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Abstract: Oropharyngeal squamous cell carcinoma (OPSCC), a subset of head and neck squamous
cell carcinoma (HNSCC), involves the palatine tonsils, soft palate, base of tongue, and uvula, with the
ability to spread to adjacent subsites. Personalized treatment strategies for Human Papillomavirus-
associated squamous cell carcinoma of the oropharynx (HPV+OPSCC) are yet to be established.
In this article, we summarise our current understanding of the pathogenesis of HPV+OPSCC, the
intrinsic role of the immune system, current ICI clinical trials, and the potential role of small molecule
immunotherapy in HPV+OPSCC.
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1. Introduction

Oropharyngeal squamous cell carcinoma (OPSCC) is a subset of head and neck squa-
mous cell carcinoma (HNSCC) involving the palatine tonsils, soft palate, base of tongue,
and uvula, with a common capacity to spread to adjacent subsites. For decades, it was
assumed that all OPSCC cases were aetiologically homogenous. However, in 1983, HPV
antigens were discovered in a subset of OPSCC tumours [1]. Subsequent investigation
has improved our understanding of this disease process and defined HPV+OPSCC as a
disease process distinct from HPV−OPSCC, with differing epidemiological, genetic, and
prognostic traits [2].

By way of example, genetic analyses have identified mutations in PIK3CA and FGFR
pathways in HPV+OPSCC and overexpression of CDKN2, encoding for p16 [3–5]. In con-
trast, HPV−OPSCC is characterised by mutation of tumour suppressor genes (i.e., TP53),
EGFR upregulation, and low p16 expression [3–5]. Furthermore, at the cellular level, there
is a distinct difference between tumour microenvironments (TME) and associated immune
cell infiltrates [6]. The clinical presentation of HPV+OPSCC patients is also very differ-
ent. Simplistically, HPV+OPSCC patients are commonly younger, non-smokers/drinkers,
presenting with enlarged non-tender cervical lymphadenopathy and an unknown pri-
mary (low T-stage, high N-stage tumours) [7–11], whilst HPV−OPSCC patients are older,
smokers/drinkers, often presenting with a larger painful primary tumour causing dyspha-
gia or odynophagia and late-stage cervical lymphadenopathy (high T-stage, low N-stage
tumours) [12–15]. Importantly, this disparity has recently helped to drive clinical and
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radiomic diagnostic techniques [16,17]. Additionally, HPV+OPSCC is more sensitive to
current standard of care therapies (specifically non-surgical regimes) and has a superior
prognosis over HPV−OPSCC for any stage [18,19]. Consequently, the 8th edition of the
AJCC TNM staging system acknowledged this and defined HPV+OPSCC as a distinct
clinical entity [20].

Despite this, personalized treatment strategies specific for HPV+OPSCC are yet to be
established. Currently, the standard of care intervention for OPSCC involves surgery, radio-
therapy, or chemotherapy as either uni- or multi-modality therapy that is stage-dependent.
As this is applied irrespective of HPV status, it does not account for the improved prognosis
typically seen with HPV+OPSCC patients. This exposes patients to increased survivorship
morbidity and a 15–40% risk of radiation-induced metachronous primary in a younger
demographic [21]. Radiotherapy de-escalation trials are currently recruiting to ascertain the
ability of dose reduction in HPV+OPSCC, which is exquisitely radiosensitive, to maintain
high rates of cure, preserve quality of life, and reduce metachronous primary rates. Early
trials are promising; however, study comparison has been difficult due to varied trial
designs, further complicated by small samples sizes, treatment variability, non-uniform
inclusion criteria, and long-term follow-up issues [22]. Despite this, these studies uni-
versally demonstrate that de-escalation is feasible and safe, helping to personalise the
therapy of HPV+OPSCC [23]. It is important to note, however, that there is currently
a recommendation away from dose de-escalation in heavy smokers and patients with
increased alcohol consumption [24,25].

In a further step towards personalised and targeted treatment strategies, development
of immune checkpoint inhibitors (ICI) has heralded a paradigm shift in HNSCC therapy.
Targeting molecular “brakes” applied to the immune system, the release of these brakes can
enable immunorecognition and promote immune-mediated tumour cytotoxicity, affording
a small population of patients suffering recurrent or metastatic HNSCC (R/M HNSCC) a
partial to complete response [26]. Trials are currently being completed to determine the
efficacy of immunotherapy in HPV+OPSCC over standard-of-care regimes. This article
explores our current insight into the pathogenesis of HPV+OPSCC, the intrinsic role of
the immune system, current ICI clinical trials, and the potential role of small molecule
immunotherapy to personalise treatment strategies further in HPV+OPSCC.

1.1. Epidemiology

The global incidence of OPSCC was over 3.7 million cases in 2020, 33% attributable
to HPV [27,28], with the incidence of OPSCC rapidly increasing in developed countries
when compared to all cancers [29,30]. This increase has been identified in the US, Europe,
UK, Australia, New Zealand, and certain countries within Asia [28,31–37], with further
studies confirming a rising trend across all countries [34,36–42]. HPV is the most common
sexually transmitted infection (STI) and one of the most common viral infections in the
world [43], and HPV+OPSCC has now achieved the notorious distinction of becoming the
predominant HPV-related malignancy in the US and UK, superseding cervical cancer [44].

Early studies identified that HPV+OPSCC disproportionately affected males and a
younger population when compared to HPV−OPSCC [30]. However, in a result likely to
represent a ‘birth cohort effect’, recent studies have demonstrated a rise in the diagnostic
age of HPV+OPSCC patients, with a significant increase over the age of 65 [30,45–48].
Specifically, one study found that the median age of diagnosis increased from 53 years in
1995–2000 to 58 years in 2001–2013 [49]. This demographic redistribution has important
clinical implications for therapeutic delivery within the aging population.

