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Abstract 
Phylogenetic estimation is, and has always been, a complex endeavor. 
Estimating a phylogenetic tree involves evaluating many possible 
solutions and possible evolutionary histories that could explain a set 
of observed data, typically by using a model of evolution. Values for all 
model parameters need to be evaluated as well. Modern statistical 
methods involve not just the estimation of a tree, but also solutions to 
more complex models involving fossil record information and other 
data sources. Markov chain Monte Carlo (MCMC) is a leading method 
for approximating the posterior distribution of parameters in a 
mathematical model. It is deployed in all Bayesian phylogenetic tree 
estimation software. While many researchers use MCMC in 
phylogenetic analyses, interpreting results and diagnosing problems 
with MCMC remain vexing issues to many biologists. In this 
manuscript, we will offer an overview of how MCMC is used in 
Bayesian phylogenetic inference, with a particular emphasis on 
complex hierarchical models, such as the fossilized birth-death (FBD) 
model. We will discuss strategies to diagnose common MCMC 
problems and troubleshoot difficult analyses, in particular 
convergence issues. We will show how the study design, the choice of 
models and priors, but also technical features of the inference tools 
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themselves can all be adjusted to obtain the best results. Finally, we 
will also discuss the unique challenges created by the incorporation of 
fossil information in phylogenetic inference, and present tips to 
address them.
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1 Introduction to MCMC
Phylogenetics has always had a fundamental problem. For any 
reasonable number of taxa, the number of possible topolo-
gies that could connect them quickly scales to be larger than  
the number of stars in the sky. For instance, even with only 
10 taxa there are already more than 34 million rooted phy-
logenies possible (Degnan & Salter, 2005). It is intractable  
to evaluate all of them. And yet, increased taxon sampling is 
crucial to phylogenetic accuracy (Heath et al., 2008; Hillis  
et al., 2003; Rannala et al., 1998). One computational tech-
nique revolutionized our ability to enumerate and evaluate 
solutions in a Bayesian framework. That technique is Markov 
chain Monte Carlo (MCMC). Though others exist, such as  
sequential Monte Carlo (SMC, Bouchard-Côté et al., 2014) or 
Hamiltonian Monte Carlo (HMC, Dinh et al., 2017), MCMC 
remains the most commonly applied technique for this type  
of evaluation.

To understand MCMC, we must first take a step back and under-
stand mathematical models. In a model, parameters describe 
what the researcher views as important facets of the process 
that generated our observed data. For example, in a phyloge-
netic model of molecular evolution, there may be a parameter 
governing the rate at which transitions have occurred and 
a different one governing the rate at which transversions  
have occurred to generate an observed multiple sequence align-
ment. In most models, parameters are usually random (also 
called stochastic) variables, meaning the value of a parameter is 
derived from an event with some element of randomness, such 
as a draw from a probability distribution or a coin flip. In the  
models we consider, most of the parameters are continuous,  
meaning they can take any value within their reasonable ranges.  
The uncertainty of a continuous parameter is described by a 
probability density function (e.g., a uniform or an exponential  
distribution), and the probability within a range of values is 
the area under the curve of the probability density function. For  
discrete parameters, such as the tree topology, each possible 
value of the parameter has a probability. We collectively use  
“probability distribution” for both discrete and continuous  
parameters.

In a maximum likelihood (ML) estimation, we try to find the 
values for all our parameters that maximize the likelihood 
of the parameters given our data. Good ML solutions can be  
efficiently estimated through a number of mathematical tech-
niques (Nguyen et al., 2015; Yang, 2014). In a Bayesian esti-
mation, we estimate a distribution of the parameters that  
are plausible under our model given the data. In addition, 

Bayesian inferences integrate prior distributions, which describe 
our prior knowledge and understanding about the model 
and parameters, before having looked at the data. Bayesian  
inference thus offers a more complete picture of the results, 
integrating uncertainty in the results as well as existing  
information from previous studies (Figure 1). However, it is  
also more complex, because for many real world scenarios, the 
true distribution of plausible parameters cannot be calculated  
directly.

MCMC algorithms allow us to find the set of plausible  
solutions of a Bayesian inference, that is, an estimation of  
the posterior distribution of the parameters. The algorithm for 
MCMC sampling most frequently employed in phylogenetic 
studies is known as the Metropolis-Hastings (MH) algorithm  
(Figure 2), though others exist. The general way the MH  
algorithm works is that a starting set of values is pro-
posed for the parameters. This set is then scored according 
to some criterion. Then, one or more model parameters are  
perturbed, or changed. This could be a simple change, like 
increasing the value of one numerical parameter. In the case 
of phylogenetics, we often need to use more complex moves  
to propose new values for non-numeric objects like clades 
and trees (this will be described in Moves/Operators). This 
is where the term ‘Monte Carlo’ comes in: the city Monte 
Carlo is famous for its casinos and games of chance, which  
rely on randomness, just like the algorithm does when it per-
turbs the parameters pseudorandomly (at random within some 
set of conditions). The new value or set of values proposed 
will be re-scored according to the evaluation criterion. If it is 
better, this solution becomes the new current solution from  
which new moves will be performed. If the score of the  
proposed value is worse than the current, we still have a 
chance to accept it − broadly explore the entire param-
eter space and lower our chances of staying stuck in a local  
optimum. The probability of accepting the proposal depends on  
the difference of evaluation values between the new and cur-
rent scores, so that much worse proposals mostly will be dis-
carded. The “Markov” chain part of the name comes from this 
being a Markov process, meaning a memoryless process. That 
is, the new state proposed depends only on the current state, 
not on the previous states. If a parameter value (or a region  
of values) has a high score, it will be visited many times in an 
analysis. In Bayesian phylogenetics, MCMC samples param-
eter values proportional to their posterior probability. There-
fore, if a set of values for model parameters give a good  
solution according to the evaluation criterion, the MCMC will  
tend to sample those values and other similar values often. 
MCMC chains are ergodic, meaning that any state of the 
chain is theoretically reachable from any other state. To fulfil 
this criterion of ergodicity, we place moves on every  
parameter in our model, thereby enabling the algorithm to  
sample thoroughly. Finally, MCMC is sometimes referred to as 
a “simulation” algorithm, which can be confusing. The reason 
for this is that we are not changing the underlying data, but  
proposing new values for model parameters to try and improve  
the fit of the model to the data. Often, this involves drawing  
parameter values out of a distribution, or scaling parameters in  
our model − both of these are forms of simulating new values.

     Amendments from Version 2
We have revised this version to address comments by the last 
reviewer, Sungsik Kong. In particular, we have added more details 
on phylogenetic networks, burn-in samples and ESS calculations. 
We have also updated the captions for Figure 1 to Figure 4 to 
provide clearer explanations of the pictures.

Any further responses from the reviewers can be found at 
the end of the article
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Much like Bayesian analysis itself, MCMC was not developed 
to deal with phylogenetics, or even biological data directly. 
Those applications came later. Invented in the early 1950’s, 
MCMC was originally used in physics to describe equilibrium 
between the liquid and gas phases of a chemical (Metropolis 
et al., 1953). In this case, all the values being perturbed in 
the model are numerical, which is not always the case with  
phylogenetics. From a humble beginning of trying to model a  
simple physical system, the MH MCMC algorithm drew the 
attention of statisticians, who popularized its use across nearly 
every quantitative discipline. In the following sections, we will 
discuss how MCMC works for phylogenetic inferences, how 
to troubleshoot an MCMC inference, and some tips and tricks  
for MCMC success.

2 MCMC inference applied to phylogenetics
2.1 The basics
Before we can understand MCMC in-depth, we need to dis-
cuss some basic information about Bayesian inference. Bayesian 
inference refers to a statistical framework for evaluating the 
fit of models and parameters to the observed data, based on  
a quantity called the posterior distribution. The posterior  
distribution is calculated from three quantities: the likeli-
hood, the prior distribution, and the marginal probability 
of the data. Bayes’ Theorem is shown in Figure 1 and shows the  
relationship between these three quantities. We will first describe 
them and how they fit together, then move on to how MCMC  
is used in their calculation.

2.1.1 The likelihood. The likelihood of the models and param-
eter values describes how probable the observed data is 
given those models and values, i.e., how likely it is that those  
models and values represent the true generating process. 
If we are only concerned with the highest likelihood given 
the data, we usually do not need MCMC inference. Many  
phylogenetic tools can perform ML inference, which finds a set 
of values for the model parameters that maximize the probability  
of observing the data.

In a phylogenetic context, the data will usually be our observed 
molecular sequence alignment and/or morphological charac-
ter matrix. The model will typically describe the process of 
evolution that generated these data. In a Bayesian phyloge-
netic inference, the calculation of the likelihood will include a 
substitution model, which describes the relative rate of change  
from one character to another as well as the frequencies of 
each character state, and a clock model, which describes the 
overall rate of change through time and across the tree. For  
example, the simplest substitution models are the Jukes- 
Cantor model (molecular data; Jukes & Cantor, 1969) and 
the Mk model (morphological data; Lewis, 2001). These 
models assume that one parameter describes the process of 
sequence evolution generating the data, and as a result these  
models are often referred to as ‘all-rates-equal models’. This 
one parameter is a rate of change between different molecu-
lar or morphological character states. Many substitution models 
(such as the Kimura 2-parameter model (Kimura, 1980), the 

Felsenstein 1981 model (Felsenstein, 1981), the Hasegawa- 
Kishino-Yano model (Hasegawa et al., 1985), and the General 
Time-Reversible model (Tavaré, 1986)) are more complex, 

Figure 1. Schematic representation of Bayes’ theorem and 
the Hastings ratio, used in Bayesian inference. The top 
panel shows Bayes’ theorem and the relationship between the 
posterior, likelihood, priors and the marginal probability of the 
data. The second line of this panel shows an alternative way of 
writing the marginal probability, which illustrates more explicitly 
why the marginal probability is difficult to calculate. During MCMC 
we sample new parameter values (indicated by * in the figure) at 
each step and compare their posterior probability to the previous 
set of values using the Hastings or posterior odds ratio, R. The 
middle panel shows the Hastings ratio, and illustrates that since 
the marginal probability cancels out, we avoid having to calculate it 
during MCMC. The bottom panel provides a legend for the main data 
and model components used in Bayesian phylogenetic inference. 
The observed data used to infer phylogenies typically comprise 
discrete morphological characters (shown here) or molecular 
sequences. During inference the tree topology and branch lengths 
are sampled from a prior distribution that depends on the type of 
inference − in particular, if the tree is dated we typically use lineage 
diversification models, such as birth-death processes. The character 
evolution model will always include the substitution process and 
will additionally include the clock model if we aim to infer a dated 
phylogeny.
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and reflect different assumptions regarding the hypothesized  
process of sequence change and evolution.

In a Bayesian analysis, the likelihood is one component of the 
three parts of Bayes’ Theorem (Figure 1). It is calculated at 
each step in the MCMC analysis and is an important part used 
to estimate the posterior probability distribution given the data.  
The other important part is the prior.

2.1.2 The prior. A crucial analytical difference between a 
ML method and a Bayesian one is the presence of a prior. 
The term prior means that the distribution of the parameters  
reflects one’s belief before observing the data. Each param-
eter in a Bayesian analysis has a prior probability distribu-
tion. For instance, we can set an exponential distribution  
on a given rate parameter. Under this prior, a rate that is 
very high is believed to be less likely than one that is very 
short. This means that rates are expected to be fairly low, but  
we still allow the possibility that they could be higher.

In Bayes’ Theorem, the prior and the likelihood are multi-
plied together, thus proposed parameter values are evaluated 
based on both the likelihood and the prior distribution. There-
fore, if we expected a solution to be unlikely and thus speci-
fied a low prior probability for it, that low prior will lower the 
posterior when being multiplied with the likelihood. Impor-
tantly however, if against our expectations, this solution is 
strongly supported by the data, the resulting high likelihood may  
overcome the effect of the low prior and still lead to high pos-
terior support. This is how we can still find solutions which 
are different from our initial expectations, if the data suggest 
them. But this also highlights why we have to be careful not 
to specify priors that are too strict (i.e., that specify the prior 
probability of reasonable solutions to be 0), and prevent the 
MCMC from exploring the parameter space the data would  
favour. In addition, we note that in the context of Bayesian  
phylogenetics not all parameters of interest will be fully iden-
tifiable (e.g., rates and times, see section Inferring dated trees  
and incorporating fossils). This means that the priors we use  
in these analyses should be carefully considered and justified.

2.1.3 The marginal probability. The marginal probability of the 
data, also called the marginal likelihood, is the probability of the 
data without considering any particular model parameters, but 
conditioned on the models themselves and the constraints of the 
prior. Thus it gives the overall likelihood of the chosen model 
over all possible parameter values. This is usually the most  
challenging part of the calculation, as calculating the abso-
lute probability of the data averaging over all possible values of 
the model parameters is not computationally feasible in many 
cases. In a typical Bayesian phylogenetic inference, we avoid 
calculating the marginal probability using the MH algorithm  
(Figure 1, explained below). However, if we can calculate the 
marginal probability, it allows us to perform model selection.  
The marginal probability is typically computed by sampling 
many different solutions and averaging them for their prob-
ability. Different estimation methods have been developed to 
approximate the marginal likelihood, such as path sampling,  

which includes the widely used stepping-stone method (Baele  
et al., 2012) or nested sampling (Russel et al., 2018). Over-
all, these methods remain expensive. Note that prior specificity 
matters for model selection, and overly-vague priors can cause 
issues for model selection and parameter estimation, even if  
the true parameter is included (Zwickl & Holder, 2004).

2.1.4 The posterior. The posterior distribution (posterior for 
short) is the probability distribution of the model parameters 
given the data. The posterior can change if the underlying  
data, model, or prior distributions change.

As explained in the previous section, the theoretical poste-
rior (i.e., the exact, ‘true’ solution) is almost always impos-
sible to calculate directly. Hence we use MCMC to sample 
a set of parameter values that can approximate the posterior 
distribution of the parameters (usually called the posterior  
sample or MCMC sample), using the machinery introduced in  
section Implementation of MCMC in phylogenetic inference 
software. MCMC is key in Bayesian computation, as it 
allows us to sample from the posterior distribution. MCMC 
can even evaluate different potential model solutions through  
reversible-jump MCMC (Green, 1995), which allows the chain 
to move between different models (and their associated param-
eter spaces) during the inference. For instance, reversible-jump 
MCMC can be used to infer the most adequate substitution 
model for an alignment (Bouckaert & Drummond, 2017). It 
is important to note that the result of an MCMC inference is 
the full posterior sample and the distribution of solutions.  The  
distribution not only quantifies a point estimate (such as the  
mean or median), but also the uncertainty associated with it. In 
this sense, we typically evaluate the whole set of the posterior  
sample rather than an individual point from the sample.

2.1.5 The Metropolis-Hastings algorithm. The MH algorithm 
enables us to sample from the posterior without having to cal-
culate the marginal probability of the data. The trick is that 
we use the posterior odds ratio or Hastings ratio (R) to evalu-
ate how the chain proceeds, i.e., whether we accept the newly 
proposed values at each iteration. More specifically, this is the 
ratio of the posterior probabilities for the new values versus 
the current (parent) values. Since the marginal probability is the  
same in both cases, it cancels out when we calculate the ratio, 
meaning we only need to calculate the likelihood and the prior  
probability for each set of values, shown in Figure 1.

Figure 2 shows the main steps in the MH algorithm. As described 
in the section Introduction to MCMC, we first propose an 
initial set of values for all model parameters, including the  
topology (if estimating), and record the likelihood and prior 
probability associated with these. In each subsequent step, at 
least one model parameter is perturbed, and again we record 
the likelihood and prior probability. We evaluate the new  
values using the Hastings ratio. If R > 1, i.e., the new values 
improve the posterior, these are always accepted and become 
the updated current values from which the chain proceeds.  
If R < 1, the new values are only accepted with probability = R. 
This means, if the posterior associated with the new values is  
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much lower, there is only a small chance of them being accepted. 
If the new values are not accepted, then the current values 
remain unchanged. By following these rules, the algorithm  
spends most of its time in regions of the parameter space with 
the highest posterior probability. We repeat the process of per-
turbation and evaluation until we have a sufficient number of 
MCMC samples to approximate the posterior. Several online 
tools demonstrate how this process works on different shapes 
of posterior space, such as the MCMC robot (Lewis, 2024) 
or the MCMC demo app (Feng, 2024). We do not need to store 
the values at every iteration, since consecutive values will be  
strongly correlated with each other. The best sampling fre-
quency will depend on the size of the moves between itera-
tions, and also on the specific software implementation used. For  
computational and memory reasons, we usually aim to record 
between 1,000 and 10,000 posterior samples. We discuss how 
to assess whether these samples are a good representation of the  
posterior later in this article.

