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a b s t r a c t 

While population-scale neuroimaging studies offer the promise of discovery and characterisation of subtle risk 
factors, massive sample sizes increase the power for both meaningful associations and those attributable to con- 
founds. This motivates the need for causal modelling of observational data that goes beyond statements of associ- 
ation and towards deeper understanding of complex relationships between individual traits and phenotypes, clin- 
ical biomarkers, genetic variation, and brain-related measures of health. Mendelian randomisation (MR) presents 
a way to obtain causal inference on the basis of genetic data and explicit assumptions about the relationship 
between genetic variables, exposure and outcome. In this work, we provide an introduction to and overview of 
causal inference methods based on Mendelian randomisation, with examples involving imaging-derived pheno- 
types from UK Biobank to make these methods accessible to neuroimaging researchers. We motivate the use of 
MR techniques, lay out the underlying assumptions, introduce common MR methods and focus on several sce- 
narios in which modelling assumptions are potentially violated, resulting in biased effect estimates. Importantly, 
we give a detailed account of necessary steps to increase the reliability of MR results with rigorous sensitivity 
analyses. 
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. Introduction 

There is an ever-present need to establish a causal interpretation for
cientific data. For example, determining whether a medical interven-
ion, such as a drug treatment, is the origin of an observed difference or
hange in health measures; confirming whether an environmental expo-
ure or behavioural factor increases disease risk; or establishing whether
ndividual traits and phenotypes contribute to adverse health outcomes,
uestions of causality are at the heart of scientific understanding. 

Randomised controlled trials (RCTs) are considered the gold stan-
ard for inferring causal relationships, as random assignment of treat-
ent minimises the risk of confounds causing an outcome of interest.
owever, RCTs are in many cases impractical or impossible, and we
ust depend on analytic methods that impose assumptions to bridge the

ap between observational exposure–outcome associations and causal
onclusions. Many of these methods rely on regression analyses and
raph diagrams to infer causal relationships. Bayesian networks and
elated advances in graph theory, structural equation modelling and
ounterfactuals are some of the most prominent approaches to causal
nference ( Hernán and Robins, 2020; Pearl, 2009; Pearl et al., 2016 ). 

Causal conclusions cannot safely be drawn from observational data
ithout strong additional assumptions. An observed association be-

ween two variables of interest can be due to a true causal mechanism
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in either direction), but also may arise because of an unmeasured com-
on cause or due to sampling bias. 

Mendelian randomisation (MR) presents a way to obtain causal in-
erence on the basis of genetic data and explicit assumptions about the
elationship between genetic variables, exposure and outcome. Impor-
antly, unlike standard regression models, MR aims to be unaffected by
onfounding 1 of the exposure–outcome relationship, thus excluding one
f the main sources of non-causal associations in other methods. 

Neuroimaging datasets on the scale of 1,000’s or 10,000’s of partici-
ants allow for population-level inquiry of disease aetiology, risk factors
nd biological mechanisms as they relate to the structure and function of
he brain. In an aging population, the need for information on causal fac-
ors that impact brain health is apparent, especially as brain health may
e a more sensitive outcome than other phenotypes. With obvious eth-
cal and practical limitations on RCTs and interventional experiments,
arge- 𝑁 population imaging is our best promise so far to identify as-
ociations between modifiable risk factors and brain phenotypes. How-
ver, massive sample sizes mean analyses are sensitive to both mean-
ngful associations and those attributable to confounds. Conditioning
n ( “regressing-out ”) potential confounders is often insufficient to re-
ove non-causal associations and can even introduce additional bias
1 A confounder is a common cause of two or more variables, thereby intro- 
ucing spurious correlations between these variables. 
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Fig. 1. Schematic modelling of assumptions: 
(A) Mendelian randomisation framework, 
where an instrumental variable ( 𝑍) influences 
only the exposure ( 𝑋), allowing inference 
on causal influence of exposure on outcome 
( 𝑌 ) even in the presence of confounds ( 𝑈); 
the causal effect of interest is indicated by 
the dashed arrow and 𝛽 denotes the causal 
effect estimate. (B) Instrumental variable 
assumptions: (1) The relevance assumption, 
that the IV is associated with the exposure; (2) 

the independence assumption, that there are no unmeasured confounds of IV and outcome; and (3) the exclusion restriction, that the IV is only associated with the 
outcome via the exposure. 
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2 In economics and epidemiology, scenarios involving observational data and 
exposures outside the control of the investigator are also known as “natural 
experiments ”. 
for example, via colliders, see Section 2.4 . Hence, there is an urgent
eed for methods like Mendelian randomisation to go beyond descrip-
ive accounts of associations and establish true causal relationships that
re not the result of hidden confounding. At the same time, rigorous
ssessment and careful interpretation of findings from MR studies – as
ell as any other causal claims – are essential in order to draw plausible
nd valid scientific conclusions from these analyses. 