1.2. Risk Factors

Risk factors for HNSCC have classically been identified to include tobacco smoking [50],
alcohol consumption [51], betel quid chewing [52], and EBV infection [53]. Specific to
the oropharyngeal subsite, oral infection with the high-risk HPV serotypes (HR-HPV),
particularly serotypes 16 and 18, is highly correlated with OPSCC [54]. In comparison to
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HPV−OPSCC, HPV+OPSCC is not commonly associated with a history of tobacco smoking
or alcohol use [18,55]. However, HPV+OPSCC in the setting of either heavy smoking
or alcohol consumption is associated with a worse prognosis [25,56] that may be dose
dependent in the setting of smoking [57]. Certainly, studies have identified that tobacco
chemicals enhance viral oncogenic expression in HPV-infected cervical epithelium [58].
However, the relationship between these three risk factors (HPV, tobacco smoke, and
alcohol) is poorly understood, with some studies demonstrating synergistic effects [59,60]
while others have not identified this phenomenon [61,62].

While there was initially some evidence to suggest an association between high-risk
sexual activity and development of HPV+OPSCC [54], these are not reproducible. Subse-
quent studies have found that neither the number of sexual partners nor oral sex practices
are associated with OPSCC development when adjusted for potential confounders includ-
ing age, gender, smoking, and alcohol consumption [63–66]. In contrast, in a finding uni-
versal to SCC, primary (i.e., epidermodysplasia verruciformis, WHIM Syndrome, DOCK8
mutations, GATA Binding protein mutations, and severe combined immunodeficiency,
defects in NK-cells and lymphopenias) [67–69], acquired, or secondary immunodeficiencies
(transplant recipients, iatrogenic immunosuppressant, and autoimmunity) are risk factors
for HPV-driven malignancies [69–71]. Specifically, research has found that HIV-positive
patients have 1.6–3.2 times higher risk of developing HPV+OPSCC [72,73].

1.3. Pathogenesis/Oncogenesis

HPV are 50–60 nm in diameter, non-enveloped, icosahedral double-stranded DNA
(dsDNA) viruses comprising 8000 base pairs bound to cellular histones and contained in a
protein capsid of 72 pentameric capsomers [74]. HPVs are highly epitheliotropic, infecting
cutaneous and mucosal epithelial cells via an unconventional clathrin-independent endo-
cytic pathway [75] and are strongly associated with cervical, head and neck, anogenital,
and oesophageal cancers. Of the more than 200 HPV serotypes, 14 are characterised as
HR-HPVs due to their carcinogenic potential, including HPV 16, 18, 31, 33, 35, 39, 45, 51,
52, 56, 58, 59, 66, and 68 [76]. For OPSCC specifically, HPV 16 has been identified in the
majority of HPV+OPSCC cases, while HPV 18 and other HR-HPV serotypes have been
identified in HPV+OPSCC cases, but are much less common [77]. This is distinct from the
multiple oncogenic HPV serotypes associated with cervical cancer, specifically 16, 18, 31,
33, 45, and 52 [78].

The viral genome of all HPV serotypes contains eight open reading frames (ORFs)
that are transcribed from a single strand of DNA. The ORF is composed of three functional
sections: the early € region encoding for E1, E2, E3, E4, E5, E6, and E7 genes required
for viral replication, the late gene section encoding for structural proteins (L1 and L2)
required for virion assembly, and a large non-coding section known as the long control
region (LCR), containing cis elements crucial for transcription and replication of viral
DNA [79]. Extensive research has implicated the E5, E6, and E7 genes as primary oncopro-
teins in HPV-associated carcinogenesis and tumour progression [74]. These oncoproteins
each play a unique and integral role in supporting cellular proliferation and inhibiting
apoptosis (refer Figure 1: HPV Patho-oncogenesis). Specifically, E5 downregulates an-
tiviral responses via inhibition of cGAS-STING pathway, immunoproteasome function,
and antigen processing [80]. On the other hand, E6 and E7 predominantly promote the
degradation of p53 and pRb, respectively [16], both representing tumour suppressor genes
(TSG) critical for maintaining adequate regulation of the cell cycle in the context of DNA
damage [81]. pRb dysfunction reprograms the host cell to become more dependent on
HPV oncogenes and p16INK4A, which in this context helps to subvert oncogene-induced
cellular senescence [82]. Although based upon cervical cancer, a recent study has shown
that tumour progression is positively correlated with viral load and HPV E7 oncoprotein
expression [83]. HPV has also been found to induce epigenetic alteration, such as DNA
hypomethylation and tumour suppressor gene hypermethylation, which may contribute to
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tumorigenesis [84]. In summary, these mechanisms allow HPV-infected cells to accumulate
the hallmark properties of transformation and facilitate carcinogenesis.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 24 
 

 

of the cell cycle in the context of DNA damage [81]. pRb dysfunction reprograms the host 
cell to become more dependent on HPV oncogenes and p16INK4A, which in this context 
helps to subvert oncogene-induced cellular senescence [82]. Although based upon cervical 
cancer, a recent study has shown that tumour progression is positively correlated with 
viral load and HPV E7 oncoprotein expression [83]. HPV has also been found to induce 
epigenetic alteration, such as DNA hypomethylation and tumour suppressor gene 
hypermethylation, which may contribute to tumorigenesis [84]. In summary, these 
mechanisms allow HPV-infected cells to accumulate the hallmark properties of 
transformation and facilitate carcinogenesis. 

 
Figure 1. HPV Patho-oncogenesis. The HPV virion invades the epithelium of the oropharynx, 
infecting the basal layer of cells. Within these cells, E6 and E7 inhibit p53 (tumour protein 53) and 
pRb (retinoblastoma protein) respectively, affording the cell the ability to replicate without 
regulation by these Tumor Suppressor Genes (TSGs). Further to this E6, promotes carcinogenesis in 
several ways: firstly, through inhibition of pro-apoptotic proteins (namely, GADD34/PP1 (growth 
arrest and DNA damage induced transcript 34/serine/threonine protein phosphatase), Procaspase 
8, FADD (FAS-associated death domain protein), or Bak) [85–88]; secondly, by suppressing host–
IFN (interferon) antiviral response by downregulating IRF3 (interferon regulatory factor 3) and 
Tyk2 (Tyrosine kinase 2); thirdly, by disrupting tissue integrity through degradation of PDZ 
proteins (PDZ proteins play an important role in anchoring receptor proteins in the cell membrane 
to cytoskeletal components; these proteins also play an integral role in signal transduction 
complexes. Interaction with certain proteins promotes oncogenic potential) via expression of a PDZ 
protein binding motif (PSD-95/D1g/ZO-1) [89]; and finally, by promoting cellular immortalisation 
by targeting NFX1-91, which is an endogenously expressed transcriptional regulator of human 
telomerase reverse transcription (hTERT) (active in stem cells) that promotes telomerase induction 
and cellular immortalisation [90]. 

