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Crosstalk of lysyl oxidase-like 1 and lysyl oxidase prolongs
their half-lives and regulates liver fibrosis through
Notch signal
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Abstract

Background: Lysyl oxidase (LOX) family members (LOX and LOXL1 to 4)

are crucial copper-dependent enzymes responsible for cross-linking

collagen and elastin. Previous studies have revealed that LOX and LOXL1

are the most dramatically dysregulated LOX isoforms during liver fibrosis.

However, the crosstalk between them and the underlying mechanisms

involved in the profibrotic behaviors of HSCs, as well as the progression of

liver fibrosis, remain unclear.

Methods: pCol9GFP-HS4,5Tg mice, Loxl1fl/flGfapCre mice, human HSC line,

and primary HSCs were enrolled to study the dysregulation pattern, profi-

brotic roles, and the potential mechanisms of LOX and LOXL1 interaction

involved in the myofibroblast-like transition of HSCs and liver fibrogenesis.

Results: LOX and LOXL1 were synergistically upregulated during liver

fibrogenesis, irrespective of etiology, together orchestrating the profibrotic

behaviors of HSCs. LOX and LOXL1 coregulated in HSCs, whereas LOXL1

dominated in the coregulation loop. Interestingly, the interaction between

LOXL1 and LOX prolonged their half-lives, specifically enhancing the Notch

signal-mediated myofibroblast-like transition of HSCs. Selective disruption of

Loxl1 in Gfap+ HSCs deactivated the Notch signal, inhibited HSC activation,

and relieved carbon tetrachloride-induced liver fibrosis.

Conclusions: Our current study confirmed the synergistic roles and the

underlying mechanisms of LOXL1 and LOX crosstalk in the profibrotic

behaviors of HSCs and liver fibrosis progression, providing experimental

Abbreviations: CCl4, carbon tetrachloride; CHX, cycloheximide; ECM, extracellular matrix; Gfap, glial fibrillary acidic protein; GFP, green fluorescent protein; HES1,
hes family bHLH transcription factor 1; LOX, lysyl oxidase; LOXL1, lysyl oxidase-like 1; rhTGF-β1, recombinant human transforming growth factor β1.

Ning Zhang and Aiting Yang are co-first authors.

Supplemental Digital Content is available for this article. Direct URL citations are provided in the HTML and PDF versions of this article on the journal's website,
www.hepcommjournal.com.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it
is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the
journal.
Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Association for the Study of Liver Diseases.

1Liver Research Center, Beijing Friendship
Hospital, Capital Medical University, Beijing,
China

2State Key Lab of Digestive Health, Beijing
Friendship Hospital, Capital Medical
University, Beijing, China

3National Clinical Research Center of
Digestive Diseases, Beijing Friendship
Hospital, Capital Medical University, Beijing,
China

4Beijing Clinical Research Institute, Beijing
Friendship Hospital, Capital Medical
University, Beijing China

5Experimental and Translational Research
Center, Beijing Friendship Hospital, Capital
Medical University, Beijing, China

Correspondence
Wei Chen, Experimental and Translational
Research Center, Beijing Friendship Hospital,
Capital Medical University, No. 95 Yong’an
Road, Xicheng District, Beijing 100050, China.
Email: cw_2011@126.com

Hong You, Liver Research Center, Beijing
Friendship Hospital, Capital Medical Univer-
sity, No. 95 Yong’an Road, Xicheng District,
Beijing 100050, China.
Email: youhong30@sina.com

Received: 31 October 2023 | Accepted: 11 January 2024

DOI: 10.1097/HC9.0000000000000391

Hepatology Communications. 2024;8:e0391. www.hepcommjournal.com | 1

https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
https://orcid.org/�
http://www.hepcommjournal.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cw_2011@126.com
mailto:cw_2011@126.com
http://www.hepcommjournal.com


evidence for further clear mechanism-based anti-LOXL1 strategy develop-

ment in the therapy of liver fibrosis.