For the last 20 years, Mendelian randomisation has mostly been ap-
lied to epidemiological settings. With the increasing availability of
enetic data from genome-wide association studies (GWAS), the first
reprints and papers using MR on neuroimaging data are now being
ublished. Several recent studies have investigated causal links be-
ween imaging-derived phenotypes (IDPs) and various disease patholo-
ies such as Alzheimer’s disease ( Fani et al., 2021; Garfield et al., 2020;
nutson et al., 2020; Korologou-Linden et al., 2020; 2021; Wu et al.,
021 ), heart disease ( Tian et al., 2021 ), depression ( Shen et al., 2020 ),
chizophrenia ( Stauffer et al., 2021 ), other psychiatric disorders ( Guo
t al., 2021; Song et al., 2021 ) and lifestyle factors such as smoking and
lcohol consumption ( Logtenberg et al., 2021 ). 

The purpose of this work is to provide an introduction to causal infer-
nce using methods based on Mendelian randomisation, with examples
nd background to make these methods accessible to a neuroimaging re-
earcher. We first motivate the use of MR techniques, lay out the under-
ying assumptions, introduce common MR methods and give a detailed
ccount of important steps to increase the reliability of MR results with
 rigorous sensitivity analysis. Brief sections cover commonalities and
ifferences with two other causal inference methods, mediation analysis
nd Bayesian networks, and how they could be used in conjunction with
R. The next section discusses several scenarios in which modelling as-

umptions are potentially violated resulting in biased effect estimates. 
In the second part, we consider three examples focusing on the ap-

lication of MR to neuroimaging data; specifically, causal relationships
f systolic blood pressure, bone mineral density, and a cognitive trait
ith a wide range of IDPs in UK Biobank. 

Going forward, we refer to traits, phenotypes and any other (risk)
actors that are considered a potential cause or origin of an effect as
exposures. ” Analogously, any traits, phenotypes or other factors that
re potentially causally affected by an exposure are referred to as “out-
omes. ”

. Methods 

.1. Mendelian randomisation 

We first give a review of Mendelian randomisation before intro-
ucing other related methods that attempt to make causal inferences,
amely mediation analysis and Bayesian Networks. The use of MR has
rown steadily, due in part to greater availability of large-scale GWAS.
n the following, we provide a high-level introduction to MR. For a de-
ailed study we recommend recent reviews ( Bowden and Holmes, 2019;
awlor et al., 2019; Sanderson et al., 2022; Tin and Köttgen, 2021 ) and
he comprehensive textbook by Burgess and Thompson (2015a) . 
2 
Mendelian randomisation is based on the principle of using genetic
ariants as “instrumental variables ” (see Fig. 1 ) to investigate causal
elationships in observational data ( Davey Smith and Ebrahim, 2003;
004 ). Instrumental variable analysis is an established methodology in
he fields of econometrics, statistics and epidemiology ( Lawlor et al.,
008 ). In addition to exposure and outcome, an instrument is a third
ariable that influences the outcome exclusively via its effect on the
xposure. Schematically, in the causal chain 𝑍 → 𝑋 → 𝑌 , the variable

is an instrument for the 𝑋 − 𝑌 relationship. 
For example, consider the question of impact of alcohol consump-

ion on liver health. There are many other factors that can influence
oth the level of alcohol intake and risk for liver disease, such as gen-
ral health, diet, exercise and level of education. Additionally, it could
e the case that liver disease affects alcohol intake. The availability of
lcoholic beverages (across different countries or due to different levels
f taxation), however, provides an instrumental variable that influences
he chances of an individual consuming alcohol but has no direct effect
n liver health. Therefore, observational data on alcohol consumption
s predicted by availability can be associated with measures of liver
ealth to obtain a less confounded estimate of the effect of alcohol on
he liver. 2 As in most scenarios, there are caveats and limitations to con-
ider in this example. For instance, socio-economic variables will play a
on-trivial role for health outcomes, levels of alcohol consumption and
mpact of taxation. Careful consideration of potential biases and validity
f assumptions is therefore necessary. 

