doi.org/10.1186/s12943-018-0816-y
https://doi.org/10.3390/cancers15164050
https://doi.org/10.1016/j.celrep.2021.108870
https://doi.org/10.1038/sj.bjp.0707305
https://www.ncbi.nlm.nih.gov/pubmed/17549047
https://doi.org/10.1038/srep16924
https://www.ncbi.nlm.nih.gov/pubmed/26596901
https://doi.org/10.1016/j.lungcan.2013.10.006
https://doi.org/10.1007/s10822-006-9096-5
https://www.ncbi.nlm.nih.gov/pubmed/17205373
https://doi.org/10.2174/138620709788489046
https://doi.org/10.2174/138620709788167944
https://doi.org/10.1016/j.drudis.2020.03.003
https://doi.org/10.1021/acsomega.9b00298
https://doi.org/10.1021/acs.jcim.7b00729
https://doi.org/10.1021/acs.jcim.5b00646
https://doi.org/10.1021/acs.jmedchem.9b00855
https://doi.org/10.1093/bioinformatics/btz519
https://doi.org/10.1021/ci200607f
https://doi.org/10.1021/ci300403k
https://www.ncbi.nlm.nih.gov/pubmed/23259810


Int. J. Mol. Sci. 2024, 25, 2538 20 of 20

27. Sharma, R.; Schürer, S.C.; Muskal, S.M. High quality, small molecule-activity datasets for kinase research. F1000Research 2016,
5, 1366. [CrossRef]

28. Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; et al. The
ChEMBL bioactivity database: An update. Nucleic Acids Res. 2014, 42, D1083–D1090. [CrossRef]

29. Lin, Y.; Mehta, S.; Küçük-McGinty, H.; Turner, J.P.; Vidovic, D.; Forlin, M.; Koleti, A.; Nguyen, D.-T.; Jensen, L.J.; Guha, R.; et al.
Drug target ontology to classify and integrate drug discovery data. J. Biomed. Semant. 2017, 8, 50. [CrossRef] [PubMed]

30. Koleti, A.; Terryn, R.; Stathias, V.; Chung, C.; Cooper, D.J.; Turner, J.P.; Vidović, D.; Forlin, M.; Kelley, T.T.; D’urso, A.; et al. Data
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