INTRODUCTION

Excessive deposition of extracellular matrix (ECM)
components is the prime hallmark of liver fibrosis. There
are 10-fold increased collagenous and noncollagenous
ECM components in cirrhotic over normal livers.[1]

Stabilizing these ECM components through cross-linking
contributes to liver fibrosis progression and the preven-
tion of matrix metalloproteinases-induced proteolytic
degradation.[2,3] In decades years, lysyl oxidase family
members (lysyl oxidase [LOX] and lysyl oxidase-like 1
[LOXL1] to 4) have been well recognized as extracellular
copper–dependent enzymes responsible for catalyzing
the cross-linking of collagens and elastin.[2] Among them,
LOX, LOXL1, and LOXL2 have been reported to be
pathologically upregulated in fibrotic livers.[2,4–7] Inhibition
of any of their expressions or activities in experimental
mouse models disrupts ECM stabilization during liver
fibrosis progression and accelerates spontaneous
reversal.[4–7] However, several clinical trials of a mono-
clonal antibody against LOXL2 have shown no clinical
benefits in liver fibrosis treatment,[8–10] dampening the
enthusiasm for LOX family member targeting in the field
of liver fibrosis therapy.

Because LOX isoforms have the potential to interact
with each other,[2] the compensatory effects cannot be
ignored when a single LOX family member is selected
as a therapeutic target. Recent studies have investi-
gated the mutual regulations among the LOX family
members in physiological or pathological lungs; there
exist direct or indirect regulatory relationships among
LOX members in lung fibrosis but the conclusions are
inconsistent.[11–13] Up to now, the interacting relation-
ships among LOX members in fibrotic liver are still less
clear. During liver fibrogenesis, HSCs-derived LOX and
LOXL1 rather than others are more critical since their
expressions are markedly upregulated than others.[2,14]

In addition, LOX and LOXL1 possess propeptides in the
N-terminal regions, which drastically differs from other
LOX family members.[2] Therefore, the crosstalk or
perturbation within LOX isoforms in liver fibrosis,
especially between LOX and LOXL1, deserves to be
elucidated.

Previous studies have demonstrated LOX usually
cooperates with LOXL1, assisting extracellular tropoe-
lastin cross-linking by deaminating their lysine resi-
dues under the guidance of fibulin-4 and fibulin-5,
respectively.[15,16] Fibulin-4 binds to LOX pro-region
through its N-terminal region, then directs LOX to
tropoelastin; the C-terminal domain of fibulin-5

recognizes and activates LOXL1 after tethering it
to elastic fibers.[15,16] Except for the canonical
role in catalyzing covalent cross-linking of ECM
structural proteins, LOX and LOXL1 exhibit non-
canonical biological roles. By comparison, in silico
analysis shows most of the interactive partners of LOX
belong to the matrisome, while partners of LOXL1
are mostly intracellular.[17] Indeed, specific knockout
of Loxl1 in HSCs inhibits focal adhesion kinase/
phosphoinositide 3-kinase/protein kinase B/hypoxia-
inducible factor 1-alpha signals in carbon tetrachloride
(CCl4)-treated mice,[6] and reverses the metabolic
disorder in the choline-deficient L-amino acid defined
diet-fed mice.[7] These findings strengthen the non-
canonical role of LOXL1 involved in metabolism or
signal transduction.

Our current study aims to shed light on the crosstalk
or perturbation between LOX and LOXL1 in HSCs and
explore their underlying effects and mechanisms in liver
fibrogenesis, providing a rationale for developing
therapeutic opportunities.