2.1.6 The posterior sample. The posterior sample is a set of 
plausible solutions for a given dataset, derived through MCMC 
analysis. The posterior sample is composed of all recorded 
steps, which is a subsample of the steps visited by the infer-
ence. The distribution of solutions in the posterior sample is, 
itself, meaningful. Each entry sample in our posterior sam-
ple will have a posterior probability, and solutions will be  
sampled proportional to their posterior. A solution with a good 
posterior probability will be visited many times, whereas a 

solution with a poor one will be seldom seen in the poste-
rior sample. How often a solution is sampled out of the total  
number of samples is often considered a measure of support. For 
example, a common measure of support for clades on a tree is 
the posterior probability, which corresponds to the proportion of 
trees in the posterior sample which contain that specific subclade. 
A nice property of the posterior sample is that it not only  
provides the joint estimation of all the parameters, but also 
individual estimations for all the parameters. Indeed, taking  
only the sampled values for a specific parameter provides the  
marginal posterior distribution of this parameter, which allows 
us to estimate values for that parameter while integrating over 
all possible values of the other parameters. This means that all  
parameters of the inference can be analyzed independently.

2.2 Implementation of MCMC in phylogenetic inference 
software
2.2.1 Unrooted versus rooted trees. Phylogenetic trees exist in 
multiple forms. The first important distinction is between unrooted 
trees, which simply describe the evolutionary relationships of all 
the samples, and rooted trees, which include an explicit origin 
or starting point for the evolutionary process. In unrooted trees, 
internal nodes are not ordered, so it is impossible to know if an 
internal node is an ancestor or a descendant of another internal  
node. Another important feature of phylogenies is whether they 
are dated, i.e., whether their branch lengths are expressed in  
units of genetic/morphological distance or in units of time. Esti-
mating a dated phylogeny requires a model for the molecular or 

Figure 2. Flowchart and pseudocode showing the main steps in the Metropolis-Hastings algorithm.  In the pseudocode, the total 
number of MCMC steps and the sampling frequency j are defined by the user, whereas the Hastings ratio R is calculated from the posterior 
distribution. See Figure 1 for a full description of the Hastings ratio.
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morphological clock, a prior on the phylogeny, as well as time 
information to calibrate the tree. This information can be pro-
vided directly through the data, if the dataset includes samples 
from multiple points in time, such as fossil specimens. Alter-
natively, the information can be provided as node calibrations, 
which provide information directly on the ages of specific nodes 
of the phylogeny. The prior on the phylogeny can be provided by a  
model of lineage diversification (usually a birth-death  
process or a coalescent process (Lambert & Stadler, 2013)), 
or simply use a uniform distribution on tree topologies  
(Ronquist et al., 2012).

Dated trees are naturally rooted, as the earliest time point of the 
tree is obviously the origin of the process. Undated trees can 
also be rooted, by using one or more outgroup samples, i.e. sam-
ples which are known to be outside of the clade for which we 
want to build a phylogeny (for example, species from a different 
family or viral sequences from a different strain). In this case, 
the root is placed at the point in the tree where these outgroups  
diverge from the most recent common ancestor of the ingroup.

A much wider array of biological questions can be addressed 
using dated phylogenetic trees (e.g., diversification rate esti-
mation or the application of phylogenetic comparative meth-
ods), but inferring dated trees increases the complexity of 
the analysis, making MCMC inference more challenging. 
Thus we mainly target this article at analyses which include a  
molecular or morphological clock as well as time information, 
although many of the tips detailed here are equally applicable  
to undated phylogenies.

2.2.2 General frameworks. Bayesian phylogenetic infer-
ence is often implemented in large software frameworks 
which group together many different models. In this paper, we 
chose to focus on BEAST2 (Bouckaert et al., 2014), MrBayes 
(Huelsenbeck & Ronquist, 2001) and RevBayes (Höhna et al., 
2016) as our examples. These frameworks are generally 
designed to be modular, with each component of the analysis  
operating independently from the others. This means that 
any component, e.g., the substitution model, can be modified  
easily or extended without having to change anything else. It 
also means that core parts of the MCMC inference, for instance 
the MCMC algorithm itself, do not have to be reimplemented  
when a new model or a new type of data is introduced.

2.2.3 Moves/operators/proposals. As introduced earlier, MCMC 
inference relies on moving step by step through the param-
eter space and recording the state of the model parameters  
periodically. The recorded parameter states are the MCMC  
sample. Thus, any MCMC inference software must implement 
code to advance the chain. Since this code is not part of the 
model and usually does not depend on the specific choice of 
analysis, it is generally placed in separate components. In phy-
logenetic inference tools, these components can be called  
proposals, moves, or operators. Different terms are used in dif-
ferent software implementations, but they all perform the same 
function in the inference and they can be thus be treated as 
synonyms. Examples of some common phylogenetic moves  
are shown in Figure 3.

Moves are composed of three elements: first is the parameter or 
parameters they act on, meaning the parameters they change. 
Some moves only operate on one parameter at a time, while 
more complex moves can act on several (correlated) param-
eters at the same time. For instance, the up-down operator in 
BEAST2 will scale both the branch lengths of the tree, and the  
clock rate simultaneously. The second component of a move 
is the algorithm used to change the value of the parameter(s). 
These range from basic operations, such as proposing a new 
value using a sliding window centered on the current value, 
or scaling the current value of the parameter by a given factor, 
to much more complex ones such as those used to modify 
the tree. Finally, the third component of a move is its weight,  
which determines the frequency with which it will be used  
during the actual inference. A move with higher weight will 
be used more often, which should in principle lead to the  
corresponding parameters moving more often, and in turn  
provide more accurate estimates for these parameters. It should 
be noted that MCMC implementations differ in how weight is 
applied. Some attempt one move per step in the MCMC chain  
(e.g., BEAST2 and MrBayes), meaning only one parameter 
changes at a time and the weights represent the probability for 
any particular one to be chosen. Others move a whole set of  
parameters at each step (e.g., RevBayes), with the weights 
representing how many times a move is attempted for a par-
ticular parameter during each step. This is also the reason why  

Figure 3. Examples of some common moves used in Bayesian 
phylogenetic inference. Scaling and sliding moves operate on 
a numerical parameter (X), such as the molecular clock rate, the 
speciation rate or the age of a fossil, and generally use a uniform 
distribution (U). Scaling moves use a scaling factor s chosen 
uniformly at random in the scaling range defined by the move 
parameter a. Sliding moves pick a new value uniformly at random in 
a window given by the window size parameter d. Subtree exchange 
(STX) and subtree pruning and regrafting (SPR) moves operate on 
the tree topology by moving subclades (represented as coloured 
triangles). A more detailed description of these moves can be 
found in Drummond et al. (2002).
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the number of generations that were run for a given analy-
sis cannot always be compared directly between implementa-
tions, as one ‘iteration’ or ‘generation’ of the chain may actually  
imply different numbers of actual parameter moves (or attempted 
moves). Logically, implementations which use one move per 
iteration (such as BEAST2) will require many more itera-
tions than implementations which use many different moves  
per iteration (such as RevBayes).

However, the efficiency of the MCMC inference also 
depends on the acceptance proportion (also called the accept-
ance rate) of each move, i.e., the percentage of times that the  
move is accepted during the MCMC run. A move with 
a very low acceptance rate will have little impact on the 
overall inference, even if its weight is high. On the other 
hand, a very high acceptance rate can indicate that the  
move is proposing new values that are too close to the origi-
nal values, which slows down the inference and increases the 
number of steps needed to properly explore the parameter 
space. For MCMC moves operating on a continuous numerical 
parameter, such as a branch length or evolutionary rate, the 
highest efficiency is typically achieved when the acceptance  
proportion is around 0.2 to 0.4 (Yang, 2014, section 7.3–7.4). 
Software implementations such as MrBayes, BEAST2, and 
RevBayes, typically provide an automatic tuning mechanism, 
which is enabled by default and adjusts each operator’s con-
figuration to reach the target acceptance proportion, say 0.3. For  
topological moves or moves which jump between different 
models, the efficiency is different from that of the more simple  
moves, and essentially depends on the specific design of the  
proposal algorithm. As a result, general users cannot easily  
optimize these moves. Good tree proposals are still under 
development, there is no perfect one to rule them all. In prac-
tice, using a collection of moves that make both big and small 
topological changes is advised. For example, MrBayes com-
bines a Nearest Neighbour Interchange move (NNI, a nar-
rower implementation of subtree exchange (STX)) and two 
subtree pruning and regrafting (SPR) variants (see Figure 3)  
to update the tree. Tree moves should usually have much 
higher weights than the simple moves, as the tree space is  
tremendous.

The array of available moves in phylogenetic inference can 
be daunting for users. Luckily, most inference software pro-
poses a default setup for standard analyses, which includes 
reasonable moves covering all parameters of the analysis. 
The default selection of moves usually leads to accurate  
estimates in a reasonable number of steps for most stand-
ard analyses, however, it certainly cannot fit all circumstances. 
We will see in later sections how to diagnose and adjust the  
move setup to help with misbehaving analyses.

3 Challenges of phylogenetic MCMC inference
As mentioned in the section Introduction to MCMC, MCMC 
was not developed for use in phylogenetics. It was developed 
for use with physics models, which usually have solely numeri-
cal components, often with many observations relative to the 
number of parameters. The use of MCMC for phylogenetics  
raises a new set of issues. In a phylogenetic analysis, we are 
often principally concerned with estimating a non-numeric 

parameter: the phylogeny itself! Due to the complexity of the 
underlying biological processes, we also often have high-dimen-
sionality models, which contain a large number of param-
eters. This can raise serious performance issues for our MCMC 
inference, either when exploring the tree space or when cal-
culating the posterior probabilities. We will now dive into  
some of these issues, and how MCMC inference has been  
adapted to work with phylogenetic trees and data.

3.1 Non-numeric data
As explained in the previous section, MCMC relies on perturb-
ing our model parameters through moves. For numerical param-
eters, it is often very easy to perform a move. As shown in  
Figure 3, slide moves simply change the numeric value of a 
parameter within a window of a given size. Scale moves make 
values a bit bigger or smaller, while ensuring negative numbers  
stay negative and positive ones stay positive. For more com-
plex cases, such as simplexes (sets of values that must sum 
to a number, typically one − for instance nucleotide frequen-
cies in a substitution model) or ratios, moves can be designed  
to ensure the conditions on the parameter are always met.

However, a tree is not a simple number or set of numbers, 
but a complex structure describing the arrangement of all the  
samples in a topology. To explore the tree space, we thus need 
to change not only the branch lengths, but also the order and 
the composition of all subclades of the tree. This requires a dif-
ferent set of MCMC moves, often called tree moves or topol-
ogy moves. These moves propose rearrangements of the tree 
topology, and need to adjust or resample the associated branch 
lengths. Indeed, traversing tree space was a core challenge  
in developing phylogenetic applications of MCMC. Algorithms 
for efficiently sampling phylogenetic tree space became avail-
able in the late 1990s (Mau & Newton, 1997; Mau et al., 
1999), when Bayesian approaches for phylogenetics began to 
appear. However, recent years have seen the development of 
models to represent more complex evolutionary histories (for 
instance, involving hybridization or recombination), such as  
models involving multiple correlated trees or even phyloge-
netic networks (Kong et al., 2022). Designing good topology  
moves for these more complex structures remains an  
issue.

3.2 High-dimensionality models
Biology is complex, and therefore, models to describe the behav-
ior of biological systems will also tend to be complex. Think 
for a moment about a phylogenetic substitution model, for 
example, the GTR + Γ model. In this model, each nucleotide 
(A,C,T,G) has a different frequency, and the rates of substitu-
tion between all pairs of nucleotides are different. In addition 
different sites of the alignment have different overall rates  
of substitution, modelled by a gamma distribution. Applied 
in a Bayesian context, the model has many parameters: a tree 
topology, the branch lengths on the tree, exchangeability rates 
between nucleotides, equilibrium state frequencies of the nucle-
otides, the parameters of the gamma distribution representing 
among-site rate heterogeneity. For even a small tree with few 
samples, this is many parameters. In addition, some of these 
parameters may be correlated, for instance the branch lengths  
of a timed tree and the average clock rate have an inverse  
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relationship. As a result, many posterior spaces in phyloge-
netic inference are in configurations referred to as “rugged” 
(Brown & Thomson, 2018), or having mixed areas of high prob-
ability (“peaks”) and areas of low probabilities (“valleys”). 
This ruggedness can make it difficult to use MCMC in high- 
dimensional space. As shown on Figure 2, MCMC will gener-
ally refuse to take a step if the proposed solution will be much 
worse than the current one. Thus the inference can end up  
trapped in local optima. New computational methods are 
required to traverse these types of rugged spaces. For example,  
using proposal algorithms which perturb several correlated  
parameters at the same time can make it easier to find alternative 
peaks in the posterior surface. For instance, the up-down opera-
tor in BEAST2 will scale both the branch lengths of the tree, 
and the clock rate simultaneously. In most cases, however, over-
coming these difficulties require the developers to implement  
more efficient MCMC moves, which can be challenging.

In addition to traversal issues, more complex models can also 
suffer from performance issues in the likelihood calculation 
itself. A common problem for lineage diversification models 
such as birth-death processes, for instance, is that we do not 
observe the parts of the phylogeny which have not been sam-
pled. Thus we are missing a large part of the true evolution-
ary process. When calculating the prior probability of the  
phylogeny given the diversification model, we have to account 
for all possible histories in the unobserved parts of the tree. In  
more complex models, this calculation will frequently involve 
numerical integration, which is computationally very expen-
sive and can suffer from numerical instability, meaning that 
the probability value cannot be estimated for some param-
eter configurations. Although this issue can be improved by 
smart implementation of the models (see for instance the work  
done by Scire et al. (2022) on the BEAST2 package BDMM), 
it represents a fundamental limitations for more complex  
processes.

3.3 Inferring dated trees and incorporating fossils
Inferring dated trees is substantially more challenging than  
non-time constrained tree inference. First, phylogenetic char-
acters do not contain information about absolute time, meaning 
rates and times are not fully identifiable. This means the pos-
terior will be sensitive to the time priors, even when we have a  
large amount of sequence data (Rannala & Yang, 2007; Yang 
& Rannala, 2006). Second, it requires the addition of a clock 
model and uses more complex tree models, usually coalescent 
or birth-death process models (Drummond et al., 2006;  
Thorne et al., 1998; Yang & Rannala, 2006). It also requires  
additional time information. In macroevolutionary phylogenies,  
this time information generally comes from the fossil record, 
either in the form of node calibrations, or by directly includ-
ing fossil specimens in the inference (sometimes called tip 
calibrations). Tip-calibrated analyses provide a better repre-
sentation of the uncertainty associated with the fossil record, 
and arguably involve less subjective user choices, such as the 
choice of the distribution used for node calibrations (Ronquist  
et al., 2012). However, including fossils also presents specific  
challenges.

There are two main sources of uncertainty associated with fossils 
that should be considered in Bayesian inference: taxonomic or 

topological uncertainty and fossil age uncertainty. Inference 
under the fossilized birth-death (FBD) process can incor-
porate both phylogenetic and age information (Heath et al., 
2014; Stadler, 2010). And because the model incorporates 
the fossil sampling process explicitly, extinct samples can be  
recovered as tips or sampled ancestors along internal branches. 
This requires special moves that propose changes to the total 
number of nodes in the tree, since each sampled ancestor  
reduces the number of tips by one (Gavryushkina et al., 2014;  
Heath et al., 2014). In terms of data, we have two alternative 
options for informing the position of extinct samples within the 
tree. First, fossils with no character data can be assigned to a  
node using topological constraints. Constraints can be based 
on evidence from previous phylogenetic analyses or descrip-
tive taxonomy. Using this strategy, the position of the  
fossil below the constraint node is sampled using MCMC. The  
precise position of the fossil cannot be inferred without char-
acter data, but the posterior output will reflect the uncertainty  
associated with fossil placement below the constraint node.

Alternatively, if morphological character data is available for  
fossil and extant samples, we can use a ‘total-evidence’ approach. 
Using this strategy, fossil placement can be sampled using 
MCMC and the position of taxa with character data can be 
inferred (Barido-Sottani et al., 2023; Gavryushkina et al., 2017; 
Zhang et al., 2016). This approach is conceptually preferable, 
since it more directly accounts for the phylogenetic uncertainty 
associated with fossils. In practice, however, character data is  
not available or limited for most groups (many discrete mor-
phological matrices contain <100 characters) and, unlike 
DNA, character states can be subjective and uncertain (Wright, 
2019). Continuous character data, which might be more read-
ily available for some groups, can also be used in total-evidence  
analyses (Álvarez-Carretero et al., 2019; Zhang et al., 2024), 
although the use of this data type for phylogenetic inference  
needs to be carefully considered (Varón-González et al., 2020).