In the remainder of this work, we will use the following example
oncerning the effect of blood pressure on cardiovascular health: A cor-
elation between higher blood pressure and coronary heart disease does
ot prove a causal effect of one on the other, since common causes (BMI
or instance) may influence both blood pressure levels and risk of heart
isease. The inclusion of a new, instrumental variable, that is causally
inked to blood pressure (for example, a specific genetic variant), but has
o direct influence on the outcome, allows one to separate true causal
ffects of blood pressure on heart disease from spurious correlations due
o BMI and other confounds. 

In MR, the validity of the instrumental variables rests on the laws
f Mendelian inheritance, in particular the principle of random assort-
ent of parent alleles during meiosis. The fact that the composition of

he genetic code is fixed at conception precludes any environmental in-
uences or effects of lifestyle factors. This means that genetic variants
re (mostly) unaffected by issues of confounding and reverse causation.
n other words, comparing groups of individuals with a different genetic
akeup at specific locations of the genome (e.g., single-nucleotide poly-
orphisms or SNPs) provides a chance to detect a causal effect between

enetically-determined levels of the exposure and an outcome of inter-
st, without many of the limitations in other observational studies that
re due to confounding effects 3 MR examines the observed association
etween outcome and genotype-predicted exposure. Because of the in-
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utability of an individual’s genotype, any robustly identified effect can
e directly attributed to the exposure. 

It should be noted that, although largely valid, there exist some
aveats to the assumption of a fully random distribution of genetic vari-
nts among the population (see also Section 2.4 ). For a thorough discus-
ion of the “MR-as-nature’s-randomised-controlled-trial ” analogy and its
imitations, see Swanson et al. (2017) . 

.1.1. Instrumental variables 

For any instrumental variable (IV) analysis, there are three main as-
umptions that a candidate IV must satisfy to be a valid IV ( Burgess
nd Thompson, 2015a; Haycock et al., 2016 ): 1) The IV is associated
ith the exposure (relevance assumption); 2) There are no unmeasured

onfounders of the association between IV and outcome (independence
ssumption); 3) The IV is only associated with the outcome via the ex-
osure (exclusion restriction). A schematic summary of the standard MR
etup and the three IV assumptions is depicted in the causal diagrams
n Fig. 1 . 

As an illustrative example, consider the SNP rs35479618, which
as been found to be strongly associated with systolic blood pressure
 Liu et al., 2016 ). In a uni-variable analysis, this single SNP is the in-
trument ( 𝑍), systolic blood pressure (BP) is the exposure ( 𝑋) and coro-
ary artery disease (CAD) is the outcome ( 𝑌 ). Absent any direct as-
ociations of the SNP with confounds and the outcome, the simplest
R estimate for the causal effect of BP on CAD is given by the ratio

f the SNP–outcome association to the SNP–exposure association. Con-
retely, using GWAS data on BP (GWAS ID: ukb-b-20175 ( Mitchell et al.,
019 )) and CAD (GWAS ID: ebi-a-GCST005195 ( Van Der Harst and Ver-
eij, 2018 )), both accessed via the MRC IEU OpenGWAS data infras-

ructure ( Elsworth et al., 2020 ), the SNP–BP association is 0.0617 (i.e.,
.0617 SD change in BP associated with change in SNP dosage) and
he SNP–CAD association is 0.0652 (odds ratio change associated with
hange in SNP dosage). The causal effect of BP on coronary artery dis-
ase is therefore 𝛽= 0 . 0652∕0 . 0617 = 1 . 06 . Since CAD is a binary variable,
he effect estimate is given as a log odds ratio of CAD occurring for a
ne-standard-deviation increase in BP. In binary case–control scenarios,
og-linear or logistic regression models are often preferred, where the
ffect estimate then corresponds to the log relative risk or log-odds ra-
io, respectively ( Burgess et al., 2017b ). However, due to small effects
f SNPs, linear models generally approximate logistic models well and
re therefore widely used in MR analyses. 