METHODS

Mice

pCol9GFP-HS4,5Tg mice were donated by Dr David A.
Brenner (University of California San Diego). The
pCol9GFP transgene includes the collagen gene pro-
moter (−3122 to +111) linked to the green fluorescent
protein (GFP) reporter gene, whereas the pCol9GFP-
HS4,5 transgene contains deoxyribonuclease I-hyper-
sensitive sites 4,5 located upstream of the collagen
promoter in pCol9GFP.[18] Loxl1fl/fl mice were obtained
from Shanghai Model Organisms Center, Inc (NM-CKO-
2118121). The Loxl1loxP allele was created by inserting
loxP sites flanking exon 2 of Loxl1. Floxed mice
were bred with glial fibrillary acidic protein (Gfap).Cre
mice (JAX024098, Jackson Laboratories) to generate
HSC-specific Loxl1 knockout (Loxl1ΔHSC) mice. Floxed
(Loxl1fl/fl) mice were used as control. Sprague-Dawley
rats were commercially purchased from Beijing HFK
Bioscience Co., Ltd. All rodents were housed and bred in
a specific pathogen-free grade animal facility with
appropriate temperature (23 ± 2°C), 12-hour light-dark
cycle, and standard chow and water ad libitum. The
Animal Care and Use Committee of Beijing Friendship
Hospital, Capital Medical University, approved the
rodent-related studies.
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Statistical analysis

Data are expressed as mean±SD. Differences be-
tween 2 groups were compared using the Student t test
or Mann-Whitney test; differences among 3 or more
groups were determined by a one-way ANOVA followed
by the least significant difference test or Kruskal-Wallis
test. A p<0.05 was considered statistically significant.

Additional methodological details

For further information on animal models and other
materials and methods, please refer to Supplemental
Information, http://links.lww.com/HC9/A817. Antibodies,
reagents, and full-length immunoblots for all the related
figures are also included in the Supplemental Informa-
tion, http://links.lww.com/HC9/A817.

RESULTS

LOX and LOXL1 were synergistically
elevated during liver fibrogenesis
regardless of etiology

Pathological upregulation of LOX and LOXL1 tran-
scripts has been observed in CCl4-induced mouse
models.[4,14] Herein, to ask whether the upregulation
pattern of LOX and LOXL1 in liver fibrosis was
independent of etiological factors, we first analyzed
the publicly available gene expression profiles from the
Gene Expression Omnibus database. As shown in
Figure 1A, both LOX and LOXL1 transcripts were
significantly exacerbated in human fibrotic livers with
metabolic disorder (GSE49541), chronic HCV
(GSE14323), or HBV (GSE84044) infection compared
to nonfibrotic livers; besides, LOX and LOXL1 gene
expression depended on histological severity in HBV-
related liver fibrosis. Moreover, the expression of
LOXL1 transcript was highly correlated with LOX in
fibrotic or nonfibrotic patients from GSE49541
(r= 0.672, p<0.01), GSE14323 (r=0.525, p< 0.01),
and GSE84044 (r=0.631, p< 0.01), respectively
(Supplemental Figure S1, http://links.lww.com/HC9/
A817).

We next established chemical damage and chole-
stasis-associated liver fibrosis models to affirm their
protein expression pattern. As shown in Figure 1B, CCl4
intoxication for 12 weeks notably increased the protein
expression of LOX and LOXL1 (fold change=2.3 and
5.5, p< 0.01) along with αSMA in mouse livers; bile duct
ligation operation also upregulated both LOX and
LOXL1 protein levels, especially in the advanced
stage of fibrosis. LOX and LOX1 proteins were mainly
recruited in the septal and portal areas, colocalizing with
αSMA and GFP-labeled collagen I in 12-week CCl4-

treated pCol9GFP-HS4,5Tg mouse livers (Figure 1C).
These results suggest that LOX and LOXL1 are mainly
upregulated in activated HSCs and exhibit comparable
expression and location patterns in fibrotic livers,
independent of any specific pathogenic factor.