Fossil age uncertainty is straightforward to incorporate into 
Bayesian phylogenetic inference using the FBD process. Fossils 
are dated to within a known geological interval and the 
bounds of this age range (i.e., the minimum and maximum 
ages) can be used to inform priors on fossil ages. The age of  
fossils is then sampled during MCMC, therefore accounting  
for this uncertainty. This is preferable to fixing fossil ages to a 
point estimate within the known range of uncertainty, which can  
lead to erroneous parameter estimates (Barido-Sottani et al.,  
2019; Barido-Sottani et al., 2020). In fact, fossil ages can 
be even be estimated using this approach (Barido-Sottani  
et al., 2022; Drummond & Stadler, 2016). Typically, a uniform  
distribution is used to model the age uncertainty associated 
with fossils, between the minimum and maximum possible ages 
based on stratigraphic and radiometric evidence. However, addi-
tional information could be used to construct more informative  
non-uniform priors on fossil ages.

4 Troubleshooting tools and techniques
4.1 How do I know if my MCMC is good?
Before we talk about troubleshooting, we first must figure 
out how we even know if there is anything to troubleshoot. 
We generally consider an MCMC inference to be complete 
when it reaches what is termed convergence. This is typically 
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when a chain has arrived in its stationary distribution, that is,  
when additional sampling no longer affects the distribution of 
state values estimated. In plain language, once you are in the 
stationary distribution, you can do moves and change indi-
vidual parameters, but the overall distribution of values will 
not change. The goal is to find this stationary distribution for 
all the parameters in your analysis. At the very least, users  
should ensure that the parameters primary interest to their 
research questions, along with the prior, likelihood and poste-
rior, have converged satisfactorily. The phase before the chain 
has converged is called burn-in. The samples collected dur-
ing burn-in should be discarded, usually 10–30% of the chain 
length, only keeping the remaining samples for the parameter 
estimation. The burn-in proportion is usually set by default. For 
instance, MrBayes discards the beginning 25% samples as burn-
in. However, it is important to check that these values are adapted 
for each analysis. Setting the burn-in too low will result in biased 
estimates of the posterior distribution, since we include samples 
that are not part of the stationary distribution. Setting the burn-in 
too high is less damaging, but removes useful samples from the 
chain and thus decreases the amount of information given by the  
inference. 

This sounds easy on the surface, but much ink has been spilled 
on appropriate ways of diagnosing whether or not our analy-
sis has converged. Assessing convergence is usually done with 
convergence diagnostics. These are summary statistics that tell 
the researcher about how the MCMC inference, or chain, has 
performed and if it has converged. By far, the most commonly 
used diagnostic in phylogenetics is the Effective Sample Size, 
or ESS, which is calculated for every optimized parameter in 
the analysis separately (as well as for the likelihood, prior, and  
posterior).

When we perform MCMC inference, each time we do a 
move, we draw new values for one or more parameters, then 
accept or reject these values (Figure 2). This is often called an 
MCMC step. Different software implementations and models 
will require different numbers of steps to reach convergence. 
You might think that the number of steps would be equiva-
lent to the number of samples in the posterior sample. But in an  
MCMC chain, different steps will be correlated with one 
another. This is referred to as autocorrelation, and is the result 
of the fact that the parameter values present at step i are used 
to propose the parameter values for step i + 1 (Figure 2). The 
ESS is specific to a posterior sample and to a given param-
eter, and describes the number of uncorrelated (independent) 
samples that would be needed to approximate the posterior 
distribution of a parameter with similar precision to that pos-
terior sample. It is usually defined as ESS = N/τ, in which 
N is the number of generations and τ is the autocorrelation 
time, i.e. the number of steps between independent samples.  
For continuous parameters, τ can be estimated through numeri-
cal methods (Box et al., 2015; Thompson, 2010). Due to auto-
correlation, the ESS is typically smaller than the number  
of steps in the MCMC chain, because the difference between 
two successive samples is usually quite small. If we were 
drawing completely independent samples, the difference 

between sample i and sample i + 1 could be quite large (i.e., an  
independent sample could be drawn from anywhere in param-
eter space, so a series of such samples may explore the dif-
ferent areas of that space more quickly than when done  
step by step by an MCMC chain).

In practice, this means that we assess whether an MCMC 
chain has converged by checking whether the ESS for its 
parameters is above a certain number, meaning the chain has  
become stationary for long enough when we account for 
its autocorrelation. An ESS of over 200 has become the de 
facto standard in biological analyses, though reasons for this  
are largely arbitrary (but see section Convenience). Even-
tually, we would want the ESS for all parameters to be 
above the threshold, but there are some more insights to be  
gained along the way. The ESS of the likelihood and pos-
terior are often treated as the indicator for overall conver-
gence of the analysis, while the individual ESS of each  
optimized parameter is used to diagnose the specific causes 
of convergence issues. When inspecting the ESS along with 
the trace (e.g., in Tracer), they should tell a similar story:  
parameters with ESS above the threshold should show a sta-
tionary trace too, while for parameters with low ESS, the trace 
may not be stationary yet, and may in fact provide insights  
as to the nature of the problem. If the trace looks station-
ary but the ESS is still below the threshold, this may simply 
imply that it needs to run for a bit longer. Together, ESS and  
the trace should highlight which parameters struggle to con-
verge, so that they can be targeted for adjustments. However, 
in practice it is not always that simple, since parameters are  
interdependent and affect each other’s convergence, so this 
needs to be kept in mind when searching for the culprit. It is 
also worth noting that certain types of parameters are by nature  
unlikely to ever converge. A prime example for this would 
be individual branch rates, if the tree is jointly inferred (e.g., 
in an FBD analysis) – since changes in tree topology change  
the position and numbering of branches, the trace output for 
these does not strictly follow the same branch after each step, 
thus there is no expectation of them converging along with  
the rest of the chain. In this case, the ESS of the overall vari-
ance and mean of branch rates is likely a better indicator of  
convergence. 

Another simple way to check for convergence is to run  
several different chains for the same analysis. MCMC chains 
which use the same data, models and priors are guaranteed to 
converge on the same distribution, independent of the starting 
values used. Thus running multiple chains from different 
starting values and checking if the results obtained match is 
a good way to assess if the analysis has converged. In par-
ticular, certain issues can only be detected through the use of  
multiple chains, such as a chain getting stuck in a local optima 
due to the presence of several ‘peaks’ in the posterior (i.e.,  
multimodality). As the ESS is based purely on samples 
present in the chain, it can reach good values even if the 
chain failed to reach the highest peak. Note that posterior  
samples from all chains can be combined together in the final  
result, thus the time spent on the different chains is not wasted.
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In the next section, we will discuss software and tools for  
assessing ESS that were developed for Bayesian phylogenetics, 
as well as other avenues for understanding convergence issues. 
Other tools exist that were not developed with phylogenetics  
in mind, but are nonetheless also very useful, e.g., the R  
package coda (Plummer et al., 2006). Despite these tools, the 
assessment of MCMC convergence remains a challenging task  
in phylogenetic analyses, and future developments are needed to 
resolve some of these challenges. A promising example might 
be the use of L-lag couplings for Markov chains (Biswas et al., 
2019) to estimate mixing and convergence jointly across the  
parameters of the tree (Kelly et al., 2023a; Kelly et al., 2023b).

4.2 Tools of the trade
4.2.1 Tracer. Tracer (Rambaut et al., 2018) is one of the most 
commonly used pieces of software for convergence assess-
ment, due to the ease with which it can be used. A log file of 
sampled solutions from the MCMC can be read in. In its default 

view, a list of parameters in the model and their ESS value 
can be seen, as well as estimates of the value (mean, median,  
and spread) for each parameter sampled. Tracer automati-
cally flags ESS values below a threshold of 200. Although 
this threshold value is somewhat arbitrary, it has been widely 
accepted in current practice as offering a good trade-off between  
convergence and computational cost of the inference.

The trace panel, however, is most useful for debugging conver-
gence issues (see the next section for some common issues). 
The trace window shows the values sampled for each param-
eter over the MCMC run. An example of different traces can 
be seen in Figure 4. Ideally, the trace will appear as what 
is often termed the “hairy caterpillar” (Figure 4, last row).  
This is a sample that is well-converged. This pattern is  
generated by finding a good solution (or a set of good  
solutions) and sampling around that solution. Typically when  
this happens, the run has reached its stationary distribution.

Figure 4. The target distribution is a half-half mixture of two normal distributions, one with mean 0 and standard deviation 
0.5, the other with mean 2 and standard deviation 0.5. This distribution is estimated using MCMC with the sliding move (see  
Figure 3). The starting value is 5.0. The window size (w) is a tuning parameter of the move. For each w value, the left panel shows the trace of 
the MCMC samples, while the right panel shows the histogram of the MCMC samples (discarding the first 20% samples as burn-in). When w 
is too small, the MCMC is doing baby steps and moves slowly to new states, as shown in the top panel. On the other hand, too bold moves 
with large w frequently get rejected and the MCMC is trapped in a state for too long. This can be seen in the middle image, with periods of 
stasis in the chain. In both cases, the algorithm is inefficient and the posterior distribution is not well estimated from the sample. In the last 
row, the inference appears to have converged.
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4.2.2 RWTY. Tracer remains the most used software for  
convergence, but it does not calculate an effective sample size 
for the most important model parameter − the tree itself. The 
ESS of the overall posterior or the ESS of parameters tied 
to the tree, such as the tree height or MRCA ages of specific  
clades, can be used as indirect signs of the (lack of)  
convergence of the phylogeny, however it is preferable to have 
a direct indicator. The R package RWTY (aRe We There Yet; 
Nylander et al., 2008; Warren et al., 2017) calculates an approxi-
mate ESS of the tree topology, which can provide additional 
information on the convergence of the tree. Additional graphi-
cal outputs can be generated in RWTY, such as treespace plots, 
which allow the visualization of how an MCMC chain explored  
parameters during its run.

4.2.3 Convenience. Convenience (Guimarães Fabreti & Höhna, 
2022) is an R package that takes a fundamentally different 
approach to both how to calculate and how to assess ESS than 
RWTY and Tracer. It can produce visual outputs for convergence 
assessments, but also can produce simple text outputs stating if  
a run has converged or not.

ESS is still calculated in convenience. But rather than using 
an arbitrary threshold, such as an ESS of 200, convenience 
calculates a minimum threshold for a good ESS based on 
the standard error of the mean (SEM). The SEM allows a 
researcher to know how much error there is in the estimate of 
the posterior mean, compared to the variance of the posterior  
distribution. For this calculation, the posterior distribution is 
assumed to be shaped like a normal distribution, so the width 
of the 95% probability interval of the distribution is approxi-
mately equivalent to 4δ, with δ being the standard deviation.  
This quantity is the reference used to calculate the thresh-
old. By default, the ESS threshold in convenience is set 
to 625, which corresponds to an SEM equal to 1% of the  
interval width. By contrast, the threshold of 200 set by Tracer 
corresponds to an SEM of 1.77% of the interval width. 
Although higher ESS values are always better from a con-
vergence point of view, they can also come at considerable  
computational cost, particularly for more complex analyses. 
Thus the choice of threshold should be adapted to each situation, 
for instance by using larger thresholds for critical parts of the  
inference and lower thresholds for less important estimates.

Convenience also allows the tree convergence to be estimated, 
by calculating the ESS of splits in the tree. A split represents 
a particular subclade of the tree, which can be either present 
or absent in each posterior sample. By calculating the ESS 
of all splits, we can thus obtain an estimate of the ESS of 
the tree topology. Finally, the reproducibility of an MCMC  
run is also considered by convenience. Two MCMC runs of 
the same analysis can be compared against each other using 
the Kolmogorov–Smirnov (KS) statistical test (Kolmogorov,  
1933; Smirnov, 1939), which tests if two samples were drawn 
from the same underlying distribution. If your two MCMC  
chains do not seem to be drawn from the same distribution, 
then this means your MCMC simulations are not consistently  
finding the same stationary distribution. This is likely due 

to one or both chains not having converged yet. It can also  
be indicative of the presence of multiple alternative possible 
solutions, with each chain finding a separate local optimum.  
Different slices of the same MCMC chain can also be com-
pared against one another using the KS test to assess if  
the chain is in the process of converging.

5 Common issues and proposed resolutions
As we have seen, MCMC analyses are composed of many  
different parts, which can make it difficult to identify the cause 
of problems. In this section, we detail some common issues 
which can affect the convergence of an MCMC inference, or 
even prevent it entirely from starting. An abbreviated overview 
of all the issues and resolutions described below can be found  
in Figure 5. Note that we focus in this article on issues and  
solutions from the perspective of a user of phylogenetic infer-
ence software. However, many issues (such as setups with strong  
correlations, as mentioned earlier) require further development  
work, and thus cannot be implemented by the users alone.

5.1 Inference technical setup
5.1.1 Moves/operators/proposals. If an analysis does not con-
verge well, or takes unreasonably long, it is worth checking the 
operators. Each parameter that is supposed to be estimated by 
the analysis needs to have at least one operator associated to it, 
in order to be optimised. If an operator is missing, that parameter  
will never change from its initial value, which not only means 
it will not converge, but also that other parameters can be  
prevented from converging properly. This issue tends to be 
more frequent in RevBayes, where there is no default operator 
setup proposed by the software and the choice of operators is  
left entirely to the user.

Another possibility is that the weights of the individual opera-
tors may need to be reconsidered (i.e., how often a new value 
should be proposed for the corresponding parameter). In 
some cases, some parameters are mixing well, and only a 
few specific ones are causing problems. In this case, it can 
help to increase the weight of the operators corresponding to  
badly-estimated parameters, so that more moves are being  
proposed each generation for them. Similarly, decreas-
ing the weights of operators corresponding to well-estimated 
parameters will decrease the amount of computational time 
spent on proposals for these parameters, without affecting  
convergence too much.

Alternatively, if changing the weight did not fix the chain’s 
behaviour, we should consider its proposal size (i.e., how far 
from the current parameter value a proposed new value is). 
Many proposals, especially proposals on numerical param-
eters, include a configuration value which affects this size. A 
proposal size that is too small will make convergence of the  
corresponding parameter very slow, even at high operator 
weights (Figure 4, top row), and may even trap the chain on a 
local optimum. If proposal sizes are too large instead, the chain 
may ‘overshoot’ the optimal parameter values or roam too far 
from them to converge properly. Overshooting optimal values 
may also mean that many proposals land on parameters 
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with worse likelihood scores, which means they get rejected  
frequently and the chain experiences periods of stasis and thus 
overall poor mixing (Figure 4, center row). The sampling pat-
tern for that parameter may then also be too ‘coarse’ to properly  
capture the peaks and valleys in the likelihood.

A way to catch issues related to proposal-size is to check the 
final acceptance rates for all operators, as well as the final trace. 
BEAST2 will even offer suggestions for adjusting the pro-
posal sizes based on acceptance rates at the end of the chain. 
Other than that, appropriate proposal sizes are not always 

Figure 5. A flowchart to guide users through the MCMC-debugging process, highlighting key points mentioned in the text, with 
common issues in blue boxes and corresponding resolutions in green. Note that the different types of issues and resolutions within 
the orange box are not meant to be addressed in the order shown, but represent different avenues for investigating an issue. 
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straightforward for users to determine, but the problem can 
be alleviated in two ways: by letting the inference software  
auto-tune them, or by using a combination of proposals oper-
ating on the same parameter, but with varying proposal sizes. 
The latter is particularly helpful if the likelihood surface is  
very heterogeneous, as the chain then has a variety of step-sizes 
available, potentially increasing the likelihood that the appro-
priate one can be proposed. However, auto-tuning should be 
turned off if this strategy is chosen, so the separate proposal  
sizes will not change throughout the chain.

If auto-tuning is turned on (which is the default in BEAST2 
and MrBayes, and optional in RevBayes), proposal sizes of 
moves will periodically be adjusted to guarantee a good accept-
ance ratio (e.g., to match a goal of 0.4). For example, if too 
many of the recently proposed moves were accepted, this might 
indicate that their size was too small (i.e., they may be slowly 
trudging uphill towards an optimum, see Figure 4, top row) and  
it will thus be increased. If too few proposals were accepted, 
this might in turn mean their size was too large (i.e., they shoot 
past optimal values into parts of parameter space with lower  
likelihoods, see Figure 4, center row) and will be decreased.