By inference methods we describe below, a p-value can be computed,
ere p = 0.017; although nominally significant, the 95% confidence in-
erval for the effect estimate (95% CI [0 . 19 , 1 . 94] ) is very large. Multi-
ariable analyses that simultaneously use many SNPs as instrumental
ariables generally have higher power to detect an effect and allow for
he application of more advanced MR methods as well as sensitivity
nalyses. 

Crucially, the validity of the instrumental variable assumptions is a
ecessary prerequisite for the causal interpretation of Mendelian ran-
omisation results. In practice, a potential violation of the second and
hird assumption can often not be ruled out and causal conclusions need
o be drawn carefully. However, there are an increasing number of sen-
itivity analyses as well as robust MR methods available that can aid
n the identification of bias, and support tentative causal claims (see
ection 2.1.5 ). 

.1.2. Individual- vs. summary-level data 

MR can be performed using individual subject-level data or sum-
ary statistics from large-scale genome-wide association studies (i.e.,
3 Although the vast majority of MR studies uses SNPs as instrumental vari- 
bles, other genetic variants such as indels and genetic variants associated with 
ifferent gene expression or protein levels (eQTLs, pQTLs) can be used as instru- 
ents. For simplicity, we only refer to SNPs in this work. 

 

t  

n
I

3 
egression coefficients and standard errors of the SNP–phenotype asso-
iations). Although, conceptually, the two approaches are equivalent,
n practice, each has its own benefits and drawbacks. Individual-level
R allows one to test and adjust for suspected SNP–confounder asso-

iations and to perform subgroup analyses, but usually has lower sta-
istical power to detect causal effects due to smaller sample sizes. Sum-
ary statistics from international GWAS consortia on the other hand are

eadily available and often based on very large sample sizes, and are
ommonly used in so-called two-sample MR, where the SNP–exposure
nd SNP–outcome associations are estimated on two separate datasets
 Burgess et al., 2015 ). Individual-level data is often used in one-sample
R, which is more prone to overfitting due to weak instrument bias

see Section 2.4 ). One-sample settings have the potential benefit that
R results can be linked to other analyses involving the same indi-

iduals, whereas two-sample analyses would be problematic if the two
ata sets differ substantially in their population characteristics (ethnic-
ty, sex, age, socio-economic status, etc.) ( Burgess et al., 2020a ). 

Because of potential bias due to sample overlap and weak instru-
ents, two-sample MR is commonly preferred in practice. However, the

wo datasets in two-sample MR must represent the same population, and
ummary effect estimates need to be harmonised across the two datasets.

Some specialised MR approaches are only available for individual-
evel data, such as factorial MR to assess interactions ( Rees et al.,
020 ) and non-linear MR ( Silverwood et al., 2014; Staley and Burgess,
017 ). Recent advances in methodology continue to expand the avail-
bility of MR variants to summary-level data, for example, methods for
dentifying violations of the exclusion restriction, known as horizontal
leiotropy, via gene-by-environment interactions ( Spiller et al., 2019 ). 

For the remainder of this paper, we will focus on summary-level MR
ethods since these are i) more common, ii) easier to carry out, and iii)

s far as neuroimaging phenotypes are concerned, summary statistics
rom population studies such as UK Biobank are essentially the only
vailable data with large enough sample sizes (ideally, 𝑁 ≫ 10 4 ). 

.1.3. SNP Selection and pre-processing 

Genetic variants are usually selected based on a significance thresh-
ld of the SNP–exposure association from GWAS results (typically 𝑝 <
 ×10 −8 , but might have to be adjusted based on sample size). For a single
NP, this p-value is an indirect measure of the effect size but crucially
lso depends on overall sample size and frequency of occurrence (the
inor allele frequency or MAF) of the genetic variant in the sampled
ata ( Swerdlow et al., 2016 ). If prior knowledge is available on which
ene or gene region is implicated in the regulation of the exposure of
nterest, then the selection of genetic variants can be restricted to that
egion of the genome only. This approach has been used successfully,
or example, to determine the causal effect of LDL cholesterol on coro-
ary heart disease while ruling out the HDL variant ( van der Graaf et al.,
020; Schmidt et al., 2020 ). Otherwise, a polygenic analysis involving
enetic variants from potentially multiple genetic regions is performed.
ost robust MR methods assume independence between SNPs, and thus

t is important to have SNPs sufficiently separated in genetic distance
 Burgess et al., 2020a ). Additionally, the inclusion of polygenic variants
hat explain independent parts of the exposure–variance (i.e., with dif-
erent biological pathways from the genetic variants to the exposure)
mproves the statistical power to detect a causal effect. 