LOX and LOXL1 synchronously
orchestrated the profibrotic behaviors of
HSCs

As HSCs are the primary source of LOX and LOXL1
dysregulation, we tested their canonical covalent cross-
linking roles through LOX or LOXL1 intervention in
HSCs. As shown in Figure 2A, LOX or LOXL1
transfection in HSCs accelerated the accumulation of
extracellular collagen fibers and the aggregation of
tropoelastin monomers into larger insoluble elastin
globules, whereas the knockdown of LOX or LOXL1
counteracted recombinant human TGF-β1 (rhTGF-β1)-
stimulated deposition of collagen fibers and the
formation of elastin globules (Figure 2A).

We next evaluated and compared the noncanonical
effects of LOX or LOXL1 intervention on HSCs myofibro-
blast-like characteristics. As shown in Figures 2B–K, the
overexpression of LOX or LOXL1 significantly provoked
the activation, proliferation, migration, and contraction
of HSCs; oppositely, the silence of either of them
counteracted the activated, proliferative, migratory, and
contractile properties of HSCs under rhTGF-β1 stimulation.
Relatively, the LOXL1 intervention had observably more
substantial effects on profibrotic behaviors of HSCs over
the LOX intervention (Figures 2B–K). Taken together,
except for the extracellular canonical roles, LOX and
LOXL1 are also synchronously involved in orchestrating
the profibrotic behaviors of HSCs.

LOXL1 dominated in LOX-LOXL1
coregulation in HSCs

As aforementioned, LOX and LOXL1 are synergistically
upregulated during liver fibrogenesis and synchronously
involved in the profibrotic behaviors of HSCs, high-
lighting their potent pathogenic roles in liver fibro-
genesis. To inquire whether there is a compensatory
effect on mutual regulation when either of them is
selected as a therapeutic target, we tested the
reciprocal regulation across LOX and LOXL1 in HSCs.
The overexpression of LOX in HSCs only induced a
slight increase in LOXL1 protein expression, while the
overexpression of LOXL1 evoked a marked upregula-
tion of LOX protein (Figure 3A). The coregulation
relationship was also verified in HEK293 cells
(Supplemental Figure S2, http://links.lww.com/HC9/
A817). Moreover, confocal immunofluorescence further
confirmed that the overexpression of LOX in HSCs had
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a negligible effect on intracellular LOXL1 protein
upregulation. In contrast, the overexpression of LOXL1
in HSCs markedly enhanced the expression of intra-
cellular LOX protein (Figure 3B and Supplemental
Figure S3, http://links.lww.com/HC9/A817). On the
other hand, under the stimulation of rhTGF-β1, a 3.2-
fold inhibition of LOX protein expression in HSCs
caused a 1.8-fold decrease in LOXL1 protein

expression. Still, a 3.0-fold silence of LOXL1 protein
expression resulted in a 3.0-fold downregulation of LOX
protein expression (Figure 3C).

To ask if the coregulation happens at the transcrip-
tional or translational level, we also determined the
mRNA expression of LOX or LOXL1 after inhibiting
either of them. As shown in Figure 3D, LOX knockdown
in HSCs did not affect LOXL1 mRNA expression and
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vice versa. Further immunofluorescent staining showed
that both LOX and LOXL1 proteins were mainly
upregulated and colocalized in the cytoplasm of
rhTGF-β1-treated human primary HSCs (Figure 3E); in
addition, LOX protein coimmunoprecipitated with
LOXL1 protein in LX-2 cells (Figure 3F). Collectively,
LOX and LOXL1 coregulate with each other at the
posttranscriptional level, whereas LOXL1 dominates in
the coregulation loop in HSCs.