1.4. Diagnostic Techniques 
The gold standard diagnostic test for HPV+OPSCC is E6/E7 mRNA detection [91]; 

however, its labour-intensive nature and cost preclude it from widespread use. Instead, 
routine diagnosis makes use of p16 immunohistochemistry (IHC), utilising p16 protein 
expression as a surrogate marker for E7-mediated pRb degradation [92]. The 8th edition 

Figure 1. HPV Patho-oncogenesis. The HPV virion invades the epithelium of the oropharynx,
infecting the basal layer of cells. Within these cells, E6 and E7 inhibit p53 (tumour protein 53)
and pRb (retinoblastoma protein) respectively, affording the cell the ability to replicate without
regulation by these Tumor Suppressor Genes (TSGs). Further to this E6, promotes carcinogenesis in
several ways: firstly, through inhibition of pro-apoptotic proteins (namely, GADD34/PP1 (growth
arrest and DNA damage induced transcript 34/serine/threonine protein phosphatase), Procaspase 8,
FADD (FAS-associated death domain protein), or Bak) [85–88]; secondly, by suppressing host–IFN
(interferon) antiviral response by downregulating IRF3 (interferon regulatory factor 3) and Tyk2
(Tyrosine kinase 2); thirdly, by disrupting tissue integrity through degradation of PDZ proteins (PDZ
proteins play an important role in anchoring receptor proteins in the cell membrane to cytoskeletal
components; these proteins also play an integral role in signal transduction complexes. Interaction
with certain proteins promotes oncogenic potential) via expression of a PDZ protein binding motif
(PSD-95/D1g/ZO-1) [89]; and finally, by promoting cellular immortalisation by targeting NFX1-91,
which is an endogenously expressed transcriptional regulator of human telomerase reverse transcription
(hTERT) (active in stem cells) that promotes telomerase induction and cellular immortalisation [90].

1.4. Diagnostic Techniques

The gold standard diagnostic test for HPV+OPSCC is E6/E7 mRNA detection [91];
however, its labour-intensive nature and cost preclude it from widespread use. Instead,
routine diagnosis makes use of p16 immunohistochemistry (IHC), utilising p16 protein
expression as a surrogate marker for E7-mediated pRb degradation [92]. The 8th edition
of the TNM staging system also relies on p16 expression to distinguish HPV+OPSCC [20].
While it is widely used for its high sensitivity and ease of use, p16 IHC has moderate
specificity, which can produce false positives [93]. Hence, p16 IHC in combination with
highly accurate HPV DNA PCR is recommended for optimised specificity [92].
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1.5. Vaccination

Given the remarkable impact of HPV vaccines on cervical cancer rates in the last
17 years [94], the question has been raised as to whether this prophylactic intervention will
confer similar protection for HPV+OPSCC. Certainly, recent studies have demonstrated that
vaccinated patients are less likely to develop HPV associated oral infections, with resistance
extending to serotype 16 [95,96]. Confirming the benefit of vaccination, a recent study
indicated that unvaccinated patients have a 19 times greater risk of developing OPSCC [97].

Although gender neutral vaccination regimes are being implemented in many developed
countries [98], there is a paucity of vaccination in developing countries, limited by resources
and socioeconomic and cultural factors. In 2023, 140 countries registered implementation of
HPV vaccination programs in females [99] and 43 with gender-neutral vaccination, all being
developed countries except for Bhutan [100]. Globally, an estimated 17% of females and 5%
of males aged 15 in 2022 had completed the full course of the vaccine, while 21% of females
and 7% of males had received one dose [101]. In addition, even with the implementation
of gender-neutral regimes, there remains a significantly lower proportion of males being
vaccinated, 44% in developed and 5% in developing countries overall respectively [102].
Clearly, there is a significant gap between ideal and practical vaccination rates especially in
the male population, who are more likely to develop OPSCC.

Additionally, due to the latency of OPSCC development at a median age of 58 years [49], it
may take several decades for the recent changes to HPV vaccination to be reflected in the
OPSCC incidence rates. In the United States, it is projected that HPV vaccination will have
limited impact on OPSCC rates until 2045 given that the current vaccination programs do
not encompass the older population, who remain at elevated risk [103]. This continues to
be an evolving preventative strategy that should pay dividends in lowering OPSCC rates.

Unfortunately, prophylactic vaccines are ineffective against established HPV-infection.
There is, therefore, a necessity for specifically targeted immunotherapy or therapeutic HPV
vaccine for people who have already acquired HR-HPV [69]. It is also unclear whether
prophylactic vaccination will provide ongoing efficacy in the immunocompromised popu-
lation and further investigation in this area is needed.

2. Role of the Immune System

The immune system is a complex interwoven network of specialised cells and molecules,
all working in synchrony as the body’s defence mechanism. Decades of cancer immunology
research have identified inextricable links between the immune system and tumorigenesis, a
‘tug-of-war’ between ‘immunosurveillance’-guided tumour cell cytotoxicity versus tumour
immune evasion mechanisms sustaining cellular escape and proliferation.