Prominent metrics for instrument selection include the proportion
f variance explained ( 𝑅 

2 ) and the F-statistic 4 of the exposure-on-SNP
egression model ( Burgess and Thompson, 2011; Swerdlow et al., 2016 ).
 threshold of 𝐹 > 10 is conventionally considered as an indicator for
ufficiently strong instruments. 

MR analyses that involve more than a single genetic variant require
he clumping of SNPs as a preprocessing step. This ensures that the SNPs
4 For each SNP 𝑗, 𝐹 𝑗 = [ 𝑅 

2 
𝑗 
( 𝑁 − 1 − 𝑘 )]∕[(1 − 𝑅 

2 
𝑗 
) 𝑘 ] , with GWAS sample size 𝑁 , 

umber of SNPs 𝑘 and proportion of exposure variance explained by SNPs 𝑅 

2 . 
n multivariable MR, the conditional F-statistic should be used instead. 
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sed as instrumental variables for the exposure are independent. SNPs
ith allele frequencies that vary together to a degree outside of what
ould be expected from a random, independent association are consid-

red to be in linkage disequilibrium (LD). A reference database such as
he 1000 Genomes reference panel ( Altshuler et al., 2010 ) can be used
o calculate LD 𝑅 

2 values for a set of selected SNPs. Above a certain cut-
ff (typically 𝑅 

2 > 0 . 001 ), only the SNP with the lowest p-value for the
NP–exposure association is retained, thus “clumping ” together (though
n actuality, discarding) covarying SNPs. 

In two-sample MR, care must be taken to ensure that the GWAS-
eported effect of a selected SNP on the exposure (in one dataset)
nd the reported effect of the same SNP on the outcome (in another
ataset) correspond to the same allele. Updates to the human genome
eference sequence as well as changes in the way GWAS data are re-
orted mean that SNP annotation often differs between genotyping plat-
orms, datasets and repositories, making mismatches a common prob-
em. MR software such as the TwoSampleMR ( Hemani et al., 2018b )
nd MendelianRandomization ( Yavorska and Burgess, 2017 ) R
ackages include harmonisation procedures that can infer the correct
llele alignment as automated preprocessing steps. 

.1.4. Standard MR methods 

The causal effect estimate for the elementary case based on
ummary-level data and a single SNP is simply given by the ratio of
he SNP–outcome association to the SNP–exposure association 5 From
he regression model for the SNP–exposure association 𝛾𝐸 on the SNP–
utcome association 𝛾𝑂 , we have ̂𝛾𝐸 = 𝛽𝛾̂𝑂 + 𝜖, where 𝜖 denotes the error
erm; the effect estimate is then obtained as 𝛽 = 𝛾̂𝑂 ∕ ̂𝛾𝐸 6 When multiple
NPs are available, the ratio estimates for each SNP can be combined
n a meta-analytic fashion to estimate an overall causal effect ( Bowden
t al., 2016a; Burgess et al., 2013 ). This constitutes the standard inverse-
ariance weighted (IVW) MR method. 

Several meta-analytic approaches are possible, including fixed-
ffects, additive random-effects and multiplicative random-effects mod-
ls. Their suitability is determined by the presence of heterogeneity and
leiotropy. In the presence of balanced pleiotropy, that is when posi-
ive and negative pleiotropic effects on the outcome on average cancel
ut, fixed-effects and additive random-effects meta-analyses are both
nbiased. A difference in their respective effect estimates indicates di-
ectional (unbalanced) pleiotropy, in which case a fixed-effects model is
referred. If strong heterogeneity (large variance in individual SNP es-
imates) is detected, an additive random-effects model will give greater
eight to weaker (and more biased) single-SNP estimates and a multi-
licative random-effects model is recommended ( Burgess et al., 2020a ).
n a multiplicative random-effects model, heterogeneity in the single-
NP estimates does not influence the point estimate 𝛽. However, the
ariance of 𝛽 is allowed to increase with heterogeneity. Multiplicative
andom-effects models are also known to be more robust to small sam-
le bias. In practice, these three IVW MR variants can be used as part of
 sensitivity analysis. Large differences in their causal effect estimates
re a sign of (directional) pleiotropy or problematic heterogeneity. An
n-depth account of meta-analytic approaches for MR can be found in
owden et al. (2017) . 