We generally recommend making use of such tuning features, 
but urge users not to mistake them for a magic solution to all 
proposal-size problems. Instead, one should be cautious not 
to ‘mis-tune’ or ‘over-tune’ the analysis. The main considera-
tions when setting up auto-tuning are how often, and for how 
long to tune. Depending on the implementation, users can spec-
ify during what portion of the chain the parameters are tuned  
(i.e., during a dedicated tuning interval or burn-in phase, 
or throughout the run), and how often the parameters are 
being tuned during that interval. Tuning orients itself on the  
behaviour of the proposals during the chosen tuning intervals. 
Thus, these intervals need to be representative for the rest of 
the chain going forward, if the tuned values should be useful.  
In particular during the early stages of the MCMC (i.e., the burn-
in phase), larger proposal sizes may be favoured as the chain 
moves from parameter values with low likelihood towards the 
optima, whereas smaller sizes might be favoured when explor-
ing the likelihood surface around the optima. This generally 
means that proposals should possibly be re-tuned multiple times, 
to allow for feedback from the new behaviour of the tuned opera-
tor, and suggests that longer phases of tuning are needed for  
chains initialised at naïve starting values, than for those tailored 
to possibly start closer to the optima. However, if tuning inter-
vals are kept too short, the available information might not be 
representative for the operator’s behaviour, resulting in unnec-
essary or inappropriate proposal size changes. Furthermore, 
while continuous tuning throughout the analysis can help 
account for the different requirements far from the optima versus 
close, there is a danger to tune towards the current location of 
the chain, homing in on smaller and smaller proposal sizes and  
thereby ‘trapping’ the chain on a local optimum. We would 
thus prefer to mainly tune during burn-in, and not during 
the main part of the analysis unless there is evidence that it 
is necessary. However, using the aforementioned strategy  
of multiple operators with varying, un-tuned proposal sizes 

might be a more helpful approach in such a case. Note that 
these changes can be integrated when running a new chain or  
when resuming the current one, as proposal configurations do  
not change the posterior distributions.

It can be difficult to identify which parameters exactly are  
causing the problem, since they can affect the mixing of  
others, blurring the picture. In particular, if the tree estimation 
has not converged, this can affect many other parameters. Often 
it is possible to identify the culprits by revisiting how the param-
eters are causally connected in the model. If available, a look 
at a schematic representation of the model might help getting  
more clarity on how different parameters may affect each  
other’s mixing. In BEAST2 or RevBayes, this representation 
can be obtained directly from the software (through BEAUti in 
the case of BEAST2, or by printing the model’s DAG [directed  
acyclic graph] in the case of RevBayes). MrBayes has the ‘show-
model’ command to show the current model, parameters in the 
model, and priors for the parameters. It also has the ‘showmove’ 
command to show the MCMC moves for the parameters.

5.1.2 Starting values. Another problem is the initialisation 
of the MCMC chain at a ‘bad’ position. This means that our 
analysis started at a combination of parameter values that is 
either very far from the true values, or at a combination of  
values that is implausible or hard to compute given our data. As 
a result, the analysis may take much longer to converge (since 
it has to first slowly make its way out of the poorly fitting area 
of parameter space), or may crash altogether (e.g., because no  
likelihood could be calculated for conflicting parameter val-
ues). Ideally, users will have thought well about the possible 
values of all parameters and have set the respective prior distri-
butions to favour the most plausible parameter values. However, 
the initial values are often left as the default (in BEAST2) or 
are picked at random from the prior (in RevBayes), so the chain  
can start in an unfavourable part of parameter space, or at an 
implausible combination of values. For example, we could 
start with some proposed very short branches along with 
a very low mutation rate, which could never explain the  
observed differences between the sequences of taxa. Or the 
starting values for the speciation and extinction rates could be 
implausibly high compared to the root age of the tree and its  
number of taxa.

To combat this, we usually have the option to specify the start-
ing values for each parameter to something we deem reason-
able. It may not always be straightforward to know what those 
values should be for a particular parameter, but beyond trial 
and error, a few standard options have been established. One 
possibility is to start at the expected mean of a prior distribu-
tion, which would be expected to work well as long as the prior  
distribution itself is sensible. Reminding oneself of the param-
eters’ biological meaning can also help to come up with a good 
solution. For example, speciation and extinction rates eventu-
ally just determine how many species we expect to arise and 
die out again over a given time period. Thus, a commonly used 
starting value for speciation rate is λ = ln(nTips/2)/rootAge,  
which gives a simple estimate of net diversification (sometimes 
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called the Kendall-Moran estimate; Baldwin & Sanderson, 
1998), while extinction is set to µ = λ/10. Starting values can 
also be set for non-numerical parameters. Starting trees can 
be provided which may already be closer to the true solution  
(e.g., a quick maximum likelihood tree or a previously- 
published estimate) than a randomly drawn tree sample.  
However, attention has to be paid to the tree not being in  
conflict with other priors or constraints. For instance, the  
starting tree needs to be compatible with additional time infor-
mation such as node calibrations, and with added constraints  
such as subclades (i.e., monophyletic sets of tips).

It is important to remember that starting values do not have to 
be spot-on estimates of where the actual true values lie, because 
after all, the MCMC is expected to go find those. The goal is 
merely to ensure that we have set a feasible combination of  
values for the chain to start from. Doing so does not only  
prevent computational issues (in case of unfeasible parameter 
combinations), but can also speed up the analysis (because we do 
not force the chain to trudge through parameter space that is far  
from the optima anyways, and instead allow it to start explor-
ing feasible solutions instead). Also, it may prevent issues with 
the auto-tuning performed by the software. Since auto-tuning 
usually happens at the beginning of the inference, the behav-
iour of the moves may end up being tuned to suit a different 
part of parameter space than where the chain eventually  
should spend most of its time exploring, as described above. 
Of course, it is always advisable to run your analysis several 
times from different starting positions. This can help ensure 
that the analysis is not biased by its starting position. If running 
the analysis from different starting points leads to strongly 
different outcomes, this may indicate that the model is not  
adequately capturing the process that generated the data and is  
biased by its starting values.

5.1.3 Inference algorithm. A final problem which can happen 
with MCMC is that the inference gets stuck in local optima for 
extended periods, which means not only that reaching conver-
gence will take a very long time, but also that there is a risk of 
assuming the chain has converged when it has not. This issue is 
more frequent when the likelihood surface of the chosen model 
is more complex, and particularly for models where a lot of  
components are correlated (e.g., a multi-species coalescent  
model containing many different phylogenies which need to be 
consistent with each other). One sign that this is occurring is the 
presence of ‘plateaus’ in the trace, where the parameter value 
will oscillate in the same place for a lot of consecutive itera-
tions, before jumping suddenly to a very different place in the 
parameter space. Another sign could be that independent runs  
generate inconsistent MCMC samples, indicating each run  
could potentially be sampling different local optima.

One potential way to resolve this issue is to use an expansion 
of the MCMC algorithm called Metropolis-coupled MCMC 
(MCMCMC or MC³, Altekar et al., 2004). This algorithm relies 
on using multiple chains, weighted by a parameter called the 
‘heat’. One chain (called the cold chain) has a heat of 1, mean-
ing that it behaves like a regular MCMC chain; this is the  
chain that we will use to draw samples from the posterior. The 

other chains have a higher heat (of value < 1), which raises the 
posterior probability to a power, thereby flattening the likelihood  
surface (Geyer, 1992; Gilks & Roberts, 1996). This means that 
heated chains can move more quickly and easily through the 
parameter space, and can reach points of high likelihood that 
the regular chain has not found yet (Whidden & Matsen IV,  
2015). However, as the heated chains do not evaluate the true 
posterior probabilities, we discard samples from such chains. 
Instead, the MCMCMC algorithm will use the heated chains to 
help explore the parameter space, and will periodically switch 
states between the cold chain and the heated chains (in an  
additional MCMC move), allowing the regular chain to ‘jump’  
to new places in parameter space, as long as those new places  
have a higher posterior than the current ones.

MrBayes (Altekar et al., 2004), BEAST2 (Müller & Bouckaert, 
2020) and RevBayes currently support the MCMCMC algo-
rithm, and it can be used along with any model or prior choice. 
MrBayes uses it by default (performing two independent runs 
and one cold chain and three heated chains per run). While 
MCMCMC potentially improves the performance of the infer-
ence, chain switching can mislead convergence assessment 
using regular ESS values (Guimarães Fabreti & Höhna, 2022),  
and poorly chosen temperatures can lead to inefficient mix-
ing and other issues, and should be looked out for (Brown &  
Thomson, 2018).

5.2 Choice of model and priors
Even with all the technical aspects of the analysis set correctly, 
we can get convergence problems and faulty behaviour of 
the parameters. Such issues can either stem from unexpected 
interactions of priors, clashing components of the model, or 
mismatches of the model with the data. It can at first be chal-
lenging to distinguish those. If we do not already have a  
suspicion as to what the culprit might be (e.g., based on the 
trace, peculiarities of the data or model), one way to tell 
whether the issue lies with the analysis setup per se or with 
the pairing of data and model, is to run the MCMC ‘under the 
prior’. This means removing the likelihood from the posterior  
calculation, so that only values from the prior will be sampled 
and none of the data is involved. Thus, any remaining issues 
will be due to problems in the analysis setup, such as con-
flicting or interacting priors – and vice versa, if there are no 
such remaining issues, the problem may lie with the data or 
the model. Running the MCMC inference under the prior is 
useful not only for troubleshooting potential setup issues,  
but also for interpreting the results of the actual analysis. 
The difference between the prior distribution and the full  
posterior gives an estimate of how much of the signal present 
in the posterior sample actually comes from the sequence or 
character data, as opposed to the prior distributions. Note that  
although fossil ages are technically data, the probability of the 
tree under the FBD process given the fossil ages is considered  
part of the prior by BEAST2 and RevBayes. This can impact  
model selection and marginal likelihood estimators, as detailed  
in May and Rothfels (2023).

5.2.1 Priors. The choice of good priors can make a big dif-
ference for the success of the MCMC. Of course, coming up 
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with good priors is not trivial, and generally applicable advice 
is not always available. One difficulty is that priors should 
be clearly separated from the data. In a Bayesian inference, 
the probability of the data is accounted for by the likelihood.  
So, if the priors are also informed by the same data, then 
the information provided by the data ends up being counted 
twice by the inference, which will artificially increase its  
contribution to the posterior. Priors can thus be based on previ-
ous studies or biological knowledge, but not on analyses using the  
current dataset under study.

So how do we set priors? It may be tempting to just follow tuto-
rials or use default priors at first, however, we strongly encour-
age users to think more critically about the implications of the 
prior choice for each individual analysis. While it is true that 
developers often design default settings to be a reasonable start-
ing point for most analyses, they are by no means meant to 
be a one-fits-all solution, and one should not expect them to  
necessarily be an optimal or even good fit for ones own prob-
lem. As an extreme example, the default prior on some param-
eters in BEAST2 is a so-called improper prior, such as 1/X or 
Uniform(0, +∞), as the distribution does not integrate to one 
but to infinity. For example, the prior on the mean clock rate in 
BEAST2 is set to Uniform(0, +∞), because what constitutes 
a reasonable value for the clock rate is extremely dependent  
on both the organism and the timescale of the dataset. Thus 
it is up to the user to select a reasonable prior distribution for  
this parameter. Overall, improper priors are statistically prob-
lematic and should be avoided if possible. In general, your data 
or question may be quite different from what the method devel-
opers had anticipated, and often the behaviour of a model  
with different data and under different parameters is something  
that can only really be started to be explored once a new  
model/use case has been developed.

Thinking more carefully about the priors and their implica-
tions will go hand in hand with a deeper understanding of 
the model itself, which should be an additional encourage-
ment to dive into it. The key is to remember that the prior  
distribution of a parameter represents the probability of those  
values being proposed during the MCMC, and values outside of it 
can never be tried. In particular, this means that long-tailed prior 
shapes, such as lognormal or exponential distributions, are often  
better than uniform distributions, which restrict the range of 
values which can be tried by the inference. Note also that  
priors always influence the results of the inference, and that  
setting very vague priors is not an optimal choice in most cir-
cumstances. For instance, in the example of the clock rate 
prior presented earlier, a prior distribution of Uniform(0, + ∞)  
puts a lot of weight on very high values for that parameter,  
and will thus encourage the inference to try these values. If the 
data is not very informative on this particular parameter, this 
can result in estimated values which are absurdly high from 
a biological point of view, or can lead to convergence issues. 
A better prior would use our understanding of evolutionary  
processes to put more weight on biologically plausible values.

When choosing a prior, we thus need to consider what  
particular parameter values would imply for the data. For 

instance, substitution rates describe how fast mutations happen 
in the sequences and become fixed, and thus how much the  
sequences of the species under consideration could diverge  
over time.

Overall, in order to identify reasonable priors, we can ask the  
following questions:

•    Have the parameters used in our analysis been estimated  
in other contexts or for similar datasets?

•    What priors have similar studies chosen and how  
comparable is their data to ours? Note that these priors 
still need to be critically evaluated, as our understanding 
of plausible parameter values may have changed since  
the previous study.

•    Does the range of parameter values allowed by the 
prior make sense given our data and analysis setup, for 
instance is it consistent with the expected number of  
substitutions in the alignment or the minimal clade ages?

•    Can we do rough calculations to calibrate our prior  
expectations by, e.g., dividing the number of extant spe-
cies by the assumed clade age, to get a rough estimate  
of net diversification?

•    Can we obtain estimates for the parameters from 
sources outside of our dataset, for example using the 
fossil record to get an idea of how much extinction 
our focal clade may have experienced? Note that this 
requires making sure that the parameters chosen actually  
represent the same quantities between models, which 
is not always the case. For instance, extinction rates 
obtained from the fossil record represent a different param-
eter than death rates used in the fossilized birth-death  
process (Silvestro et al., 2018; Stadler et al., 2018).

Although this may sound like a lot of work, it is also impor-
tant to remember that identifying reasonable values for the 
different parameters, finding previous estimates for compari-
son, and evaluating the biological implications of the differ-
ent values will always be needed to interpret the results of 
the analysis. The main difference in a Bayesian inference  
compared to other types of inference is that this work has to be  
performed upfront, rather than after the inference is finished.

It is generally advisable to plot the specified prior distribu-
tions and think about what they imply. Overall, the actual shape 
of the distribution (lognormal, gamma, etc.) is usually less 
important than the range of plausible values covered by the dis-
tribution (the 5% and 95% quantiles). However, the shape of 
the distribution affects the weight given to different parts of 
the range, i.e., whether low values are more likely under the  
prior than high values. Comparing the distributions for  
different values by using the visualization tool in BEAUti or 
plotting them in R is a great way to get a better idea of what is 
happening. It should be noted that simply looking at a curve 
may be misleading. Because the area under a certain section of 
the curve (e.g., a long tail) may still be large, even if the height 
of that section of the curve looks small. Thus, quantifying 
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how much area is covered by the distribution (such as through  
quantiles) is still important. But in the case of node calibra-
tions, even if each calibration is reasonable by itself, their  
combination can restrict the parameter space in unexpected 
ways (Warnock et al., 2015). This brings us back to running 
the analysis under the prior alone, as mentioned initially. This  
type of analysis can help spot situations in which the analy-
sis is not specifying parameter distributions that the researcher  
considers reasonable. The effective prior on a node age in an  
inference will be the product of the prior set by the tree model,  
and of all additional calibration times set for the tree.

Finally, it can happen that information from previous studies 
leads to very different or even conflicting results for plausible 
parameter values in a specific dataset. One possible solution 
is to set the priors to be very uncertain and let the analy-
sis decide which hypothesis is supported by the data, but this 
may not always be possible, and it risks creating convergence  
issues due to using vague priors. A good alternative is to run 
the same analysis using multiple different prior configurations, 
which will show how much the results and conclusions are 
impacted by the prior choices. If different priors yield clearly 
different results, further investigation is needed to determine 
what conclusions, if any, can be drawn from the inference.  
Possible next steps could include running the analysis under 
both sets of priors to test whether either setup is strongly  
biasing the result (and is thus in conflict with the data), or eval-
uating the biological information that informed the priors to 
begin with, and whether either of them is backed up more con-
vincingly. If one (or several) parameters show prior sensitiv-
ity for both sets, this may indicate that there is not enough  
signal in the data to properly infer it, and one should explore 
the possibilities to add data or to simplify the model to avoid 
estimating this parameter, if feasible. If removing a parameter 
is not an option, model testing and adequacy testing could be 
employed to explore the most suitable prior configuration for 
the data, or model averaging could be used to integrate over  
the different priors to see what conclusions are still possible 
despite the lack of signal to inform this parameter. Even when 
there is no conflict in the literature, evaluating the robustness 
of the results when using different prior setups provides impor-
tant information to inform which conclusions can be drawn  
from the analysis. This is especially important if running the 
analysis under the prior shows that the prior has a large influ-
ence on the results (i.e., the posterior distribution obtained with 
the data is very similar to the posterior distribution obtained  
with the prior alone).