Dunn and colleagues [104] developed a model, known as “immunoediting”, to
help explain this phenomenon (refer to Figure 2 for a graphical overview). It postu-
lates three phases of ‘cancer immune’ system interaction: elimination, equilibrium, and
escape. Elimination represents successful interactions between innate and adaptive immune
systems to eradicate tumour cells. A complex system, it relies upon direct recognition
and cell-mediated cytotoxicity of tumour cells by NK-cells, tumour antigen uptake by
antigen-presenting cells (dendritic cells and macrophages), and subsequent presentation
and activation of T and B lymphocytes mediating inflammatory and cellular cytotoxicity
processes to promote tumour cell cytotoxicity [105]. Antigen activation of the adaptive
immune system has the added benefit of producing long-standing immunity. Activating the
adaptive immune system promotes various downstream effects to support the innate immune
system, destroy the tumour cells, and support systemic immunity and memory [106].

Equilibrium represents a balance between the immune system and the tumour. Only
partial control of the tumour can be achieved, commonly caused by high mutational burden
contributing to immune resistance. Escape is associated with uncontrolled proliferation of
tumour cells, inadvertently supported by the immune system to acquire evasive properties.
The ability to evade immune-mediated cytotoxicity was recognised as a hallmark of
cancer in 2011 [107].
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Figure 2. The different phases of the cancer immunoediting process. (A) Initiation of a carcinogenic
process, producing cancer cells and development of a tumour. (B) Elimination is characterised by
immunosurveillance leading to suppression of the transformed cancer cells directed by inflammatory
and cellular cytotoxicity processes. (C) Equilibrium is characterised by a balance between the immune
system and the tumour, leading to partial control of the tumour. This phase is characterised by high
tumour mutational burden due to selective immune pressure. (D) Escape is caused by the increased
selective pressure caused by the immune system leading the tumour to acquire immune evasion,
resulting in uncontrolled tumour proliferation. Arrow indicates increasing Tumour heterogeneity
and Immune selection. Figure adapted from “Cancer Immunoediting”, by BioRender.com (2023).
Retrieved from https://app.biorender.com/biorender-templates, accessed on 10 February 2024.

2.1. HPV & Immune System Evasion

Like other virally-associated malignancies, the immune system responds to HPV viral
proteins. L1 capsid protein, E6, and E7 are primary antigens recognised by the immune
system in HPV [108]. However, cervical cancer research has helped identify several immune
evasion strategies that HPV employs in both the innate and adaptative immune system,
helping to establish prolonged infection and increase the risk of tumorigenesis [109,110].

The first such mechanism involves minimising exposure to the immune system,
starting from strategic infection of the basal layer of epithelium external to the base-
ment membrane [108] (refer Figure 3: HPV’s Immune evasion strategies). HPV hijacks
differentiating keratinocytes early in their evolution and completes its own viral replication
cycle alongside this process. This means that the highest levels of viral gene expression and
replication occur at the superficial epithelial layers, where immune cells are sparse [111].
Its virions are eventually shed alongside fully-differentiated keratinocytes during natural
desquamation. This mechanism allows for HPV to infect host cells for a prolonged period
without immune detection since it does not induce unexpected cell death, inflammation, or
viraemia [110,112,113]. Because of this, poor anti-HPV humoral immunity and impaired
T-cell immunity against HPV proteins are common in exposed individuals [114].

Secondly, HPV evades immune recognition by downregulating keratinocyte-induced
alarm signals which indicate the presence of the pathogen to immune cells. One of these
signals occurs via the cGAS-STING pathway, where cyclic GMP–AMP synthase (cGAS)
detects viral dsDNA, activating stimulator of interferon genes (STING) protein [115].
STING recruits the innate immune system via the Type-1 interferon (IFN) antiviral response.
Multiple HPV studies support HPV 16, 18 and E7 and E5 oncogene antagonism of
STING [116,117], including within HPV+HNSCC cells [118,119], which helps the virus
prevent immune activation. In addition, E6 and E7 oncogenes from HPV 16 have the ability
to prevent keratinocyte secretion of NF-κB-dependent CCL20 [120,121] and CXCL14 [122]
chemokines, interfering with Langerhan and dendritic cell migration respectively.

https://app.biorender.com/biorender-templates
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Thirdly, E5 and E7 can suppress antigen presentation and CD8+ cytotoxic T-lymphocyte
activity via downregulation of major histocompatibility complex (MHC) class I expression [123].
Finally, HPV 16 E5, E6, and E7 oncogenes also have the capacity to inhibit IFN-stimulated
gene expression for pathogen recognition receptors (TLR3, RIG-I, MDA5), for apoptosis
(TRAIL, XAF1), for antiviral responses (IFIT1, MX1), and genes involved in the IFN pathway
(STAT1) [124,125]. In combination, these evasive mechanisms enable HPV to persist in host
cells, increasing the potential for malignant change.
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Figure 3. HPV’s immune evasion strategies. (A) HPV infects basal epithelial cells and utilises the
progressive differentiation of keratinocytes to conceal its viral replication process from the immune
system. Immune detection is prevented since the most viral gene expression happens in superficial
epithelial layers and since no unexpected cell death or inflammation occurs. (B) HPV E6 and E7
oncogenes reduce secretion of chemokines, CCL20 and CXCL14, which hinders Langerhan’s and
dendritic cell recruitment. (C) HPV E5 and E7 oncogenes prevent antigen presentation to cytotoxic
T cells by downregulating major histocompatibility complex (MHC) class I expression. (D) HPV
E5 and E7 oncogenes inhibit the cGAS-STING (cyclic GMP–AMP synthase, stimulator of interferon
genes) pathway, which responds to aberrant DNA from viruses by activating the innate immune
system. (E) HPV E5, E6, and E7 oncogenes can also inhibit IFN-stimulated gene expression (e.g., TLR3,
RIG-I, MDA5, TRAIL, XAF1, IFIT1, MX1). cGAMP = 2′3′ cyclic GMP–AMP, CTL = cytotoxic T cell,
DC = dendritic cell, IFN = Interferon, LC = Langerhan’s cell, MHC-I = major histocompatibility complex-I.

2.2. HPV+OPSCC and the Tumour Microenvironment

Once HPV+ tumour cells develop, the immune system has been shown to play an
integral role in supporting tumour progression and modulating the tumour response to
therapeutic intervention. Innate and adaptive immune cells form a substantial part of the
tumour microenvironment (TME), in addition to a diverse collection of non-malignant cells
(including, but not limited to endothelial cells, fibroblasts, and adipose cells) forming the
tumour stroma. Previously defined as passive, recent research has demonstrated the active
impact of the TME in facilitating tumour growth and invasion [126,127].