Although it is the most efficient method in terms of statistical power,
tandard IVW MR is not robust to outliers and requires all selected SNPs
o be valid instrumental variables. In IVW MR, the intercept is fixed at
ero (see Fig. 3 B). This follows directly from the third IV-assumption
5 This is analogous to the two-step least-squares (2SLS) approach for 
ndividual-level data, where in the first step the exposure is regressed on the 
NPs and in the second step the outcome is regressed on the fitted values of the 
xposure. 
6 In detail, this follows from the following linear relations ( 𝑋 denoting the 

xposure, 𝑌 the outcome and 𝑍 the SNP): 𝑋 = 𝑍𝛾𝐸 + 𝜖 and 𝑌 = 𝑍𝛾𝑂 + 𝜖, leading 
o 𝑌 = 𝑋𝛽 + 𝜖 = 𝑍𝛾𝐸 𝛽 + 𝜖, and finally 𝛾𝑂 = 𝛾𝐸 𝛽. Rearranging and substituting 
ample estimates gives 𝛽 = ̂𝛾𝑂 ∕ ̂𝛾𝐸 . 

m  

c  

p  

g  

r  

(  

B  

2  

2

4 
hat all selected SNPs are acting on the outcome only via the exposure.
hus a null association with the exposure entails a zero effect on the out-
ome. MR-Egger regression ( Bowden et al., 2015; Burgess and Thomp-
on, 2017 ) removes this constraint, allowing the intercept to vary freely.
onsequentially, a non-zero estimate for the MR-Egger intercept indi-
ates the presence of invalid instruments due to pleiotropy, and hence
llows this violation of the MR assumptions to be flagged ( Burgess et al.,
020a ). Although MR-Egger permits all instruments to be affected by
leiotropy, the so-called InSIDE (Instrument Strength Independent of
irect Effect) assumption requires that any pleiotropic effects are in-
ependent of the instrument–exposure associations. One of the main
rawbacks of the MR-Egger approach are its high sensitivity to outliers
nd its reduced efficiency (lower power) compared to IVW MR. 

Many robust MR methods rely on relaxed assumptions for a sub-
et of instrumental variables in a polygenic analysis framework. These
ethods can usually deal with some fraction of invalid instruments and

till provide valid causal inferences. While problems such as linkage
isequilibrium or systematic confounding due to selection bias can in-
alidate the analysis, instrument invalidity most often arises from hor-
zontal pleiotropy. This violation of the exclusion restriction, horizon-
al pleiotropy, arises when the genetic variant influences the outcome
ia additional pathways that do not include the exposure (see Fig. 2 D)
 Burgess et al., 2020a ). 

Robust methods generally allow a certain number of SNPs to be af-
ected by pleiotropic effects under the condition that the instrumental
ariable assumptions hold for the rest of the selected instruments. In
he following we briefly cover the main characteristics of the most com-
only used MR approaches. 

Among robust methods, median-based ( Bowden et al., 2016a ) and
ode-based ( Hartwig et al., 2017 ) methods take a consensus-based ap-
roach by assuming that a majority (median-based) or a plurality (mode-
ased) of instruments are valid. By using, in effect, only a subset of
nstruments, these methods are more robust to outliers in the single-
NP ratio estimates of the causal effect at the cost of reduced statistical
ower. 

Another approach, MR-PRESSO ( Verbanck et al., 2018 ) allows for up
o half of selected instruments to be affected by horizontal pleiotropy.
t seeks to find and remove outliers based on a heterogeneity test of
he single-SNP effect estimates. After removal of genetic variants with
ubstantially different effect estimates, a standard IVW MR analysis is
erformed. The reason for demanding all instruments to give similar
ffect estimates is that this should reflect the same causal effect of the
xposure on the outcome, regardless of the choice of IV and the strength
f the IV’s causality onto exposure and outcome. 