LOXL1-mediated myofibroblast-like
transition of HSCs through Notch signal

We next measured the transcriptomic variations in
HSCs after LOX or LOXL1 knockdown under rhTGF-
β1 incubation to explore the potential downstream
intracellular effectors. Gene set enrichment analysis
revealed LOX or LOXL1 inhibition downregulated the
Kyoto Encyclopedia of Genes and Genomes pathways,
including metabolism, immune, intracellular signal
transduction, and ECM receptor interaction (Figures
4A, B). We noticed that the most significantly
downregulated Kyoto Encyclopedia of Genes and
Genomes pathway after LOXL1 silence was the Notch
signaling pathway (p< 0.001); gene signature in the
leading-edge subsets of Notch signal tended to
decrease in response to LOXL1 siRNA treatment
(Figure 4C). Increasing evidence has confirmed that
the Notch cascade is a fundamental pathway capable of
controlling cell fates, and dramatically participating in
HSC activation and liver fibrosis.[19] Hence, we
experimentally tested the LOXL1-Notch axis in HSC
activation. As shown in Figure 4D, LOXL1
overexpression in HSCs accelerated Notch signal
activation; however, LOXL1 inhibition reversed rhTGF-
β1-evoked Notch signal activation. Increased
expressions of collagen I, αSMA, and hes family
bHLH transcription factor 1 (HES1, a key member
downstream of the Notch signal) in HSCs through
LOXL1 overexpression were blocked by LY411575, a
specific Notch signal inhibitor (Figure 4E), indicating
LOXL1-Notch axis is essential in LOXL1-mediated HSC
activation.

To affirm how LOXL1 interplays with NOTCH1 on
HSCs, we first studied the colocalization of LOXL1 and
NOTCH1 in LX-2 cells grown in conditioned media from
LX-2 cells following LOXL1 overexpression. We

observed a strongly positive colocalization of LOXL1
and NOTCH1 at the cell surface of LX-2 cells
(Figure 4F), suggesting the secreted LOXL1 has the
potential to interact with NOTCH1 on HSCs. Next, we
performed the coimmunoprecipitation assay using LX-2
cells to determine whether there is a physical interaction
between LOXL1 and NOTH1. As shown in Figure 4G,
LOXL1 but not LOX protein could physically bind to
NOTCH1 protein. In short, these results suggest LOXL1
affects the myofibroblast-like transition of HSCs, at least
in part, through the Notch signal.

LOXL1 interaction with LOX prolonged
their half-lives, specifically enhancing the
Notch signal-mediated myofibroblast-like
transition of HSCs

To investigate the effect of the crosstalk of LOX and
LOXL1 in HSC activation and Notch signal, first, LOX
(2 μg/mL) or LOXL1 (2 μg/mL)-overexpressed HSCs
were treated for various periods (0–10 h) with cyclo-
heximide (CHX) that is a protein synthesis inhibitor and
can be used to evaluate the protein stability in
eukaryotic cells.[20] In LOX-overexpressed LX-2 cells,
treatment with CHX for ≥2 hours caused a drastic
degradation of HSC activation markers (collagen I and
αSMA), Notch signal activation marker (HES1), and
LOX itself; in LOXL1-overexpressed LX-2 cells, incu-
bation with CHX until 4 hours caused a relatively rapid
decrease in collagen I, αSMA, HES1, and LOXL1;
however, interestingly, co-overexpression of LOX (1 μg/
mL) and LOXL1 (1 μg/mL) plasmids in HSCs signifi-
cantly inhibited CHX treatment-induced degradation of
collagen I, αSMA, HES1, LOX and LOXL1 (Figure 5A).
Further immunofluorescent staining validated that
compared to overexpression of single LOX or LOXL1
plasmid, co-overexpression of both LOX and LOXL1
plasmids could delay the degradation of HES1 protein
in Notch signal when CHX was incubated for up to
10 hours (Figure 5B).

Furthermore, without CHX treatment, co-overex-
pressing LOX (1 μg/mL) and LOXL1 (1 μg/mL) plasmids
in HSCs boosted NOTCH1 and HES1 protein expres-
sion compared to single overexpressing LOX (2 μg/mL)
or LOXL1 (2 μg/mL) plasmid. At the same time,
preincubation with the Notch signaling inhibitor
(LY411575) abolished the effects on the Notch signal