5.2.2 Model. When the analysis is set up correctly and priors 
are reasonable, the cause for convergence problems may lie 
with the model itself, or how it relates to the data. It may seem 
daunting to choose between all the different types of mod-
els out there. There are a few pieces of software that can 
help researchers get an idea of plausible models. ClockstaR  
(Duchêne et al., 2014) can be used to choose appropriate 
relaxed clocks for molecular data. EvoPhylo (Simões et al., 
2023) can do a similar selection for morphological data par-
titions. Although model selection can not be used to select 

between alternative birth-death sampling models because fossil 
ages are technically considered as part of the prior (May &  
Rothfels, 2023), integrated tools in the Paleobiology Database 
website can also assist in finding reasonable starting parameters 
for FBD analyses. These tools use established paleontologi-
cal methods for estimating parameters for speciation, extinc-
tion and fossilization rates. Using these sorts of tools can help 
with setting priors that have some support from the established  
literature.

If different data sources are being used for joint analyses, one 
might want to try running the different data separately in order 
to confirm whether they might support incompatible solu-
tions. For example, in a total-evidence analysis, molecular and  
morphological data may each support different tree topologies. 
So when analysed jointly, solutions which could increase the  
likelihood of one type of data will decrease it for the other 
type, and vice versa, thereby making convergence around an  
optimal solution impossible. The same could apply to other 
combinations of data sources, e.g., conflicting molecular  
markers. Running the data for each type/partition separately can 
help a researcher determine if the convergence is poor due to  
methodological issues, or true signal conflict.

Much more fundamentally, the analysis might also just struggle 
to run or converge because the chosen model is not suitable 
for the data at all. Carefully revisiting the model’s assumptions 
and how those should manifest in the data is required to 
judge this, e.g., are there patterns of variation in our data, for 
instance between different groups, which the model needs to be  
able to address? An approach specifically designed to judge 
such model-data mismatches is model adequacy testing. This 
is done by simulating new data sets from the inferred posterior 
distributions, an approach termed posterior predictive simula-
tions (PPS). These simulated data sets are then compared to 
the initial data using summary statistics which capture its rel-
evant characteristics. If the model is inadequate to describe/ 
analyse the variation in the data, that should be revealed through  
significant differences in the summary statistics between the 
data and the posterior simulations. These types of tests exist for 
a variety of phylogenetic models, including substitution models 
(Bollback, 2002; Brown & ElDabaje, 2009; Lewis et al., 2014; 
Nielsen, 2002), tree inference using molecular data (Brown, 
2014; Duchene et al., 2019; Reid et al., 2014) or morphological  
data (Mulvey et al., 2024), continuous and discrete trait evolu-
tion (Blackmon & Demuth, 2014; Huelsenbeck et al., 2003; 
Pennell et al., 2015; Slater & Pennell, 2014), and diversifica-
tion models (Schwery & O’Meara, 2020; Schwery et al., 2023). 
Approachable examples of such adequacy tests can be found 
on the RevBayes website (https://revbayes.github.io/tutori-
als/intro_posterior_prediction/). However, that approach tech-
nically would require posterior estimates from a more or less  
successful MCMC, which would not be available if the analy-
sis keeps crashing, and which would likely be uninformative if 
the MCMC did not converge. A good way to circumvent this 
would be to try and simulate datasets from scratch, based on 
more or less comparable parameters to the empirical data, and 
then compare them using the same summary statistics as one 
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would use in the PPS approach. This would be akin to using  
approximate Bayesian computation (ABC, Sunnåker et al., 
2013). Exploring how the empirical data differs from what is 
expected under the model may allow you to judge the nature  
of the model-data mismatch.

Finally, it might be worth trying to reduce the complexity 
of one’s model. While it is tempting to make full use of the  
levels of complexity modern approaches allow us to model, one 
ought to consider whether there is enough information in the 
data for the model to work with. Just like any statistical test has 
sample size requirements to have the power to detect signifi-
cant differences, these models need the data to have sufficient  
size and structure/heterogeneity to be able to infer parameter 
estimates without too much uncertainty. For example, we may 
want to use a relaxed clock model to account for the possibil-
ity that different parts of our tree evolve at different rates. But 
if we only have one fossil to calibrate our node ages with, or 
the sequences are not substantially variable, the model has  
limited information on which to base any rate differences on 
the tree. As a result, the different branch rates suggested by the  
MCMC will possibly meander around the parameter space  
without any receiving overwhelming support. Using a strict 
clock instead might neglect possible rate heterogeneity, but will 
at least be able to converge on reasonable estimates given the  
limited information available.

5.3 Data quality issues
In general, assembling more data leads to more precise and 
more accurate inferences. For example, previous research has 
shown that total-evidence studies require ∼300 morphologi-
cal characters to obtain reliable estimates of tree topology and 
divergence times in extinct clades (Barido-Sottani et al., 2020). 
Purely from a performance perspective however, it is impor-
tant to note that additional data is not necessarily better for the  
convergence of an MCMC inference. Indeed, adding more data  
comes with added computational costs, and thus can have a net-
negative impact on the performance, especially if the added 
data is very uncertain or conflicts with the rest of the data or 
with the chosen models and priors. For instance, Portik et al. 
(2023) built phylogenies using either a complete alignment of 
nuclear markers, a supersparse matrix of ∼300 genes with large 
amounts of missing data, or the combination of both. They 
found that trees obtained using the combined dataset did not  
significantly differ from the trees obtained using the complete 
alignment alone. One possible avenue for resolving conver-
gence issues is thus to remove genes or partitions which contain  
low amounts of information.

Similarly, increasing the number of extant or fossil samples 
in the tree leads to an exponential increase in the number of  
possible topologies, and so represents an important drag on  
performance. We typically select a subsample of extant taxa 
to be included in our analyses. We may assume extant taxa 
are sampled uniformly at random; but in many cases, they 
are sampled sparsely by keeping only one living representa-
tive per genus or subclade. The diversified sampling scheme 
has been implemented in the FBD model (Zhang et al., 2016) to  
accommodate such a case.

As mentioned above, there are two options for incorporating 
fossils directly in the phylogeny using the FBD process: assign-
ing fossils to nodes via constraints or using morphological 
data in a total-evidence framework. Both approaches to posi-
tioning fossils present a challenge for MCMC inference, since 
even with character data, the topological uncertainty associ-
ated with fossils is typically large. And when there is a large  
amount of phylogenetic uncertainty, the posterior can span a 
broader flatter area, taking more effort to sample and making 
it harder to reach convergence. The use of very broad  
constraints (e.g., assigning all fossils to the root) in particu-
lar can lead to convergence issues, since there is insufficient  
information to inform the topology or other model parameters.  
To improve convergence, researchers could use the most precise 
constraints available, i.e., less inclusive nodes or lower taxonomic 
divisions, such as genera. In addition, it is possible to set a 
backbone extant tree, which will fix or strongly restrict the 
position of extant samples in the phylogeny, leaving only 
the positions of the fossils and the branch lengths to be  
estimated. That said, we emphasise that constraints should be 
implemented with extreme caution, as errors in constraints can 
lead to inaccurate results (Barido-Sottani et al., 2023). Having 
character data for fossils can help improve convergence, as 
it provides direct information about the topology. If conver-
gence issues persist, provided additional taxonomic information 
is available, both approaches to fossil placement (the use of 
character data + constraints) could be combined. If additional 
taxonomic information or morphological data is unavailable,  
researchers might need to reconsider the scope of their analyses  
and the application of the FBD process to the data.

In addition to extant taxa, fossils are also usually sampled 
non-uniformly, with abundant fossils in some strata but rare 
in others. The FBD model can also take this into account by 
allowing the sampling rate of fossils to vary through time  
(Gavryushkina et al., 2014; Zhang et al., 2016). To increase the  
biological realism of the FBD process, researchers might be 
tempted to incorporate variation in the sampling or diversifica-
tion processes. This leads to an increase in the number of free 
parameters and another trade-off between model complexity 
and data availability that must be considered. Increasing the 
number of fossils will improve parameter estimation, leading 
to more accurate and precise estimates of the FBD model 
parameters, as well as divergence times and topology (pro-
vided the model is not strongly violated). However, users 
should bear in mind that adding fossils also increases overall 
tree size − each fossil is a tip or potential sampled ancestor,  
whose position must be sampled using MCMC.

This means that although fossils do not typically burden the  
computation through the addition of character data, which would 
increase the cost of calculating the likelihood, they increase 
the tree space, which will take longer to sample using MCMC. 
For many broader clades (e.g., mammals, animals, plants), 
including all fossil occurrences, while desirable, is not feasi-
ble. Presently, the maximum tree size that could reasonably  
be inferred using the FBD process is around 500 samples. One 
approach to get around this for large clades, or datasets with 
large numbers of fossil occurrences, is to randomly subsample 
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the fossil data (O’Reilly & Donoghue, 2020). This allows us 
to obtain a more manageable dataset without violating the  
sampling process assumptions.

Finally, if age uncertainty is substantial for many or all  
fossils in your analysis, the MCMC might also take longer 
to converge. However, compared to analyses that used fixed  
fossil ages, Barido-Sottani et al. (2019) showed using simula-
tions, that incorporating fossil age uncertainty does not make 
the MCMC inference less efficient, i.e., more iterations are not  
always required to reach convergence, at least for data sets typi-
cal of Cenozoic mammals. This is probably because the use of 
fixed fossil ages introduces conflict into the tree space, leading to  
less efficient mixing.

5.4 How long should I run my analysis before giving up?
Some analyses take a long time to converge because it is 
hard to find the optimal values in a large parameter space, or 
because several local optima exist, and sometimes it takes a 
long time because a lot of uncertainty exists around the opti-
mal values. Visually inspecting the parameter traces can give  
indications for this. Are they stabilising around certain values, 
still showing a trend into a certain direction, or just wildly  
meandering around? Trends in the trace can indicate that the 
MCMC is still searching for optimal values and just requires 
more time to find them (or perhaps needs to be restarted 
with starting values further in the suggested direction). But  
continuously rising or declining parameter values can also be  
pathological behaviour, suggesting misspecified priors or 
overly strict constraints in related parameters. Over-tuning 
of moves can also lead to such erratic behaviour, e.g., if the  
step-size for some parameters was tuned to be overly short or 
long. Wildly meandering traces could again be an indication of 
the data not containing enough information for those parameters 
to be identifiable, or step-sizes to be too long to allow it  
to settle around the optimal value.

As mentioned above, a behavior researchers sometimes observe 
is that an MCMC will appear to stabilize on a set of values, then 
jump to a completely different likelihood. This can be either 
an improvement (finding better values) or worse. This can hap-
pen because the analysis was previously stuck in a local opti-
mum. That is, a region of parameter space that was good, but 
not the best in treespace. Thus, exploring this new optimum  
further is warranted. Or it may be that making a change to one 
parameter, such as the tree, causes a jump to a worse parameter 
space for other model parameters. In either event, this raises 
the question of how we can be sure that convergence has been 
achieved, and that the chain is not going to suddenly change 
further. Running multiple MCMC chains is an advisable way 
to discern between these two scenarios. Many software pack-
ages default to using two independent runs. Some, such as  
RevBayes and MrBayes, allow more to be used. Two to four 
runs are common in published analyses. Depending on the  
software used, each run either contains a single MCMC  
chain (such as BEAST2) or multiple chains (e.g., MrBayes 
uses MCMCMC by default which executes one cold chain  
and three heated chains per run).

Overall, the number of steps required to achieve convergence 
is difficult to estimate, as it will depend on all the components 
of the analysis, including the specific software used. Search-
ing the literature for similar analyses, both in terms of data-
set size and of models used, can provide a reasonable order 
of magnitude for the number of steps needed. The original  
publications of the specific model or package used, if avail-
able, will also provide estimates for what the original authors 
believed was a reasonable dataset size. Importantly, inference 
software all integrate a checkpointing mechanism, so analyses 
which have not converged can be resumed without losing 
the work already done. Thus it is not an issue if the initial 
number of steps is too low. Running several different chains with  
the same analysis can also be helpful in assessing how far 
the chain is from convergence. If the posterior distributions 
obtained by the different chains are largely mismatched,  
then convergence is likely still very far.

It is not uncommon for users of MCMC inferences to be aghast 
at the required run time. This is particularly the case when 
analyses are set up to incorporate too many different factors. 
Thus, minimizing the complexity of the setup from the start 
is generally a good idea. Ideally, we would want our analysis 
to be simple enough to be tractable, but complex enough to  
capture the relevant aspects of the data to answer our question.  
Unfortunately, the complexity that strikes that balance is often 
hard to determine a priori (or may not even exist for some 
combinations of question and data). While both gradually 
simplifying an overly complex model or gradually adding  
complexity to an overly simple model should be feasible  
strategies, we feel that erring on the side of simplicity may be 
more advisable. A successfully completed analysis that ends 
up being overly simplistic provides more information on how to  
improve it than an overly complex one that fails to run in the 
first place. Preliminary model testing, such as determining the 
most suitable substitution model using jModelTest (Darriba  
et al., 2012; Posada & Crandall, 1998; Posada, 2008), can help  
us narrow down an appropriate range of complexity to start at.

An important contributor to analysis complexity is the number 
of partitions, so it is good to consider whether they are all 
needed, and if some of them can share substitution or clock 
models. In particular, if you notice in the trace that param-
eters associated with some partitions are purely driven by the 
prior, then the data is likely over-partitioned. Similarly, using 
uncorrelated relaxed clock models increases the number of  
parameters by a large amount, as each branch of the tree is then 
associated with its own clock rate. If the dataset contains little 
time information, then there will be little signal in the data 
to estimate these rates, which is likely to lead to convergence 
issues. Luckily, there exist several tools to help determine  
what number of partitions may be best for a given dataset. For 
molecular data, the software package PartitionFinder (Lanfear 
et al., 2012; Lanfear et al., 2017) can similarly be used to find 
partitions and test for the best substitution models for them. 
Its output files can be used as input for the aforementioned  
ClockStaR (Duchêne et al., 2014), to further determine which  
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partitions require different clock models. We have already men-
tioned how EvoPhylo (Simões et al., 2023) can be used to  
partition morphological character data for clock models. There 
are a number of approaches to partitioning morphological data 
(Casali et al., 2023; Clarke & Middleton, 2008; Rosa et al., 
2019). However, conventional approaches used to select among  
partition schemes for substitution models cannot be used if 
the size of the Q matrix varies across partition schemes. An 
alternative approach in these circumstances is to use model 
adequacy (Mulvey et al., 2024). See also Casali et al. (2023) 
and Khakurel et al. (2024) for further details on the topic of  
partitions.

Beyond partitions, model adequacy testing (e.g., using posterior 
predictive simulations, PPS, as previously described in  
section 5.2.2) can also tell us whether our models are of 
appropriate complexity for the data. If the complexity of the 
model does not match that of the data, the differences in the  
summary statistics between the data and the posterior simu-
lations should show that. However, as mentioned above, 
unlike preliminary model testing, PPS approaches come into  
play after the main analysis, as they rely on having the  
successfully inferred posterior distributions. Thus, starting 
with a level of complexity that prevents successful com-
pletion of an MCMC run will prevent us from using this  
approach.

Finally, note that using informative priors helps reduce the 
complexity of the analysis, by reducing the size of the param-
eter space that needs to be explored by the inference. This 
is especially true for parameters for which there is little  
signal in the data, such as the clock rate in an analysis with  
little time calibration information, or the extinction rate in an  
analysis with only extant species. For these parameters many  
different values will result in very similar posterior densities,  
so the inference can spend a large amount of time exploring a  
very wide plausible range of values. In this case constraining  
the values using fairly strict priors will ensure that the inference 
converges more quickly.

6 Good places to look for help
In addition to the guidance provided in this document, many 
software-specific resources can help in diagnosing and fix-
ing misbehaving phylogenetic inferences. Bayesian inference 
frameworks are generally associated with a manual, some tutori-
als and help repositories which provide guidance on frequently 
used analyses. Specifically, users can look at the built-in help 
messages in MrBayes, the Taming the BEAST website (https://
taming-the-beast.org) for BEAST2 or the RevBayes website 
(https://revbayes.github.io/tutorials/) for RevBayes. In particu-
lar, the RevBayes tutorial associated with this article (https://
revbayes.github.io/tutorials/mcmc_troubleshooting/) illustrates 
many of the issues introduced here, and presents troubleshoot-
ing advice targeted to the specific characteristics of the RevBayes  
framework.

For more detailed and targeted help, forums such as the 
BEAST user group (https://groups.google.com/g/beast-users) 

or the RevBayes user forum (https://groups.google.com/g/
revbayes-users) are also available. Making good use of search 
engines can usually solve most common problems. If the prob-
lem appears to be due to a bug in the software (for instance, 
the inference crashes or returns non-sensical results), filing 
an issue on the Github repository is the best way to report it.  
Reporting an issue automatically alerts all developers, and 
makes the problem visible to other affected users. Note that for  
BEAST2, each package has a separate repository, so if the  
problem appears tied to a specific package the issue should be  
filed on the package repository rather than the general BEAST2 
one. Before opening a new issue, you should make sure that 
the problem has not been reported already by looking through 
the list of open issues. As a last resort, developers can be con-
tacted directly, although we recommend exploring the above  
resources first.