In scenarios where several, closely related exposures are candidate
auses for the same outcome, genetic variants that are selected as in-
trumental variables may be associated with some or all related expo-
ures. This means that it may not be possible to find a set of instruments
hat is specific to one exposure without exhibiting pleiotropic effects
ia related exposures. Multivariable MR (MVMR) approaches ( Burgess
nd Thompson, 2015b; Sanderson et al., 2019 ) try to address this by in-
luding multiple exposures in the analysis. The standard IV assumptions
ust still hold, with the set of exposures replacing the single exposure

n univariable MR. Conceptually, multivariable MR is an extension of
he IVW method and estimates a causal effect while controlling for a
umber of other, measured biological pathways. 

Overall, MR methods development is an active area of research and
any novel or modified analysis approaches have been proposed in re-

ent months and years. A full account is beyond the scope of this pa-
er, however, many newer methods fall into one of two broad cate-
ories: i) regression models (e.g., MR-Lasso ( Slob and Burgess, 2020 ),
adial regression ( Bowden et al., 2018 ), and ii) likelihood-based models
e.g., MR-Mix ( Qi and Chatterjee, 2019 ), MR-RAPS ( Zhao et al., 2020 ),
ayesMR ( Bucur et al., 2020 ), contamination mixture ( Burgess et al.,
020b ), CAUSE ( Morrison et al., 2020 ), GRAPPLE ( Wang et al.,
020 )). 
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Fig. 2. Directed acyclic graphs depicting different causal modelling approaches (A-C) and various scenarios of potential bias (D-I): (A) Mendelian randomisation. (B) 
Mediation. (C) General DAGs as Bayesian networks: Shown is an example DAG that includes exogenous causes 𝐴 , a common cause 𝐵, a collider 𝐶, and a mediator 
𝐷 of the 𝑋 − 𝑌 relation. Note that this shows only one out of a large number of possible configurations for the same set of variables. (D) Violation of the exclusion 
restriction assumption in MR due to horizontal pleiotropy via variable 𝐻 . The case where 𝐻 also affects the exposure (indicated by the dashed arrow with a star 
next to it) is called correlated horizontal pleiotropy; otherwise it is called uncorrelated. (E) Vertical pleiotropy via variable 𝑉 . In principle, vertical pleiotropy is 
not a problem for MR. However, in practice, vertical pleiotropic effects cannot easily be separated from horizontal pleiotropic effects. (F) Model mis-specification 
due to reverse causation. (G-I) Three cases of selection bias due to conditioning on variable 𝑆. The orange dot-dashed line indicates an induced association when 
conditioning on 𝑆. Panel G is an example of collider bias for the 𝑋 − 𝑌 association. Panels H and I are examples of collider bias that introduces a spurious 𝑍 − 𝑈
association, which in turn violates the IV assumptions. (Note that the presence of 𝑆 alone is not a problem; bias only arises when conditioning on 𝑆.) Dashed black 
arrows indicate the relationship of interest. 

Fig. 3. Schematic depiction of standard Mendelian 
randomisation models: (A) Single-SNP ratio estimate. 
(B) Multiple-SNP inverse variance weighted MR esti- 
mate. (C) MR-Egger estimate with non-zero intercept. 
The causal effect estimate is the slope of the red line, 
i.e., the expected increase in the SNP–outcome asso- 
ciation for each unit increase in the SNP–exposure as- 
sociation. Errorbars indicate standard errors for each 
SNP association. In (A) and (B) the intercept is as- 
sumed fixed at zero. 
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For an extensive overview of standard and robust MR methods and
est practice approaches, we highly recommend recently published
uidelines ( Burgess et al., 2020a; Davey Smith et al., 2019; Sander-
on et al., 2022 ), method comparisons ( Slob and Burgess, 2020 ) and
he STROBE-MR guidelines on reporting MR results ( Skrivankova et al.,
021 ). 

.1.5. Sensitivity analysis of MR results 

Recent reviews and guidelines ( Burgess et al., 2020a; Davey Smith
t al., 2019 ) strongly advocate for the inclusion of sensitivity analyses
s a core part of any Mendelian randomisation investigation. 

The main approach to assess the robustness of findings from MR
nalyses is to obtain several estimates from different MR variants, in-
luding standard mean and median based methods, MR-Egger regres-
ion, methods sensitive to outliers such as MR-PRESSO, multivariable
R, and any other approach that may be suitable for the particular

ata at hand. An additional, straightforward assessment can be done
5 
y varying the selection of instruments via a more (or less) stringent
-value threshold for the SNP–exposure association. Consistency of re-
ults from different sets of genetic instruments with fewer but stronger
or more but weaker) instruments will generally indicate a robust causal
ffect. 