analyses of COL-1, elastin, and αSMA expression in HSCs after LOX or LOXL1 perturbation (n= 3 for each group). Relative integrated density
was adjusted by GAPDH protein. (D, E) Proliferative alterations of HSCs in response to LOX or LOXL1 intervention were measured using the MTT
assay (n= 12 for each group). (F–H) HSC migration was tested after LOX or LOXL1 intervention using a transwell migration assay (n=4 for each
group). Images were acquired with a 10× objective. (I–K) Collagen gel contraction assay using HSCs after LOX or LOXL1 intervention (n=4 for
each group). 3×FLAG-tagged LOX or LOXL1 plasmids: 2.0 μg/mL; specific LOX or LOXL1 siRNAs: 50 nM; rhTGF-β1: 10 ng/mL; all the reagents
were treated for 48 hours except as specified; rhTGF-β1 was pretreated when silence experiments were performed. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001. Abbreviations: Con, control; FITC, fluorescein isothiocyanate; LOX, lysyl oxidase; MTT, 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide; NC, negative control; oLOX, LOX overexpression; oLOXL1, LOXL1 overexpression; rhTGF-β1, recombinant
human transforming growth factor β1; siLOX, LOX inhibition; siLOXL1, LOXL1 inhibition.
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but did not affect the expression of both LOX and
LOXL1 (Figure 5C). Meanwhile, we also found the
crosstalk of LOX and LOXL1 amplified the marker gene
expression of HSC activation (Col1a1 and Acta2),
proliferation (Mki67 and Pcna), migration (Arhgef4 and
Actr3),[21,22] and contraction (Rhoa),[23] which was
counteracted by LY411575 pretreatment (Figure 5D).
To sum up, synergistically elevated LOX and LOXL1
and their crosstalk in HSCs during liver fibrogenesis
enhanced the stabilities of LOX and LOXL1, specifically
prolonging the stimulation on their downstream Notch
signal.

Specific ablation of Loxl1 in Gfap+ HSCs
inhibited Notch signal activation and
alleviated CCl4-induced liver fibrosis

Notch cascade is a fundamental pathway controlling
cell fate and dramatically participates in the myofibro-
blast-like transition of HSCs and liver fibrosis
progression.[19] To determine whether the Notch signal
is the potential downstream effector of LOXL1 in HSC
activation and liver fibrogenesis in vivo, Loxl1fl/fl and
Loxl1 fl/flGfapCre (Loxl1ΔHSC) mice were intraperitoneally
injected with CCl4 for 6 weeks. Histological assess-
ments (Figure 6A) and downregulation of collagen I and
tropoelastin (Figure 6B) showed a specific deficiency of
Loxl1 in Gfap+ HSCs alleviated CCl4-induced liver
fibrosis. Also, Gfap+ HSCs-derived Loxl1 ablation
in vivo significantly alleviated both LOX and LOXL1
protein expression in the total liver (Figure 6B). Further,
immunoblotting and immunofluorescent analyses
revealed that the activation of liver Notch signal was
decreased in CCl4-treated Loxl1ΔHSC mice compared to
Loxl1fl/fl mice, as the key elements of Notch signal in the
total liver including JAGGED2, TACE, ADAM9,
NOTCH1, DLL1, and HES1 were downregulated in
Loxl1ΔHSC mice (Figures 6C, D), suggesting a selective
depletion of Loxl1 in Gfap+ HSCs protected against the
activation of Notch signal during CCl4 intoxication.

DISCUSSION

ECM stabilization and the subsequent attenuation of its
turnover during liver fibrosis are usually attributable to
the covalent cross-linking occurring among ECM
collagenous and noncollagenous components.[2] Tissue
transglutaminase and LOX family members are 2 types
of cross-linking enzymes that have been reported to be
upregulated in liver fibrosis.[2,4,5,14,24] Nevertheless,

tissue transglutaminase knockout in mice has been
experimentally confirmed with no effects on toxin-
induced ECM stability and liver fibrosis regression.[25]