HNSCC is one of the most highly immune cell-infiltrated tumours [128], a feature
that has opened new avenues for personalised treatment using immunotherapy. The com-
position of the HNSCC immune infiltrate varies substantially between HPV+OPSCC and
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HPV− OPSCC. HPV+OPSCC have greater densities of tumour-infiltrating lymphocytes
(TIL), including CD3+ T cells, CD8+ T cells, Treg cells, B cells, and plasma cells, compared to
HPV−OPSCC, but importantly and specifically B cells and CD8+ cytotoxic T-cells [129–132].
Additionally, HPV16 antigen-specific T cells with anti-tumour programs have been iden-
tified within immune infiltrates in 64% of HPV+OPSCC, providing a further potential
personalised immunotherapy target in HPV+OPSCC [133].

The TME immune profile of HPV+OPSCC vs. HPV−PSCC has also been correlated
with prognosis, which may explain improved overall survival (OS) and disease-free sur-
vival (DFS) in HPV+OPSCC [18,19,134,135]. High-density TIL infiltrate, especially in-
volving CD4+, CD8+, and CD3+ subsets, has been associated with greater OS rates in
HPV+OPSCC [136–140]. Higher levels of infiltrating CD20+ B cells also correlates with
improved prognosis, specifically those expressing FCER2 which were localised to the
stroma in HPV+HNSCC tumours [141,142]. FCER2+ B-cells have been shown to inhibit
HPV+ tumour migration in vitro. FCER2 is an Fc receptor specific to IgE, upregulated
on haemopoietic and B cells. Additionally, the pre-treatment neutrophil-to-lymphocyte
(NLR) ratio in peripheral blood has been shown to inversely correlate with OS and DFS
in HPV+OPSCC [143–145]. NLR is also an independent risk factor for severe disease [146]
and neutrophilia is associated with increased expression of neutrophil extracellular traps
(NETs). Increasing evidence indicates that NETs play a critical role within the TME (tumour
associated neutrophils or “TANs” undergo polarisation to either N1 or N2 phenotypes
in a similar fashion to macrophages, playing an important role in immunoediting [147])
and have been implicated in tumour progression, metastatic dissemination, and therapy
resistance [148–161]. A recent genetic profile study investigating the clinical prognostic
value of NET-related genes and their correlation to immunotherapy response identified
that NETs gene expression can predict clinical outcomes and therapeutic response in
HNSCC [162], whilst stromal NET density has been identified as an independent prog-
nostic factor for recurrence-free survival (RFS) in cervical cancer, although an association
with HPV-associated cervical cancer was not explored. This led to the suggestion that NET
expression be added to TNM staging systems to help with prognostic stratification [163].
To date, there is a paucity of literature exploring the role of NETs in OPSCC, specifically
HPV+OPSCC. Therefore, NET expression may represent a prognostic tumour biomarker
and a target for development of immunotherapy agents.

Recently, the number of macrophages infiltrating into the TME have also been reported
as an independent prognostic factor in HNSCC [164]. Tumour-associated macrophages
(TAMs) can exacerbate desmoplasia, angiogenesis, nutrient deprivation, and immune
suppression to promote tumour growth and regulate therapy resistance. Like neutrophils,
the TME milieu can polarise macrophages to form M1 or M2 phenotypes (although this may
ultimately prove to be an over-simplification). M1 phenotypes, in comparison to M2 cells,
demonstrate an anti-tumour program, activating cytotoxic CD8+ T-cells and supporting
the differentiation of CD4+ T-cells towards a Th-1 effector subset. Recent research has
identified that HPV+OPSCC is associated with reduced macrophage TME infiltration and
improved prognosis [142].

Despite the high levels of immune infiltrate, many cases of HPV+OPSCC continue
to progress, indicating continuous immune evasion. OPSCC cells do this primarily by
taking advantage of immune checkpoints, which are natural inbuilt mechanisms for the
host immune system to ensure self-tolerance [165]. Two prominent examples are CTLA-4
(cytotoxic T-lymphocyte associated protein 4) and PD-1 (programmed cell-death protein 1).
CTLA-4, which is commonly expressed on Tregs to downregulate T cell-mediated responses
and is stimulated by tumour cells to cause T cell exhaustion. PD-1, on the other hand, is
expressed on activated T and B lymphocytes to similarly limit T cell function. The PD-1
and its ligand (PD-L1) seem to play a substantial role in HPV+OPSCC development since
higher levels of PD-L1 have been found in HPV+OPSCC [129]. Both the PD-1 and CTLA-4
systems have been successfully targeted with directed humanised antibodies and have
been the cornerstone for revolutionised HNSCC treatment.
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2.3. Immune Checkpoint Inhibitors

ICIs combat the elements of the TME which subvert the immune system’s efforts to
restrain tumour proliferation [166]. The vast heterogeneity in cancer somatic mutations
creates challenges in designing targeted therapies aimed at individual mutations; in con-
trast, ICIs have a broad scope as targeted cancer therapeutics [167]. Indeed, ICIs targeting
CTLA-4 and PD-1 have shown clinical activity against HNSCC, advanced melanoma, renal
cell carcinoma, non-small-cell lung cancer, Hodgkin’s lymphoma, endometrial cancer, and
bladder cancer [167,168]. Recently, the approval of relatlimab (an ICI targeting LAG-3)
based on a study showing that combined relatlimab with anti-PD-1 doubled the progres-
sion free survival of advanced melanoma patients compared to patients receiving PD-1
monotherapy highlights the growing therapeutic potential of ICIs [169].