Several rules should be kept in mind when requesting help on 
forums or from tool developers and when filing issues. First, 
it is generally good to assume that any would-be helper will 
need to run the analysis themselves in order to identify the 
issue. Thus, all data, configuration and code files required 
to reproduce the problem should be included in the help  
request. The full error message or problematic output should 
also be included, so helpers can verify that they have cor-
rectly reproduced the issue. If possible, simplifying the analysis 
by removing elements which do not trigger the issue, or  
comparing the problematic analysis to a similar analysis which 
worked, will also be very helpful to track down a problem.  
Finally, detailed information on the computer configuration 
used (operating system type and version, software version,  
compiler version if the software was compiled manually, 
whether the analysis was run on a local machine or computer  
cluster) should be provided, particularly when the analysis  
crashes or fails to start.
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I appreciate the opportunity to review this manuscript. In this work, the authors provide detailed 
instructions and guidance on how to better perform Bayesian phylogenetic inference using 
Markov chain Monte Carlo (MCMC). I really enjoyed how exhaustively (in a good way!) the authors 
explored the topic, providing very useful tips for both beginners and experts in Bayesian analyses, 
while keeping the explanations clear and easy to understand. 
 
I only have a few minor comments, listed below, but I want to highlight that these are merely 
suggestions, and the authors are free to incorporate them or not. 
 

Page 2: I would suggest including “RevBayes” in the keywords as well.1. 
Page 4: “The algorithm for MCMC sampling most frequently employed in phylogenetic studies is 
known as the Metropolis-Hastings (MH) algorithm (Figure 2), though others exist.”. I recommend 
mentioning other algorithms and stating—either here or in Section 2.1.5, wherever it flows 
better—why MH is the most commonly used algorithm in phylogenetics compared to 
alternatives, like Gibbs sampling.

2. 

Page 6: Section 2.1.5 – see comment 2 above.3. 
Page 8: Section 2.2.2 – in this section you present the three softwares (BEAST2, RevBayes, 
and MrBayes). It might be helpful to include a more explicit comparison between them, 
discussing their advantages or why one might prefer one over the others. For instance, 
RevBayes is highly flexible and powerful, but it requires some scripting (although there are 
many tutorials available to help users).

4. 

Page 16: Section 5.1.3 – “…poorly chosen temperatures can lead to inefficient mixing and other 
issues, and should be looked out for (Brown & Thomson, 2018).” I think it is worth briefly 
mentioning other potential issues might be useful since MCMCMC is MrBayes’ default (and 
widely used).

5. 

Page 16 – 18: Section 5.2.1– Consider defining “hyperprior” as well. The user may encounter 
this term when running their analyses, so providing a brief definition, along with advice and 
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explanations on why hyperpriors are used in hierarchical models, could be beneficial.
Not necessary for understanding the text (it’s already super clear), but it would be nice to 
include a figure illustrating how an informative prior can narrow down the parameter space 
compared to a vague, uninformative prior.
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Summary: 
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phylogenetic analysis using softwares that implement Bayesian frameworks, namely MrBayes, 
RevBayes, and BEAST2. The authors focus on Markov chain Monte Carlo (MCMC) that is used in 
Bayesian phylogenetic inference, and present how to diagnose some common problems and how 
to troubleshoot them, how to fine-tune parameters for to achieve convergence, and unique 
challenges when fossil information is incorporated. Overall, the manuscript is in a great shape, 
very well explained without using unnecessary jargons. I believe this manuscript is well-suited for 
introductory read for understanding MCMC in Bayesian phylogenetic inference to general 
audience. Below, I tried to point out any place that can be clarified where a novice to Bayesian 
phylogenetics (or phylogenetics in general) can possibly get confused. 
 
Comments: 
[1] MCMC: Markov Chain Monte Carlo → Markov chain Monte Carlo, unless intended. 
[2] Keywords: May be include RevBayes as well? 
[3] Abstract: (1) It would be more accurate to say that “estimating a phylogenetic tree involves 
evaluating many possible hypotheses”, instead of solutions? If the authors meant parameter 
estimates by the `solutions', it should be clarified. 
[4] Introduction to MCMC Paragraph 1: If possible, providing some numbers to demonstrate the 
vastly large number of possible topologies for given number of taxa n would help readers to 
admit that it is not feasible to evaluate all possible topologies (even when n is not large). For 
example, there are < 34 million topologies when n = 10 (Degnan and Salter, 2005, Evolution, 59(1), 
p.34). 
[5] Introduction to MCMC P3: (1) Try to avoid begin a sentence with an abbreviation (i.e., ML, 
sentence 2). (2) Plus, it would be good idea to provide some references of the mathematical 
techniques in sentence 2. (3) Also, the concept of prior distribution is briefly introduced here, and 
it would be nice to direct reader that the concept is described in more detail in the coming section 
(i.e., 2.1.2?.) 
[6] Introduction to MCMC P4: (1) Please mention some examples (or references) of MCMC 
sampling algorithms other than MH. (2) The authors mention that the one or more model 
parameters are perturbed, like making a number a little bigger. It would be clearer if stated as “a 
value of the parameter is increased''? (3) The connection between Monte Carlo and pseudorandom 
parameter perturbation is not obvious. (4) The concept of ‘parent solution’ should have been 
introduced, possibly when a ‘starting set of values’ was introduced in the beginning of this 
paragraph? 
[7] Introduction to MCMC P5: Provide reference for the original MCMC in early 1950s? 
[8] Section 2.1: I like “The Bayesics.” Just a suggestion, but unless intended, how about listing the 
three quantities in the order of apparance in the text (i.e., the likelihood, the prior, and the 
marginal probability)? 
[9] Figure 1: The cartoon illustration of Bayes’ theorem looks great. (1) Just make sure to keep the 
capitalization consistent (Bayes’ theorem vs. Bayes Theorem (in text)). (2) It would be more helpful 
if both top and bottom (i.e., not the second panel) are mentioned in the bolded portion of the 
caption. (3) Mention the asterisk (�) represents new parameter values in the caption. (3) I think 
using either one of Hastings ratio or the posterior odds ratio in the figure itself would remove 
unnecessary confusion, and mention that both refer to the same thing in the caption. 
[10] Section 2.1.1 P1: ML for maximum likelihood is already introduced previously. No need to 
redo it here. 
[11] Section 2.1.2 P1: (1)Use ML since it has been introduced previously. (2) “...than one that is very 
short → low?” 
[12] Section 2.1.4 P2: Provide reference for reversible MCMC. Possibly provide an example for its 
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application (e.g., phylogenetic network inference?). 
[13] Section 2.1.5 P2: There is no section called Introduction, but Introduction to MCMC. 
[14] Figure 2: I am not sure it it is necessary to include both flowchart and pseudocode. I feel like 
they are redundant and either one of them should be enough to explain MH. It is up to the 
authors to choose which one. Furthermore, in the flowchart, it would be more clear to say that the 
changes that decrease the posterior is accepted at probability of R, instead of vague ’Occasionally’. 
In pseudocode, possibly add a line somewhere that explains the variable j. 
[15] Section 2.2.1 P1: (1) The definition of unrooted trees should be more explicit by including the 
concept of lack of evolutionary directionality (i.e., unable to identify the ancestor–descent 
relationship between the nodes). (2) It would also be important to specify the trees where branch 
lengths represent genetic distance are dated only if the constant molecular clock assumption is 
met. 
[16] Section 2.2.1 P2: (1) Could you define outgroup samples in simple terms? (2) May be use the 
term ‘ingroup’ instead of “main clade”, because the main clade can be a portion of ingroup taxa. 
[17] Section 2.2.3 P1: (1) Are the terms 'moves' and 'operators' synonyms? They are being used 
interchangeably. If so, it might be a good idea to state that they are the same thing upfront (i.e., 
move the second last sentence to the top) and stick with one of them throughout the section. (2) I 
don’t think “Scaling move” is not explained in the text at this point, or direct readers to Figure 3. 
[18] Section 2.2.3 P2: The last sentence of this paragraph that begins with “This is also the 
reason...” seems to be very important for the readers when comparing results from different 
implementations. Could you add a couple sentences with an example? 
[19] Section 2.2.3 P3: Two abbreviations STX and SPR were never defined in text. Also, it would be 
useful to direct readers to some literature where the details of these tree moves are explained. 
[20] Section 2.2.3 P4: Please explain what it means by “satisfying” results. This may lead to the 
subjectivity issue. 
[21] Figure 3: (1) Please explicitly define, at least in caption, the notations used in the figure: a, s, d, 
etc., in scaling and sliding moves, for example. U for Uniform distribution? (2) I thought subtree 
exchange moves swaps the two points in two different branches in the tree (Vaughan et al,2014) 
[Ref 1]. Currently, it looks like as if two leaves, blue and orange, are swapped and no branch plays 
a role in this move. Is this what STX really does? Otherwise, the graphical representation may be 
misleading and confusing. Similar issue in SPR move. 
[22] Section 3: “Posterior values” → "posterior probabilities" for a set of parameter values? 
[23] Section 3.1 P1: Refer to Figure 3 when explaining the moves involving numerical change. 
[24] Section 3.1 P2: (1) “networks” → phylogenetic networks; It would be good idea to define 
phylogenetic networks or provide citations where the networks are defined and distinction 
between the trees and networks (e.g., Kong S, Et al, 2022 [Ref2] In the last sentence, it might be 
more accurate to say ‘topology moves’ rather than “tree moves” since the concept of networks is 
introduced. 
[25] Section 3.2 P1: I feel like the first sentence (“Biology is complex...”) is repeating what has been 
said previously. 
[26] Section 3.3: This section is very clear and informative. Beautifully written! 
[27] Section 4.1 P1: While the proportion of burn-in might not (or might) directly influence MCMC 
inference result (particularly if ran long enough), could you elaborate on the consequences of 
setting the proportion of burn-in either too small or large? For starters, setting this value may 
seem arbitrary and difficult to decide. 
[28] Section 4.3 P1: May be I missed, what do you mean by the autocorrelation time τ? How is it 
measured? 
[29] Figure 4: The description of left and right panels are well explained in the caption. However, it 
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would be great what the different rows represent is described. (i.e., top row being not coverged 
vs. bottom row being the converged “hairy caterpillar”? 
[30] Section 5.1.1 P4: The term “acceptance ratios” was used. Is this synonymous to “acceptance 
proportion” mentioned in section 2? If so, please mention it or keep these terms consistent. 
[31] Section 5.1.1 P7: The abbreviation “DAG” is introduced, but never used again in the 
manuscript. May be unnecessary. 
[32] Section 5.2.2 P2: “...help a researcher determine” → ‘...help a researcher to determine’? 
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Is the rationale for developing the new method (or application) clearly explained?
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Is the description of the method technically sound?
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Are sufficient details provided to allow replication of the method development and its use 
by others?
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If any results are presented, are all the source data underlying the results available to 
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Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
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Thank you very much for the review and the comments! Please find our detailed response 
(bold text) below.

MCMC: Markov Chain Monte Carlo → Markov chain Monte Carlo, unless intended. - 1. 
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Fixed.
Keywords: May be include RevBayes as well? -  Fixed.2. 
Abstract: (1) It would be more accurate to say that “estimating a phylogenetic tree 
involves evaluating many possible hypotheses”, instead of solutions? If the authors 
meant parameter estimates by the ‘solutions’, it should be clarified. -  We have 
clarified this sentence.

3. 

Introduction to MCMC Paragraph 1: If possible, providing some numbers to 
demonstrate the vastly large number of possible topologies for given number of taxa 
n would help readers to admit that it is not feasible to evaluate all possible topologies 
(even when n is not large). For example, there are > 34 million topologies when n = 10 
(Degnan and Salter, 2005, Evolution, 59(1), p.34). -  We have added the suggested 
example.

4. 

Introduction to MCMC P3: (1) Try to avoid begin a sentence with an abbreviation (i.e., 
ML, sentence 2). -  Fixed. 
(2) Plus, it would be good idea to provide some references of the mathematical 
techniques in sentence 2. - Added. 
(3) Also, the concept of prior distribution is briefly introduced here, and it would be 
nice to direct reader that the concept is described in more detail in the coming 
section (i.e., 2.1.2?.) -  As suggested, we now mention that priors are discussed in 
details in the following sections.

5. 

Introduction to MCMC P4: (1) Please mention some examples (or references) of 
MCMC sampling algorithms other than MH. -  We have added information on slice 
sampling in this paragraph. As suggested by another reviewer, we also now give 
examples of alternatives to MCMC in the beginning of the section. 
(2) The authors mention that the one or more model parameters are perturbed, like 
making a number a little bigger. It would be clearer if stated as “a value of the 
parameter is increased”? -  We have edited as suggested. 
(3) The connection between Monte Carlo and pseudorandom parameter perturbation 
is not obvious. -  We have edited this part to clarify the connection. 
(4) The concept of ‘parent solution’ should have been introduced, possibly when a 
‘starting set of values’ was introduced in the beginning of this paragraph? -  As 
suggested by another reviewer, we replaced all mentions of ’parent solution’ by 
’current solution’, which we hope makes this part clearer.

6. 

Introduction to MCMC P5: Provide reference for the original MCMC in early 1950s? -  
We have added this reference.

7. 

Section 2.1: I like “The Bayesics.” Just a suggestion, but unless intended, how about 
listing the three quantities in the order of appearance in the text (i.e., the likelihood, 
the prior, and the marginal probability)?  - The order of quantities has been 
changed as suggested.

8. 

Figure 1: The cartoon illustration of Bayes’ theorem looks great. (1) Just make sure to 
keep the capitalization consistent (Bayes’ theorem vs. Bayes Theorem (in text)). -  The 
text now consistently uses Bayes’ theorem. 
(2) It would be more helpful if both top and bottom (i.e., not the second panel) are 
mentioned in the bolded portion of the caption. -  We have added a global title for 
the figure in the caption. 
(3) Mention the asterisk (*) represents new parameter values in the caption. -  Added. 

9. 
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(4) I think using either one of Hastings ratio or the posterior odds ratio in the figure 
itself would remove unnecessary confusion, and mention that both refer to the same 
thing in the caption. -  We have removed the mention of posterior odds ratio from 
the figure.
Section 2.1.1 P1: ML for maximum likelihood is already introduced previously. No 
need to redo it here. -  Fixed.

10. 

Section 2.1.2 P1: (1)Use ML since it has been introduced previously. (2) “...than one 
that is very short → low?” -  Fixed.

11. 

Section 2.1.4 P2: Provide reference for reversible MCMC. Possibly provide an example 
for its application (e.g., phylogenetic network inference?). -  We have added a 
reference and an example of application to the selection of substitution models.

12. 

Section 2.1.5 P2: There is no section called Introduction, but Introduction to MCMC. - 
Fixed.

13. 

Figure 2: I am not sure it it is necessary to include both flowchart and pseudocode. I 
feel like they are redundant and either one of them should be enough to explain MH. 
It is up to the authors to choose which one. Furthermore, in the flowchart, it would be 
more clear to say that the changes that decrease the posterior is accepted at 
probability of R, instead of vague ’Occasionally’. In pseudocode, possibly add a line 
somewhere that explains the variable j. -  Our intention is that the flowchart 
presents the principle of the algorithm, whereas the pseudocode includes 
the technical details of the calculations performed at each step. As a result, we 
do not feel that these two parts are redundant and have chosen to leave them 
both in the figure. We now include some details on the variables in the caption.

14. 

Section 2.2.1 P1: (1) The definition of unrooted trees should be more explicit by 
including the concept of lack of evolutionary directionality (i.e., unable to identify the 
ancestor–descent relationship between the nodes). -  As suggested, we have added 
this information about unrooted trees. 
(2) It would also be important to specify the trees where branch lengths represent 
genetic distance are dated only if the constant molecular clock assumption is met. - 
 Here we define dated trees as trees with branch lengths in terms of time, so 
genetic distance trees are undated by definition.

15. 

Section 2.2.1 P2: (1) Could you define outgroup samples in simple terms? -  We have 
added a definition and some examples for outgroup samples. 
(2) Maybe use the term ‘ingroup’ instead of “main clade”, because the main clade can 
be a portion of ingroup taxa. -  We have removed the references to the “main 
clade” from this section.

16. 

Section 2.2.3 P1: (1) Are the terms ’moves’ and ’operators’ synonyms? They are being 
used interchangeably. If so, it might be a good idea to state that they are the same 
thing upfront (i.e., move the second last sentence to the top) and stick with one of 
them throughout the section.  - Yes, the terms “moves”, “operators” and 
“proposals” generally refer to the same components, but are used in different 
software communities. We have edited the text to make this clearer. 
(2) I don’t think “Scaling move” is not explained in the text at this point, or direct 
readers to Figure 3. -  This reference to scaling moves has been removed.