In contrast, LOX, LOXL1, and LOXL2 inhibition can
retard ECM cross-linking in toxin-induced liver fibrosis
mouse models,[4–7] certifying their pathogenic roles in
fibrogenesis. However, in advanced liver fibrosis, the
expression of LOX and LOXL1 but not LOXL2 is
robustly enhanced.[2,14] Based on the chemical damage
and cholestasis-associated liver fibrosis models and
publicly available gene expression profiles from patients
with varying etiologies, our current study found the
dysregulations of LOX and LOXL1 were regardless of
etiology, depended on histological severity, and corre-
lated with each other. Hence, although the anti-LOXL2
strategy with simtuzumab has failed in growing clinical
trials, it will still be promising to try the anti-LOX or
LOXL1 strategy in liver fibrosis treatment.

Our current study, consistent with previous
reports,[2,4,6,7,14] showed activated HSCs are the primary
cellular source for LOX and LOXL1 dysregulation. Hence,
we first validated the traditional role of HSCs-derived LOX
and LOXL1 in the covalent cross-linking and assembles of
ECM collagen fibers and elastin globules. Lysine oxidation
of tropoelastin by LOX or LOXL1 often requires the
assistance of other ECM molecules. Generally, fibulin-4
binds with LOX, and fibulin-5 wraps with LOXL1, guiding
them onto tropoelastin monomers and covalently cross-
linking them into globules.[15,16] Our current study identified
the ECM glycoprotein fibronectin as another guide for
LOXL1 catalyzing ECM cross-linking (Supplemental Figure
S3, http://links.lww.com/HC9/A817). Fibronectin has been
recently reported to interact with collagens reciprocally, thus
accelerating and enhancing nascent ECM assembly,[26]

and promoting elastin deposition, elasticity, andmechanical
strength.[27] Therefore, the interaction between fibronectin
and LOXL1 may contribute to the physical targeting of
LOXL1 to tropoelastin. Except for the canonical role, our
in vitro experiments also demonstrated that LOX or LOXL1
is involved in the perturbation of activated, proliferative,
migratory, and contractile properties of HSCs. LOX or
LOXL1 may reprogram the myofibroblast-like transition of
HSCs probably through the transcription factor Snail since
Snail has been reported to be involved in fibroblast-to-
myofibroblast transition[28] and it can physically interact with
both LOX and LOXL1.[29] Our coimmunoprecipitation assay
also found both LOX and LOXL1 can physically interact
with another LOX isoform—LOXL2 (Supplemental
Figure S3, http://links.lww.com/HC9/A817). Growing stud-
ies have implicated LOXL2 acts in multiple intracellular
roles on cell proliferation, differentiation, migration, adhe-
sion, and angiogenesis.[30] Therefore, LOX-mediated or

antibody was used to specifically detect LOXL1-3×FLAG fusion protein after LOXL1 plasmid overexpression, which was shown as FLAG (LOXL1).
*p<0.05, **p<0.01, ns represents not significant. Abbreviations: CM, conditioned media; Con, control; ES, enrichment score; GSEA, gene set
enrichment analysis; IP, immunoprecipitation; KEGG, Kyoto Encyclopedia of Genes and Genomes; LOX, lysyl oxidase; NC, negative control;
oLOX, LOX overexpression; oLOXL1, LOXL1 overexpression; siLOX, LOX inhibition; siLOXL1, LOXL1 inhibition.
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LOXL1-mediated HSC behavior perturbation could also
be through LOXL2 in an indirect way, which deserves to be
elucidated in the future.