The introduction of ICIs was a landmark turning point for targeted therapy in
HNSCC. Several key clinical trials, including KEYNOTE-012 [170], KEYNOTE-040 [171],
and CHECKMATE-141 [172], established the benefit of pembrolizumab and nivolumab in
treating R/M HNSCC refractory to platinum base chemotherapy regardless of HPV status.
However, subgroup analysis by HPV status also revealed an improved objective response rate
(ORR) in HPV+ when compared to HPV− tumours, such as in the Phase 1b KEYNOTE-012
trial when treated with pembrolizumab (25% to 14%) [170]. This was corroborated by
KEYNOTE-012, which trialled fixed-dose pembrolizumab and demonstrated an ORR of
32% in HPV+ tumours and 14% in HPV− tumours [173]. KEYNOTE-40, a Phase 3 clinical
trial of Pembrolizumab, failed to identify a difference in ORR based on HPV status [171],
while CHECKMATE-141 concluded that nivolumab improved OS in HPV+ tumours [172].

KEYNOTE-48, a Phase-3 clinical trial comparing pembrolizumab as a first line treatment
in R/M HNSCC against standard of care EXTREME regime (platinum-based chemotherapy,
5-fluorouracil, and cetuximab), confirmed the superiority of pembrolizumab as initial
treatment for this condition. However, HPV+ tumours were matched across treatment arms,
attenuating the ability to determine the benefit of pembrolizumab by HPV status [174].

Neoadjuvant delivery of ICIs is also being trialled. CHECKMATE-358, a Phase 1/2 trial,
concluded that HPV+HNSCC tumours demonstrated improved response to neoadjuvant
nivolumab compared to HPV−HNSCC (23.5% vs. 5.9%) [102]. Meta-analysis of 12 clinical
trials found that HPV+ tumours had an overall 1.29-fold higher likelihood of responding to
ICI therapy than HPV− tumours [175]. These results established a precedence for further
research into the efficacy of ICIs for HPV+OPSCC treatment specifically, several of which
are still ongoing (Table 1).

Table 1. Ongoing clinical trials related to HPV+OPSCC.

Phase Trial Population Therapy Objectives Status

2 NCT03799445 Advanced HPV+ HNSCC Concurrent ipilimumab +
nivolumab + RT

• Complete response rate
• Progression free survival
• Toxicity

Recruiting

2 NCT03383094
Intermediate/high-risk HPV+

locoregionally-
advanced HNSCC

Concurrent and adjuvant
pembrolizumab + RT vs.
RT + cisplatin

• Progression-free survival
• Overall survival
• Toxicity

Recruiting

2 NCT04988074 Advanced HPV+OPSCC
Neoadjuvant cemiplimab
+ TORS/RT
+/− chemotherapy

• Progression-free survival
• Quality of life
• Swallow function
• Overall survival

Recruiting

2 NCT04867330 HPV+OPSCC Toripalimab +
docetaxel/cisplatin

• Progression-free survival Recruiting

3 NCT04116047 Intermediate/high-risk
HPV+OPSCC

Durvalumab vs.
chemoradiotherapy

• Overall survival
• Event-free survival
• Toxicity
• Quality of life

Recruiting
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Table 1. Cont.

Phase Trial Population Therapy Objectives Status

2 NCT03410615
Intermediate-risk HPV+

locoregionally-
advanced OPSCC

Durvalumab + RT +
adjuvant Durvalumab vs.
Durvalumab + RT +
adjuvant Tremelimumab
and Durvalumab vs.
Cisplatin + RT

• Event-free survival
• Functional assessment
• Locoregional failure
• Overall survival

Active, not
recruiting

2 NCT03829722 High-risk HPV+OPSCC Concurrent nivolumab +
RT + carboplatin

• Progression-free survival
• Overall survival
• Toxicity

Active, not
recruiting

2 NCT03107182 Locoregionally-advanced
HPV+OPSCC

Nivolumab/Nab-paclitaxel/
Carboplatin Induction
Chemotherapy followed by
Response-stratified
Locoregional Therapy

• Deep response rate
• Adverse events
• Progression-free survival
• Overall survival

Active, not
recruiting

2 NCT03838263 High-risk HPV+OPSCC
Neoadjuvant nivolumab +
chemoradiotherapy vs.
chemoradiotherapy alone

• Feasibility assessment
• Adverse events
• Objective response rate
• Overall survival
• Progression-free survival

Active, not
recruiting

2/3 NCT03952585 Early-stage HPV+OPSCC
Concurrent reduced-dose
RT + either nivolumab
or cisplatin

• Progression-free survival
• Quality of life
• Overall survival

Suspended

3 NCT03811015
Intermediate risk
locally-advanced
HPV+OPSCC

Definitive
chemoradiotherapy
followed by
maintenance nivolumab

• Overall survival
• Progression-free survival

Recruiting

RT = radiotherapy. TORS = transoral robotic surgery

While there may be potential benefits of ICIs in the HPV+OPSCC cohort, these thera-
pies unfortunately also carry the risk of immune-related adverse effects (irAEs). Common
adverse effects observed include gastrointestinal (diarrhoea, nausea, vomiting), dermato-
logical (dermatitis, rash), endocrinological (hypothyroidism), and systemic effects (fever, fa-
tigue, headache, myalgia, arthralgia) [176]. The incidence of any irAEs in HNSCC patients
on ICIs is approximately 57–67%, while more severe irAEs occur in 8–17% of HNSCC
patients [177]. Severe irAEs may impact cardiopulmonary, hepatic, renal, neurological,
gastrointestinal, and haematological systems. The mortality rate from irAEs is reported
to be 0.3–1.03%, predominantly associated with gastrointestinal toxicity associated with
Ipilimumab and pulmonary toxicity in PD-1 inhibition. These present further important con-
siderations in establishing the most appropriate immunotherapy regimen for HPV+OPSCC.

Additionally, these drugs are associated with financial toxicity, representing a signifi-
cant burden to the healthcare system. A systematic review determined that nivolumab was
not a cost-effective therapy in the setting of R/M HNSCC over standard of care therapy
(cetuximab, docetaxel, or methotrexate) given the high cost per quality-adjusted life years
($140,672 per QALY) [178]. While there are limitations to the estimations and calculation
methods employed, it is important to keep in mind the financial burden of novel therapies
as they are introduced into the clinical environment.