17. 

Section 2.2.3 P2: The last sentence of this paragraph that begins with “This is also the 
reason...” seems to be very important for the readers when comparing results from 
different implementations. Could you add a couple sentences with an example? -  We 
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have added more details on why numbers of iterations cannot be directly 
compared between implementations.
Section 2.2.3 P3: Two abbreviations STX and SPR were never defined in text. Also, it 
would be useful to direct readers to some literature where the details of these tree 
moves are explained. -  The abbreviations are now spelled out in the text. We 
have also added a reference to the original description of these moves in the 
caption to Figure 3.

19. 

Section 2.2.3 P4: Please explain what it means by “satisfying” results. This may lead to 
the subjectivity issue. -  We have added more details in this sentence.

20. 

Figure 3: (1) Please explicitly define, at least in caption, the notations used in the 
figure: a, s, d, etc., in scaling and sliding moves, for example. U for Uniform 
distribution? -  We have added these definitions in the caption. 
(2) I thought subtree exchange moves swaps the two points in two different branches 
in the tree (Vaughan et al,2014) [Ref 1]. Currently, it looks like as if two leaves, blue 
and orange, are swapped and no branch plays a role in this move. Is this what STX 
really does? Otherwise, the graphical representation may be misleading and 
confusing. Similar issue in SPR move. -  The coloured triangles were intended to 
represent subclades with any number of branches and leaves, rather than just 
leaves alone. We now make this clear in the figure caption.

21. 

Section 3: “Posterior values” → ”posterior probabilities” for a set of parameter values? 
-  Fixed.

22. 

Section 3.1 P1: Refer to Figure 3 when explaining the moves involving numerical 
change. -  Added.

23. 

Section 3.1 P2: (1) “networks” → phylogenetic networks; It would be good idea to 
define phylogenetic networks or provide citations where the networks are defined and 
distinction between the trees and networks (e.g., Kong S, Et al, 2022 [Ref2]) -  We have 
edited as suggested and added the reference. 
(2) In the last sentence, it might be more accurate to say ‘topology moves’ rather than 
“tree moves” since the concept of networks is introduced. -  Fixed.

24. 

Section 3.2 P1: I feel like the first sentence (“Biology is complex...”) is repeating what 
has been said previously. -  We have edited this section to remove the repetition.

25. 

Section 3.3: This section is very clear and informative. Beautifully written! - Thank you 
!

26. 

Section 4.1 P1: While the proportion of burn-in might not (or might) directly influence 
MCMC inference result (particularly if ran long enough), could you elaborate on the 
consequences of setting the proportion of burn-in either too small or large? For 
starters, setting this value may seem arbitrary and difficult to decide. - We have 
added some details in this section.

27. 

Section 4.3 P1: Maybe I missed, what do you mean by the autocorrelation time τ? 
How is it measured? -  We have added a definition of τ and information on how it 
is calculated.

28. 

Figure 4: The description of left and right panels are well explained in the caption. 
However, it would be great what the different rows represent is described. (i.e., top 
row being not converged vs. bottom row being the converged “hairy caterpillar”)  - 
We have expanded the caption to Figure 4 to better describe the different 
scenarios.

29. 

Section 5.1.1 P4: The term “acceptance ratios” was used. Is this synonymous to 30. 
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“acceptance proportion” mentioned in section 2? If so, please mention it or keep 
these terms consistent. -  We have changed the word ratio to rate, and we now 
clarify that acceptance proportion and acceptance ratio are used 
interchangeably in the literature.
Section 5.1.1 P7: The abbreviation “DAG” is introduced, but never used again in the 
manuscript. May be unnecessary. - We have chosen to keep the abbreviation as it 
is used frequently in other articles discussing RevBayes.

31. 

Section 5.2.2 P2: “...help a researcher determine” → ‘...help a researcher to 
determine’? -  Fixed.

32. 

 

Competing Interests: No competing interests were disclosed.

Reviewer Report 12 March 2024

https://doi.org/10.21956/openreseurope.18012.r37734

© 2024 Clarté G. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Grégoire Clarté  
University of Helsinki, Helsinki, Finland 

This paper summarises the current knowledge about Bayesian phylogenetic inference with a 
particular focus on numerical methods. The paper is particularly welcome as this problem is 
particularly complex and frequent in numerous applications. No new method is presented, but the 
article offers a nice presentation of the most common method and their implementation. It 
contains also a general workflow for carrying Bayesian Phylogenetical Inference. 
 
Overall, I think some choices are strange (for example the strange notations for parameters and 
observations in Fig. 1). These choices must be explained by the readers having little mathematical 
background. Nevertheless, I think this is not a good idea, as the article should aim at giving the 
mathematical tools needed to the reader, and I don't think ideographic representation gives 
better understanding than proper definitions (I needed some time to understand the images). 
Introducing proper notations would also allow to discuss the notion of ``non informative priors'' 
and more importantly conjugated priors that would help the choice of priors. It can also be 
beneficial to allow the users to communicate with the computational statisticians that developed 
the tools. 
 
For example, in 2.1.6. I think the article would benefit from mentioning the standard results of 
Markov Chain theory (that is ergodicity of the chain). This in return would be of interest when 
mentioning the different moves that can be used in MCMC algorithm, and could give insight as for 
possible reasons of failures. 
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The part about the different problems of MCMC methods is well written and contains all the 
important information in my opinion. 
 
I disagree with section 5.1.2, or I think the phrasing is strange: the choice of a fixed initial value 
can be misleading (see later the case of poorly ergodic chains because of multimodality). I think 
the choice of a random initialisation from the prior along with repeated runs should be the correct 
recommendation (along with more careful observation of convergence). 
 
I also have some doubts on the diagnostic section: this problem is one of the most difficult in 
phylogenetics, for the reason that the parameters of the model (that include the topology) cannot 
be all summarised by one ESS. Overall all the existing methods are inefficient (but once again 
that's a review of the numerical methods that exists, and these inefficient methods are the only 
ones implemented). It would be interesting to the reader to see what are the possible issues that 
arises from using the ESS in the phylogenetic case (which itself has to be defined, as the author 
mention). Nevertheless, I am happy to see the part about the trace observation (which should be 
the first check run by any user of an MCMC method). 
 
I am a little surprised the authors do not mention earlier the most simple method to detect 
multimodality: running several chains in parallel. If the chains converge to different trees, that 
indicates that further study is required. In particular the use of standard MCMC such as the ones 
presented in the paper (MrBeast, etc.) will not be able to handle these problems. In my field this is 
a very frequent case of failure of the MCMC. This is mentioned later in the paper but it would be 
beneficial to discuss that earlier. On the question of detecting convergence, the remarks of 5.4 can 
have links with the results on MCMC convergence on trees developed following the works of 
Biswas, N., Jacob, P. E. and Vanetti, P. (2019) Estimating convergence of Markov chains with L-lag 
couplings (NeurIPS 7389–7399). These methods are not implemented in the current software but 
they have the advantage of being theoretically sound, and have been applied to phylogenetics. Of 
course, this is out of the scope of the article if we consider that the users will only make use of the 
already implemented tools. 
 
A problem I can see, is that the article mentions problems that cannot be solved in most of the 
software mentioned unless the user has a good knowledge of them. For example, if there are 
mixing problems for some parameters, this can be a problem of correlation between the 
parameters, and a move in the joint space would be recommended, which is unfortunately not 
possible to implement easily in most cases. 
 
Finally, I am wondering if mentioning more complex but more efficient methods such as SMC for 
trees (for example the works from Bouchard-Côté) can be interesting. My idea is that if there are 
problems with the standard methods, the user should move on to more complex numerical 
methods, although they are not implemented in a user friendly way. 
 
As a conclusion, I would say that the article is good but requires some polishing depending on the 
goals the authors have. It obviously is tailored for non-statisticians that are using Bayesian 
phylogenetics tools. It does a great job at presenting the problems, the tools, and the possible 
solutions (I am happy to see the recommendation to discuss complex problems on the forums) 
but I still think stronger maths would be beneficial. 
 
Minor comments:
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"2.1 The Bayesics" I'm not sure the pun is needed in this kind of article (also, it can be 
difficult to understand for non native english speakers that would pronounce Bayes 
differently). 
 

○

I have philosophical problems with the notion of "choosing" the prior, as the prior is not 
chosen by the user but just exists out of the general knowledge (as is described by the 
paper). I think the author could mention repeated experiments with different priors to 
ensure the prior effect is negligible with respect to the results. 
 

○

I use more often marginal likelihood than marginal probability to designate the integrate of 
the likelihood times the prior, I don't know what are the terms used in the phylogenetics 
community.

○

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational bayesian phylogenetics, computational statistics, numerical 
methods in bayesian statistics.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 30 May 2024
Joëlle Barido-Sottani 

Thank you very much for the review and suggestions! Please find our detailed 
response below (in bold). Overall, I think some choices are strange (for example the 
strange notations for parameters and observations in Fig. 1). These choices must be 
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explained by the readers having little mathematical background. Nevertheless, I think this is 
not a good idea, as the article should aim at giving the mathematical tools needed to the 
reader, and I don’t think ideographic representation gives better understanding than 
proper definitions (I needed some time to understand the images). Introducing proper 
notations would also allow to discuss the notion of “non informative priors” and more 
importantly conjugated priors that would help the choice of priors. It can also be beneficial 
to 
allow the users to communicate with the computational statisticians that developed the 
tools. 
We have chosen to retain the pictures used in place of mathematical notation in 
Figure 1 (although, as described in response to reviewer 2, we have made the image 
clearer and we now include a figure legend with descriptions of the components). Our 
reasoning for this is that phylogenetics is perhaps unusual in that it draws a lot of 
users who have no formal training in mathematics, who often have limited practice or 
experience reading equations in any context. Formal notation appears in many 
fundamental textbooks and papers that introduce Bayesian phylogenetics and MCMC 
(e.g., Ziheng Yang’s (2006) Computational Molecular Evolution book or Joseph 
Felsenstein’s (2004) Inferring phylogenies book). These resources can be challenging 
at first for those unfamiliar with mathematical notation and new to phylogenetics. 
Our intention is to provide a reference that is both complementary to these resources 
and more accessible for beginners. This perspective is based on our experience as 
individual researchers 
and our experience teaching Bayesian phylogenetics in a wide range of contexts 
(especially, as part of the RevBayes or BEAST2 workshops which are aimed at empirical 
researchers). 
We have included some discussion on the use of non-informative or improper priors 
and the potential issues these can cause (section 5.2 Choice of model and priors). 
However, we chose not to discuss the use of conjugate priors, as it is not often 
possible to use these in the context of Bayesian phylogenetics. A regular phylogenetic 
software user would rarely (if ever) encounter this term. For example, in 2.1.6. I think 
the article would benefit from mentioning the standard results of Markov Chain theory (that 
is ergodicity of the chain). This in return would be of interest when mentioning the different 
moves that can be used in MCMC algorithm, and could give insight as for possible reasons 
of failures. 
We have added some information on ergodicity and its implications on the MCMC 
moves. The part about the different problems of MCMC methods is well written and 
contains all the important information in my opinion. 
I disagree with section 5.1.2, or I think the phrasing is strange: the choice of a fixed initial 
value can be misleading (see later the case of poorly ergodic chains because of 
multimodality). I think the choice of a random initialisation from the prior along with 
repeated runs should be the correct recommendation (along with more careful observation 
of convergence). 
We have edited this to make it clearer. We aren’t trying to argue for one method of 
doing this over another, simply to state the major classes of solutions found in the 
literature. To this section, we’ve added some explanation about how starting point 
may affect the inference, and how to detect sensitivity to starting point. I also have 
some doubts on the diagnostic section: this problem is one of the most difficult in 
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phylogenetics, for the reason that the parameters of the model (that include the topology) 
cannot be all summarised by one ESS. Overall all the existing methods are inefficient (but 
once again that’s a review of the numerical methods that exists, and 
these inefficient methods are the only ones implemented). It would be interesting to the 
reader to see what are the possible issues that arises from using the ESS in the phylogenetic 
case (which itself has to be defined, as the author mention). Nevertheless, I am happy to see 
the part about the trace observation (which should be the first check run by any user of an 
MCMC method). 
Standard convergence diagnostics in phylogenetics involve calculating one ESS per 
parameter that is involved in the analysis, rather than one single ESS for the whole 
model, as the initial text might have implied. Some of the confusion may have 
resulted from the later mention of the topology ESS as calculated by Convenience, 
since that comes closest to the idea of one single ESS for the whole analysis. We have 
thus edited the text to make that clearer. We have furthermore added a brief section 
detailing which ESS to check and what to pay attention to. I am a little surprised the 
authors do not mention earlier the most simple method to detect multimodality: running 
several chains in parallel. If the chains converge to different trees, that indicates that further 
study is required. In particular the use of standard MCMC such as the ones presented in the 
paper (MrBeast, etc.) will not be able to handle these problems. In my field this is a very 
frequent case of failure of the MCMC. This is mentioned later in the paper but it would be 
beneficial to discuss that earlier. 
We now mention the use of multiple chains in the convergence assessment section. 
We have edited this part to emphasize that certain issues such as multimodality can 
only be detected through this method. On the question of detecting convergence, the 
remarks of 5.4 can have links with the results on MCMC convergence on trees developed 
following the works of Biswas, N., Jacob, P. E. and Vanetti, P. (2019) Estimating convergence 
of Markov chains with L-lag couplings (NeurIPS 7389–7399). These methods are not 
implemented in the current 
software but they have the advantage of being theoretically sound, and have been applied 
to phylogenetics. Of course, this is out of the scope of the article if we consider that the 
users will only make use of the already implemented tools. 
We agree that while this may be a nascent method, it might be useful for readers to 
be aware of it and explore the possibilities of its use. We have thus added a mention of 
it to the convergence section, along with two papers by Kelly et al, who already apply 
the method of Biswas et al. in a phylogenetic context. A problem I can see, is that the 
article mentions problems that cannot be solved in most of the software mentioned unless 
the user has a good knowledge of them. For example, if there are mixing problems for 
some parameters, this can be a problem of correlation between the parameters, and a 
move in the joint space would be recommended, which is unfortunately not possible to 
implement easily in most cases. 
We have tried to cover as many as possible solutions available in the software that 
users can adjust or fine-tune across appropriate sections. We now clearly state that 
our focus in on solutions which can be implemented by the user without additional 
development, but that many issues do require changes in the software itself. The 
problem of correlation between parameters is particularly hard to deal with, typically 
requiring the developers to implement efficient MCMC moves to overcome it. 
Nevertheless, we now mention the up-down operator in BEAST2 which will scale both 
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the branch lengths of the tree, and the clock rate simultaneously. Finally, I am 
wondering if mentioning more complex but more efficient methods such as SMC for trees 
(for example the works from Bouchard-Côté) can be interesting. My idea is that if there are 
problems with the standard methods, the user should move on to more complex numerical 
methods, although they are not implemented in a user friendly 
way. 
We added references to other algorithms when introducing MCMC. These are very 
interesting and worth discussing, but out-of-scope for us. As a conclusion, I would say 
that the article is good but requires some polishing depending on the goals the authors 
have. It obviously is tailored for non-statisticians that are using Bayesian phylogenetics 
tools. It does a great job at presenting the problems, the tools, and the possible solutions (I 
am happy to see the recommendation to discuss complex problems on the forums) but I 
still think stronger maths would be beneficial. Minor comments: 
“2.1 The Bayesics” I’m not sure the pun is needed in this kind of article (also, it can be 
difficult to understand for non native english speakers that would pronounce Bayes 
differently). 
Thank you for pointing out the valid concern about non-native speakers. In 
consultation with the non-native English speakers among the authors, we opted to 
remove the pun here. I have philosophical problems with the notion of ”choosing” the 
prior, as the prior is not chosen by the user but just exists out of the general knowledge (as 
is described by the paper). I think the author could mention repeated experiments with 
different priors to ensure the prior effect is negligible with respect to the results. 
We disagree with the idea that the prior should be negligible. If the prior is reflecting 
sound empirical information, that information should be incorporated in the analysis. 
But more to the point, any analysis contains many choices. Whether it is a choice of 
methodology, or the choice of null and alternative hypotheses, these choices are often 
consequential. Thus, it’s our feeling that as with any other choice, consequentiality is 
less important than justifiability. We have kept the phrasing of “choice” when 
discussing the priors, but we now mention testing different priors to explore their 
impact on the results and conclusions. We also now emphasise that in some contexts 
in Bayesian phylogenetics the parameters of interest are not fully identifiable (this is 
especially true for divergence time estimation) and that as a result the priors need to 
very carefully considered (sections 2.1.2 and 3.3). I use more often marginal likelihood 
than marginal probability to designate the integrate of the likelihood times the prior, I don’t 
know what are the terms used in the phylogenetics community. 
We edited the first mention of the term to state that both terms are used 
interchangeably.  
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© 2024 Hu Z. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Zhirui Hu  
Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA 

The authors provide a very thorough introduction of Bayesian analysis, MCMC for posterior 
inference in Bayesian phylogenetics, common issues and troubleshooting of model choices and 
running MCMC. The article is well-structured, informative, easy to read and technically sound. In 
general, I think it would be more helpful to include more examples and figures to illustrate issues 
and troubleshooting techniques, and/or an example illustrating the entire process from model 
design, MCMC convergence diagnostics and model selection or update. 
 