As mentioned, LOX and LOXL1 are promising
therapeutic targets for liver fibrosis since they are
pathogenically upregulated in fibrotic liver and involved
in ECM stability and HSC activation. However, a

combined strategy should be considered if the compen-
satory effect between LOX and LOXL1 dysregulation
exists. Our present study observed a synergistic other
than compensatory effect between LOX and LOXL1
dysregulation when either intervened. Interestingly,
LOXL1 dominates in the LOX and LOXL1 coregulation
loop in HSCs. Up to the present, intracellular TGF-β1 and
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transfection. FLAG antibody was used to specifically detect LOX-3×FLAG or LOXL1-3×FLAG fusion protein after LOX or LOXL1 plasmids
overexpression, which was shown as FLAG (LOX) or FLAG (LOXL1). *p< 0.05, **p< 0.01, ***p< 0.001, ****p<0.0001. Abbreviations: αSMA,
α-smooth muscle actin; CHX, cycloheximide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LOX, lysyl oxidase; oLOX, LOX over-
expression; oLOXL1, LOXL1 overexpression.
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focal adhesion kinase signals have been confirmed as
the downstream effectors of LOXL1 in HSCs.[6,31] To
thoroughly understand the nonclassical functions of
LOXL1, we next explored the transcriptomic alteration
in HSCs in response to LOXL1 inhibition under rhTGF-β1
stimulation. Notch signal was the most evidently down-
regulated pathway after LOXL1 silence, which was not
observed after LOX silence in HSCs. Moreover, the
coimmunoprecipitation assay confirmed a direct interac-
tion between NOTCH1 and LOXL1 but not LOX. A
selective intervention of HSCs-derived LOXL1 in vivo
and in vitro perturbs HSC activation by regulating the

Notch signal. Over the past decade, the role and
mechanism of Notch signaling in HSC activation and
liver fibrosis progression has been well recognized.[19,32]

Therefore, the disclosure of HSC-derived LOXL1-Notch
axis will help further understand LOXL1 in HSCs and liver
fibrosis and assist mechanism-based drug development.

Next, we explored the role of LOX in LOXL1-Notch
axis-mediated HSC activation, as LOX and LOXL1 are
synergistically elevated in fibrotic livers and synchro-
nously orchestrate the profibrotic behaviors of HSCs.
Early studies have revealed that protein stability
appears to be governed by noncovalent interactions,
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F IGURE 6 Specific ablation of Loxl1 in Gfap+ HSCs inhibited Notch signal activation and alleviated CCl4-induced liver fibrosis. (A) Liver
histological assessments (HE and SR staining) of CCl4-treated Loxl1fl/fl and Loxl1ΔHSC mice. Scale bar: 100 μm. (B) Immunoblotting analyses of
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and unstable proteins are expected to receive signifi-
cant additional stability from the interaction.[33,34] Our
coimmunoprecipitation assay found that LOX physically
interacts with LOXL1; accordingly, we questioned
whether LOX-LOXL1 interaction could enhance their
intrinsic stabilities. Because CHX can prevent transla-
tional elongation and is regarded as an inhibitor of
protein biosynthesis,[20] we employed it to assess the
stabilities of LOX and LOXL1 in our current study. With
the CHX translation shut-off assay, we found cotrans-
fection of LOX and LOXL1 plasmids significantly
delayed their degradation rates compared to single
transfection of either of them, explicitly prolonging the
stimulation on Notch signal and its downstream
myofibroblast-like transition of HSCs. However, our
current study still needs to unveil how LOX and LOXL1
interaction increases their half-lives, which requires
further exploration.

In summary, our current study found LOX and LOXL1
were synergistically increased in fibrotic livers regard-
less of pathogenic factors and synchronously orches-
trated the profibrotic behaviors of HSCs; LOXL1 and
LOX interacted and coregulated with each other in
HSCs; however, LOXL1 dominated in the LOX-LOXL1
coregulation loop; LOXL1 interaction with LOX pro-
longed their half-lives, specifically enhancing Notch
signal-mediated myofibroblast-like transition of HSCs
(Figure 7). The deficiency of HSC-derived Loxl1 could
retard liver Notch signal and liver fibrosis progression
induced by CCl4 intoxication. Our study systematically
unmasked the potential mechanisms of LOXL1 involved
in liver fibrosis exacerbation, providing the rationale for
developing therapeutic opportunities for liver fibrosis
based on the LOXL1 target.
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