3. Emerging Therapeutic Strategies

Several new immune targets have been identified that present new opportunities to
develop HPV-specific therapies.
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3.1. Small Molecule Immunotherapy
3.1.1. RTK

Receptor tyrosine kinases (RTKs) are a family of cell surface receptors which reg-
ulate a range of homeostatic cellular processes including intercellular communication,
metabolic functions, and cell differentiation [179]. The majority of HNSCCs are found
with overexpression of many RTKs, including HER, FGFR, and VEGFR families. EGFR
(or HER1) has particularly been shown to be highly expressed in most HNSCCs, leading
to the investigation and approval of cetuximab, an anti-EGFR monoclonal antibody, for
locally-advanced and R/M HNSCC irrespective of HPV status [180,181]. The ORR to
cetuximab as a single agent is limited (~13%) [182] but when used with PD-1 inhibitors, its
efficacy improves to 45% in treating R/M HNSCC [183].

However, several studies have demonstrated cetuximab’s low efficacy in HPV+OPSCC
(reviewed in [184]). Two major Phase 3 trials found cetuximab to be inferior to standard
cisplatin treatment in combination with radiotherapy for HPV+OPSCC [185,186]. A recent
meta-analysis further revealed that the combination of cetuximab and a PD-1 inhibitor
improved the OS rate of HPV−OPSCC only compared to PD-1 inhibitor monotherapy,
while patients with HPV+OPSCC did not experience the same benefit [187]. Another Phase
3 trial investigated adding panitumumab, another anti-EGFR monoclonal antibody, to
chemotherapy and found improved OS only in HPV−OPSCC [188]. This may potentially
be due to the reduced EGFR expression generally found in HPV+OPSCC [189–191]. How-
ever, a correlation between EGFR expression and therapeutic response has never been
demonstrated in HNSCC [192,193]. Further research is required to fully elucidate the
mechanism behind this poor response in HPV+OPSCC.

Interestingly, HPV+OPSCC has been found to express higher levels of HER2 and
HER3 [194,195]. One study discovered that HPV+ cells relied on HER3 specifically for
cellular proliferation and that HER3 expression was regulated by HPV E6 and E7 oncogenes,
indicating that HER3 might be a viable therapeutic target [196]. HER3 signalling has also
been shown to be important in HPV−OPSCC as upregulation contributes to cells acquiring
cetuximab resistance [197,198].

An anti-HER3 monoclonal antibody, CDX-3379 (previously called KTN3379), initially
demonstrated promising results in pre-clinical trials. In a Phase I window trial, tumour
regression was noted in 42% of patients with newly diagnosed HNSCC, including two of the
three HPV+ patients [199]. A Phase 1b trial found one patient with R/M HNSCC who had
tumour progression on cetuximab to have a prolonged complete response when CDX-3379
was added to cetuximab [200]. However, in a Phase 2 clinical trial using CDX-3379 and
cetuximab in patients with HPV− R/M HNSCC, the limited overall response rate (6.7%)
and significant adverse effects observed necessitated closure of the trial [201]. Further
research may be able to identify predictive biomarkers for responses to anti-HER3 therapy
and explore other agents such as an emerging anti-HER3 antibody-drug conjugate, U3-1402,
which has shown anti-tumour activity in breast and lung cancer [202,203].

3.1.2. STAT

The signal transducer and activator of transcription (STAT) proteins are a group of
transcription factors with large influence on tumour proliferation and chemotherapy re-
sistance [204]. These have been found to promote carcinogenesis by facilitating metabolic
alterations which modulate gene expression and cytokine/growth factor signalling path-
ways. Additionally, they can reprogram immune cells within the TME to favour immuno-
suppression [205] and induce HNSCC resistance to standard therapies.

Both HPV+OPSCC and HPV−OPSCC have been found to have overactivated STAT
protein signalling [206]. Hence, STAT inhibitors have long been a research focus for HNSCC
regardless of HPV status. Several studies have demonstrated that the combination of STAT
inhibitors with radiotherapy [207–209], chemotherapy [210], anti-CTLA-4 and anti-PD-L1
ICIs [211,212], and anti-EGFR therapies like cetuximab [213] can improve tumour response



Int. J. Mol. Sci. 2024, 25, 2798 12 of 24

and ameliorate resistance. As a single agent, C188-9, a small-molecule STAT3 inhibitor, was
found to have an in vitro anti-tumour effect on HNSCC cells [214].

In various HPV-related cancers, the JAK/STAT signalling pathway has also been
found to be a primary pathway manipulated by HPV oncoproteins to facilitate ongoing
viral replication [215]. Cervical cancer cells have been found to have high levels of STAT3
expression, and small molecule inhibition of STAT has been shown to facilitate cervical
cancer cell death in vitro [216]. STAT inhibitors have not yet been trialled specifically in
HPV+OPSCC but may prove to be an area of further interest.

3.1.3. STING

Stimulator of interferon genes (STING) is an important protein which, when activated,
phosphorylates interferon regulatory factor 3 (IRF3) and promotes interferon production [205].
This has been found to be crucial in mediating innate immunity anti-viral and anti-tumour
responses [217]. Recent research has found HPV oncogenes E7 and E5 to strongly antag-
onise the STING pathway in order to facilitate immune evasion [80,117–119]. Therefore,
the development of STING activators may theoretically improve tumour susceptibility to
immune destruction. Indeed, use of a STING activator in several cancer types, including
cervical cancer [218], has demonstrated promising results in reducing tumour growth [219,220].
While it has not been used as a single agent in HPV+OPSCC, evidence suggests that pre-
clinical co-administration of STING activators may improve tumour responses to ICIs [221]
or cetuximab [222] in HPV+OSPCC cells.