Besides, there are a few minor issues in the article:

page 4, “between the new and parent scores”, “current” is more commonly used than 
“parent” to indicate the current state in the Markov chain. 
 

○

Figure 1, the cartoon illustration for phylogeny and alignment etc. is interesting but too 
small to read. Also, summation sign instead of integral could be used for summing over 
discrete variables, i.e. phylogenetic trees. 
 

○

Page 7, “a minimum of 10,000 posterior samples”, I think choosing the number of MCMC 
samples should depend on how correlated samples are or ESS. 
 

○

Section 2.2.3, “Scaling move the components”, is it a typo? 
 

○

Pg 9, section 3.1, the author mentioned that traversing tree space was largely solved in the 
1990s but later mentioned challenges in phylogenetic inference. I think the authors need to 
clarify in which situation the problem was solved. 
 

○

Section 3.2, adding a figure might be helpful to illustrate the posterior space. “when 
calculating the prior probability of the phylogeny…”, should it be “posterior probability”? 
Also, what is a diversification model? Maybe add some reference here. 
 

○

Figure 4 is good to illustrate different types of trace plot, but the authors could add more 
explanations on Figure 4. What are the problems of the first two trace plots? 
 

○

Section 5.1.1 tuning step size is very important in MCMC. The author could provide a table 
or list to summarize pros and cons of large/small step size and tuning step size. 
 

○

Pg 16, posterior predictive simulations is very useful and it would be helpful if the authors 
can provide a toy example of it. “If the model is adequate to describe/analyse the variation 
in the data,…”, is it a typo? Should it be “inadequate”? 
 

○

Pg 17, any reference for ABC?○
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bayesian statistics, phylogenetics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 May 2024
Joëlle Barido-Sottani 

Thank you very much for the review and the comments! Please find our response to 
the other issues below (in bold). In general, I think it would be more helpful to include 
more examples and figures to illustrate issues and troubleshooting techniques, and/or an 
example illustrating the 
entire process from model design, MCMC convergence diagnostics and model selection or 
update. 
We feel that specific examples of the troubleshooting process will be too software-
dependent to be helpful in the manuscript, however we have written a RevBayes 
tutorial illustrating many of the issues and techniques outlined here. The tutorial is 
now mentioned in section 6. Besides, there are a few minor issues in the article: page 4, 
“between the new and parent scores”, “current” is more commonly used than “parent” to 
indicate the current state in the Markov chain. Fixed. Figure 1, the cartoon illustration for 
phylogeny and alignment etc. is interesting but too small to read. Also, summation sign 
instead of integral could be used for summing over discrete variables, i.e. phylogenetic 
trees. 
We have reorganised Figure 1 to make everything larger, added a legend, and added 
colour to distinguish the data vs. the model (+ tree). We have also expanded the 
legend to include more information. We opted not to add the summation for discrete 
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variables, since the tree is also comprised of continuous 
branch lengths. We believe the main point we are trying to make here − that the 
marginal probability of the data must take into account all possible parameter values 
and trees − is accurately conveyed without making this expression more complicated. 
Page 7, “a minimum of 10,000 posterior samples”, I think choosing the number of MCMC 
samples should depend on how correlated samples are or ESS. 
We have edited this section to make it clearer that the number of recorded samples is 
due to space and memory constraints, and that a higher number of samples is not 
indicative of the convergence of the chain, since as you note samples are correlated. 
Section 2.2.3, “Scaling move the components”, is it a typo? 
It was indeed a typo, thank you for pointing this out. Pg 9, section 3.1, the author 
mentioned that traversing tree space was largely solved in the 1990s but later mentioned 
challenges in phylogenetic inference. I think the authors need to clarify in which situation 
the problem was solved. 
This was unclear indeed. This has been clarified to ”Algorithms for efficiently sampling 
phylogenetic tree space became available in the late 1990s“ Section 3.2, adding a figure 
might be helpful to illustrate the posterior space. 
We believe that adding a figure would make this section too long. However, we have 
added in the introduction links to several online tools which allow users to gain a 
better intuition for posterior spaces and how the MCMC algorithm works. “when 
calculating the prior probability of the phylogeny. . . ”, should it be “posterior probability”? 
We have removed the word “prior” as the probability of the phylogeny can be part of 
the prior or the likelihood depending on the analysis. Also, what is a diversification 
model? Maybe add some reference here. 
Following a suggestion by Reviewer 1, we now briefly introduce diversification models 
in section 2.1.1 and give a reference. We hope that this clarifies the text here. Figure 4 
is good to illustrate different types of trace plot, but the authors could add more 
explanations on Figure 4. What are the problems of the first two trace plots? 
We have added clarifying comments to the caption of this, pointing to diagnostic 
features of the problems shown. Section 5.1.1 tuning step size is very important in MCMC. 
The author could provide a table or list to summarize pros and cons of large/small step size 
and tuning step size. 
We agree that these are important elements of running an MCMC, but feel that our 
treatment of the pros and cons of them in this section would be sufficient. We thought 
that adding an extra table only to summarize this information again would not add all 
that much clarity. Instead, since we are already demonstrating the outcomes of 
different stepsizes and tuning parameters in Figure 4, we have added a reference to 
the figure in the respective parts of this section. Pg 16, posterior predictive simulations 
is very useful and it would be helpful if the authors can provide a toy example of it. 
We agree that toy examples would be helpful, but we believe that this would be 
covered better by software-specific tutorials. We now link to such a tutorial on the 
RevBayes website. “If the model is adequate to describe/analyse the variation in the data,. . 
. ”, is it a typo? Should it be “inadequate”? 
This was indeed a typo and we have changed it to “inadequate”. Pg 17, any reference 
for ABC? Added.  
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Daniel Casali   
Universidade de São Paulo, São Paulo, Brazil 

Dear editor and authors, 
 
The manuscript prepared by Barido-Sottani et al., entitled “Practical guidelines for Bayesian 
phylogenetic inference using Markov Chain Monte Carlo (MCMC)”, begins providing a concise, but 
also detailed, review of Markov Chain Monte Carlo (MCMC) sampling procedure, widely used in 
Bayesian phylogenetic inferences. The main focus of the text then moves to assessing the practical 
performance of this tool, particularly with respect to convergence issues commonly encountered 
by researchers. 
 
Despite being a common problem, failing to achieve convergence in Bayesian analyses is anything 
but a trivial matter, and, until now, to the best of my knowledge, there has been no study that 
delves so exhaustively and directly into this issue. The manuscript, therefore, constitutes an 
invaluable contribution to the field of study, useful not only to undergraduate and graduate 
students embarking on these analyses for the first time, but also to more experienced users. 
 
The article spans from more technical issues, such as improving the operators/movements used 
to propose new values during the MCMC sampling progression, to other practical aspects, such as 
defining well-behaved priors, selecting and critically evaluating models applied in inferences, and 
understanding dataset characteristics that can lead to performance issues. Useful guidelines are 
provided on how to initiate an analysis with good chances to converge, as well as how to address 
common issues like sampling from multiple optima, chain mixing problems, among others. In 
addition, it provides directions for asking for help in cases where all other solutions have failed. In 
sum, this article constitutes a very useful source of information for all those interested in the 
practical aspects of running phylogenetic Bayesian analyses. 
 
Below, I make a few minor suggestions that I believe could enhance the article's utility for its 
target audience. However, I emphasize that these are only small changes, and I leave it to the 
authors' discretion to incorporate all or any of them.

Page 4. “…this ensures that we explore the entire parameter space and do not stay stuck in 
a local optimum.”  A somewhat pedantic observation here: The entire parameter space 
cannot be ensured to be explored. Perhaps replace by something like: "we broadly 

1. 
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explore the parameter space"?
Page 4. “Invented in the early 1950’s, MCMC was originally used in physics to describe 
equilibrium between the liquid and gas phases of a chemical.” I recommend a citation 
here, for readers interested in the history of the method itself.

2. 

Page 5. “…a substitution model, which describes the relative rate of change from one 
character to another, and…”. I suggest to add also: “...and the relative rate of change 
among character states.

3. 

Page 5. “Under this prior, a rate that is very high is believed to be less likely than one that is 
very [- short] low.

4. 

Page 6. “Different estimation methods have been developed to approximate the marginal 
likelihood, such as path sampling (Baele et al., 2012)[Ref-7] or nested sampling (Russel et al., 
2018), but they remain expensive”. Even though, technically, stepping stones sampling is 
a kind of path sampling procedure, I would specifically mention stepping stones 
separately here as well, since is the most widely used method for estimate marginal 
likelihoods. Also, in the same sentence, I consider that it would be informative to 
indicate the term “marginal likelihood” is synonymous with the other term more 
consistently used in the paper, marginal probability.

5. 

Page 7. “…We typically record the state of the chain with a frequency that results in a 
minimum of 10,000 posterior samples.”. But probably less than that, if we perform many 
moves per generation, as in RevBayes?

6. 

Page 7. “Another important feature of phylogenies is whether they are dated, i.e., whether 
their branch lengths are expressed in units of genetic/morphological distance or in units of 
time.” and “Thus we mainly target this article at analyses which include a molecular
/morphological clock…”.

7. 

Page 7. Estimating a dated phylogeny requires a model for the molecular or morphological 
clock, a model of lineage diversification, as well as time information to calibrate the tree.

8. 

Page 7. Thus, Scaling moves the components designed to advance the chain and are a core 
part of any MCMC inference software.

9. 

Page 10. “In practice, however, character data is not available or limited for most groups…” 
As an alternative here, continuous morphological characters could be used in total-
evidence analyses (e.g., Álvarez-Carretero et al. (2019)[Ref-1], Zhang et al. (2021)[Ref-
2]in press). These could be more readily available for some taxonomic groups, 
although the performance of including these characters need to be carefully 
considered (Varón-González et al. (2020)[Ref-3].

10. 

Page 12. 5.1 Inference technical setup. Here I missed some mentioning of MCMCMC and 
the use of heated chains or adjusting chain temperature values to try to improve 
convergence. I guess this is a central topic in the current subject, that should be 
briefly mentioned by the authors.

11. 

Page 12.” If an operator is missing…”. Maybe the authors could emphasize here that this 
is a more relevant issue (as far as I can see) in RevBayes, in which we are "freer" to 
customize the inclusion of operators (or anything else, basically!).

12. 

Page 14. “..and with added constraints such as [ - monophyletic] subclades.”. Clades (or 
subclades) are monophyletic by definition.

13. 

Page 15. 5.2.1 Priors. Here I missed some advice on avoiding the use of improper priors, 
as in some of the Beast2 default settings. These improper priors can also lead to 
convergence issues sometimes.

14. 

Page 18. ” …partition morphological character data”. Although only weakly related to the 
main theme of the paper, I think other methods of morphological data partitioning 

15. 
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and what we know about their performances (which is little, if compared to dna…) 
could be briefly mentioned here, to give a broader picture to the reader (e.g., Clarke & 
Middleton (2008)[Ref-4], Rosa et al. (2019)[Ref-5], Casali et al. (2023)[Ref-6]).

 
My best regards, 
Daniel Casali 
 
P.S. The first three questions presented in the peer review form (all answered “YES”), actually do 
not apply to this study, because no new method is proposed. The paper, although a methods 
paper, is more of a review and a practical guide for troubleshooting problems in Bayesian 
phylogenetic analyses. 
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Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Systematics (phylogenetics and taxonomy), morphology, and evolutionary 
biology.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 May 2024
Joëlle Barido-Sottani 

Thank you very much for the review and the comments! Please find our detailed response 
(bold text) below. 1. Page 4. “. . . this ensures that we explore the entire parameter space 
and do not stay stuck in a local optimum.” A somewhat pedantic observation here: The 
entire parameter space cannot be ensured to be explored. Perhaps replace by something 
like: ”we broadly explore the parameter space”? Fixed. 2. Page 4. “Invented in the early 
1950’s, MCMC was originally used in physics to describe equilibrium between the liquid and 
gas phases of a chemical.” I recommend a citation here, for readers interested in the history 
of the method itself. 
Good point, we are now citing Metropolis et al. (1953). 3. Page 5. “. . . a substitution 
model, which describes the relative rate of change from one character to another, and. . . ”. I 
suggest to add also: “...and the relative rate of change among character states. 
We have clarified this to: “substitution model, which describes the relative rate of 
change from one character state to another as well as the frequencies of each 
character state”, as in most substitution models, the relative rate is based on 
equilibrium frequencies. 4. Page 5. “Under this prior, a rate that is very high is believed to 
be less likely than one that is very [- short] low. Fixed. 5. Page 6. “Different estimation 
methods have been developed to approximate the marginal likelihood, such as path 
sampling (Baele et al., 2012)[Ref-7] or nested sampling (Russel et al., 2018), but they remain 
expensive”. Even though, technically, stepping stones sampling is a kind of path sampling 
procedure, I would specifically 
mention stepping stones separately here as well, since is the most widely used method for 
estimate marginal likelihoods. Also, in the same sentence, I consider that it would be 
informative to indicate the term “marginal likelihood” is synonymous with the other term 
more consistently used in the paper, marginal probability. 
Thanks, we have changed the wording to now mention stepping stone sampling as a 
popular type of path sampling, and clarify that marginal probability and marginal 
likelihood are synonymous when introducing the concepts. 6. Page 7. “. . . We typically 
record the state of the chain with a frequency that results in a minimum of 10,000 posterior 
samples.”. But probably less than that, if we perform many moves per generation, as in 
RevBayes? 
We have edited this section to make it clearer that the number of recorded samples is 
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due to space and memory constraints, and that the sampling frequency will indeed be 
dependent on the specific software used. 7. Page 7. “Another important feature of 
phylogenies is whether they are dated, i.e., whether their branch lengths are expressed in 
units of genetic/morphological distance or in units of time.” and “Thus we mainly target this 
article at analyses which include a molecular/morphological clock. . . ”. Fixed. 8. Page 7. 
Estimating a dated phylogeny requires a model for the molecular or morphological clock, a 
model of lineage diversification, as well as time information to calibrate the tree. 
We have edited this section to mention diversification models, but note that dated 
phylogenies can also be estimated without such a model (e.g. assuming a uniform 
prior on topologies and some continuous distribution on the branch lengths). 9. Page 
7. Thus, Scaling moves the components designed to advance the chain and are a core part 
of any MCMC inference software. Fixed. 10. Page 10. “In practice, however, character data is 
not available or limited for most groups. . . ” As an alternative here, continuous 
morphological characters could be used in total-evidence analyses (e.g., Álvarez-Carretero 
et al. (2019)[Ref-1], Zhang et al. (2021)[Ref-2]in press). These could be more readily available 
for some taxonomic groups, although the performance of including these characters need 
to be carefully considered (Varón-González et al. (2020)[Ref-3]. Added. 11. Page 12. 5.1 
Inference technical setup. Here I missed some mentioning of MCMCMC and the use of 
heated chains or adjusting chain temperature values to try to improve convergence. I guess 
this is a central topic in the current subject, that should be briefly mentioned by the authors. 
Thank you for pointing out this missing topic. We have now added a section on 
MCMCMC. 12. Page 12.” If an operator is missing. . . ”. Maybe the authors could emphasize 
here that this is a more relevant issue (as far as I can see) in RevBayes, in which we are 
”freer” to customize the inclusion of operators (or anything else, basically!). 
We now mention that this issue is particularly relevant for users of RevBayes. 13. Page 
14. “..and with added constraints such as [ - monophyletic] subclades.”. Clades (or 
subclades) are monophyletic by definition. 
We have clarified this sentence. 14. Page 15. 5.2.1 Priors. Here I missed some advice on 
avoiding the use of improper priors, as in some of the Beast2 default settings. These 
improper priors can also lead to convergence issues sometimes. 
We have added advice on improper priors. 15. Page 18. ” . . . partition morphological 
character data”. Although only weakly related to the main theme of the paper, I think other 
methods of morphological data partitioning and what we know about their performances 
(which is little, if compared to dna. . . ) could be briefly mentioned here, to give a broader 
picture to the reader (e.g., Clarke & Middleton (2008)[Ref-4], Rosa et al. (2019)[Ref-5], Casali 
et al. (2023)[Ref-6]). Added.  
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