Table 4.
Predictive models’ performance.
| Evaluation matrix | Predictive models | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Logistic regression | RF | DT | SVM | |||||||
| Confusion matrix | Predicted | Predicted | Predicted | Predicted | ||||||
| Poor | Well | Poor | Well | Poor | Well | Poor | Well | |||
| Observed | Poor | 3442 | 2114 | 4283 | 1273 | 4184 | 1372 | 3454 | 2102 | |
| Well | 2215 | 3472 | 493 | 5194 | 536 | 5151 | 1425 | 4262 | ||
| % | % | % | % | |||||||
| Accuracy | 74.95 | 96.38 | 73.73 | 67.21 | ||||||
| Recall | 70.49 | 95.90 | 66.44 | 62.49 | ||||||
| Sensitivity | 70.49 | 95.90 | 66.44 | 62.49 | ||||||
| Specificity | 80.09 | 96.80 | 86.17 | 73.45 | ||||||
| Positive predictive value | 80.34 | 96.41 | 89.13 | 75.66 | ||||||
| Negative predictive value | 70.17 | 96.35 | 60.06 | 59.71 | ||||||
| Precision | 80.34 | 96.41 | 89.13 | 75.66 | ||||||
| F1 score | 75.09 | 96.16 | 76.13 | 68.44 | ||||||
| Prevalence | 53.57 | 47.25 | 63.06 | 56.91 | ||||||
| Detection rate | 37.76 | 45.32 | 41.90 | 35.56 | ||||||
| Detection prevalence | 47.00 | 47.00 | 47.00 | 47.00 | ||||||
| Balanced accuracy | 75.29 | 96.35 | 76.30 | 67.97 | ||||||