3.1.4. PPAR

Peroxisome proliferator-activated receptors (PPARs) are gene transcription regulators
belonging to the nuclear hormone receptor family. The three identified isoforms (PPARα,
PPARβ/δ, and PPARγ) are uniquely expressed by distinct tissue types but all contribute
to maintaining homeostatic metabolic activity [223]. They have also been implicated in
the development of various diseases like atherosclerosis, Type 2 diabetes, and cancer.
PPARs have also been identified also have a role in hepatocellular [224], pancreatic [225],
lung [226], and breast carcinogenesis [227]. In cervical cancer, some evidence has found
PPARγ to be anti-proliferative. Not only is it downregulated in cervical cancer cells [228],
but treatment with a PPARγ agonist seems to enhance apoptosis [229] while PPARγ inhi-
bition supports tumour progression [230]. One study posits that the mechanism for this
involves HPV16 E7 inhibiting PPARγ expression via an increase in miR-27b to facilitate
tumour proliferation [230].

Little research has gone into PPARs and HPV+OPSCC specifically. However, one
paper found that fenofibrate demonstrated substantial anti-tumorigenic effects on HPV+

HNSCC cells, especially in combination with cisplatin administration [231]. Fenofibrate is
an established drug for dyslipidaemia known to act on PPARα pathways; however, it is
unclear if PPARα is similarly involved in its anti-tumour activity. The same study found
increased p53 activation and immune cell infiltration with fenofibrate [231], which makes it
an interesting research target for future HPV+OPSCC therapy.

3.1.5. AHR

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that, when
chronically activated, has a strong role in supporting tumour invasion, migration, and
metastasis including in HNSCC [232–235]. Additionally, AHR can have immunosuppres-
sive effects on CD8+ TILs by inducing PD-1 and antigen-presenting cells [236]. No research
has been published on AHRs in HPV+OPSCC; however, when a natural AHR ligand,
indole-3-carbinol, was administered to cervical cancer cells, it was found to hinder cell
proliferation [237], indicating that this may be a target for future exploration.
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3.1.6. NET Based Therapies
Polyanions

Potential polyanion agents aim to capitalise on electrostatic interaction between highly
cationic components of NETs (i.e., histones) to inhibit pro-tumorigenic effects, namely
tumour cell camouflage, migration, and dormant tumour cell reactivation. They may also
interfere with pro-tumorigenic histone-dependent pathways, including TLR4/histone-
dependent TME immunosuppression, histone-dependent endothelial, and platelet activa-
tion and thrombosis, all of which confer tumour cell survival and metastatic ability. Heparin
particularly has been shown to degrade NETs. These polyanionic compounds include STC3141
(methyl β-cellobioside per-O-sulfate), unfractionated heparin, and enoxaparin [136,238,239].

3.1.7. NET Modulators or Preventors

Several agents have been shown to inhibit NET expression or production, including
sivelestat, a neutrophil elastase inhibitor. NETosis and NET formation is dependent on
neutrophil elastase and the pro-tumorigenic role of neutrophil elastase has been identified
in several cancers [240–242]. In a murine model of colorectal cancer, sivelestat has been
shown to suppress liver metastasis.

The COX-1 inhibitor, aspirin, has been shown to reduce neutrophil tissue invasion
and NET production, believed to be caused by inhibition of CCL5 (RANTES) and CXCL4
(PF4) release, both shown to increase neutrophil chemotaxis. Several studies have demon-
strated the anti-metastatic benefit produced through attenuation of NET production by
COX-1 inhibition [243–245].

Studies have demonstrated that metformin decreases NET production, even in the
presence of NET stimulants and recent evidence in hepatocellular carcinoma and pancreatic
cancer confirmed that metformin reduced the production of NETs and the metastatic
potential of these two cancers [246–248]. This has subsequently been corroborated in
preclinical animal models [249].

3.1.8. NET Degraders

Dornase Alfa (rhDNase 1) is a recombinant human deoxyribonuclease that can selectively
cleave DNA. Park and colleagues have demonstrated that ability of rhDNase 1 to reduce the
4T1 breast cancer metastatic burden in a preclinical model, while further preclinical studies
have shown that it can reduce tumour progression in pancreatic cancer [157,247].

4. Conclusions

HPV+ and HPV−OPSCC are very different tumours and the immune system plays an
integral role in this difference. Personalised treatment strategies remain to be determined;
however, greater insight into the specific interaction between the HPV virus and the
immune system for this cancer will help define immunotherapeutic strategy. As our
understanding of this relationship improves, there exists an exciting potential for the
development of novel small molecule immunotherapies that may help to de-escalate
standard of care interventions, improving survival and attenuating functional deficits
associated with treatment.
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137. Pokrývková, B.; Grega, M.; Klozar, J.; Vencálek, O.; Nunvář, J.; Tachezy, R. PD1(+)CD8(+) Cells Are an Independent Prognostic
Marker in Patients with Head and Neck Cancer. Biomedicines 2022, 10, 2794. [CrossRef] [PubMed]

138. Ward, M.J.; Thirdborough, S.M.; Mellows, T.; Riley, C.; Harris, S.; Suchak, K.; Webb, A.; Hampton, C.; Patel, N.N.; Randall, C.J.;
et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br. J. Cancer 2014, 110, 489–500.
[CrossRef]

139. Baudouin, R.; Hans, S.; Lisan, Q.; Morin, B.; Adimi, Y.; Martin, J.; Lechien, J.R.; Tartour, E.; Badoual, C. Prognostic Significance of
the Microenvironment in Human Papillomavirus Oropharyngeal Carcinoma: A Systematic Review. Laryngoscope, 2023; Early
View. [CrossRef]

140. Näsman, A.; Romanitan, M.; Nordfors, C.; Grün, N.; Johansson, H.; Hammarstedt, L.; Marklund, L.; Munck-Wikland, E.;
Dalianis, T.; Ramqvist, T. Tumor Infiltrating CD8+ and Foxp3+ Lymphocytes Correlate to Clinical Outcome and Human
Papillomavirus (HPV) Status in Tonsillar Cancer. PLoS ONE 2012, 7, e38711. [CrossRef]

141. Kamila, H.; Vladimír, K.; Jan, B.; Jan, L.; Marek, G.; Miroslav, H.; Michal, Z.; Milan, V.; Kateřina, R.; Hana, V.; et al. Tumor-
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