A similar approach is to look for heterogeneity in effect estimates
s a result of removing a single instrument or a subset of instruments
rom the analysis. Leave-one-out and SNP-subset analyses can help iden-
ify variants that are predominantly driving the causal effect estimate.
n cases where a bi-directional causal pathway may exist between ex-
osure and outcome or when the direction of the causal effect is part
f the research question, Steiger filtering ( Hemani et al., 2017 ) can be
sed to remove potentially invalid genetic variants under the assump-
ion that the SNP–exposure association is expected to be stronger than
he SNP–outcome association. However, Steiger filtering is sensitive to
easurement errors and may lead to the removal of valid instruments,

specially in two-sample MR analyses. 
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Further recommended is the inclusion of heterogeneity measures
uch as Cochran’s 𝑄 statistic or the 𝐼 2 statistic 7 in polygenic MR anal-
ses ( Bowden et al., 2016b ). Substantial heterogeneity in SNP-specific
ausal effect estimates and clear outliers can indicate the presence of
orizontal pleiotropic effects. On the other hand, largely homogeneous
ffect estimates provide the basis for more reliable causal conclusions
 Burgess et al., 2020a ). 

Various graphical tools can be used to gain qualitative information
bout potential outliers and unexpectedly skewed or otherwise biased
ffect estimates. These include scatter plots of the SNP associations with
xposure and outcome, funnel plots of single-SNP effect estimates and
orest plots of leave-one-out analyses (see, e.g., Figs. 5 , 13). 

When prior knowledge about causal relationships involving the ex-
osure and outcome variables is available, a positive outcome or neg-
tive outcome analysis can help establish the validity of chosen instru-
ental variables ( Sanderson et al., 2021a ). For example, using a positive

ontrol outcome and given a large enough sample size, SNPs that do not
ield an effect similar to what has already been established may be too
eak or invalid for the exposure in question and are unlikely to produce

orrect effect estimates when used with the outcome of interest. 
A summary of suggested steps and procedures to be considered when

erforming an MR analysis is provided in Table 1 . 

.1.6. Interpretation of results 

Depending on the nature of the investigation, a distinction can be
ade whether the presence of a causal effect and its direction (testing

he causal null hypothesis) is of primary interest or whether the goal is
n estimation of the effect size. Scenarios in which the expected effects
f an intervention (e.g., drug treatment or medical procedure) on the
xposure are scrutinised are mostly concerned with effect size, whereas
uestions of disease aetiology or fundamental biological mechanisms
ocus predominantly on causal direction detection. 

In addition to the three core IV assumptions discussed in
ection 2.1.1 , an additional monotonicity or homogeneity assumption
eeds to hold for a causal interpretation of the MR effect estimate. Mono-
onicity refers to the relationship between genetic instruments and expo-
ure. It assumes that the SNPs could not increase the level of exposure
n some individuals and decrease the level of exposure in others. Ho-
ogeneity is a slightly stronger assumption in that it requires that the

ffect of the SNPs on the exposure (or the effect of the exposure on the
utcome) is the same for all individuals. If any of these two assumptions
old then the MR estimate is consistent with the average causal effect
or the population under study ( Burgess and Thompson, 2017; Swanson
t al., 2018 ). 

In the context of Mendelian randomisation, the causal effect of the
isk factor on the outcome is commonly interpreted as the consequence
f a lifetime exposure to a genetically determined level of the risk fac-
or. The impact as well as the biological pathways through which the
isk factor influences the outcome may be different in case of a direct
ntervention. Under valid instrumental variable assumptions, an MR es-
imate can be regarded as the causal effect when determining someone’s
enotype at conception. For the purposes of modification and interven-
ion in clinical settings, additionally an equivalence between gene and
nvironment effects needs to hold. 

This is further complicated when time-varying exposures are consid-
red. In these cases the estimated effect from MR should be interpreted
s the effect of changing the (genotypic) liability that causes the expo-
ure as a function of time ( Morris et al., 2021 ). Recommendations from
ethodological researchers strongly advise against a simplistic interpre-

ation of effect estimates and emphasise the perspective that MR should
e used to test the causal null hypothesis rather than to estimate effect
agnitudes ( Burgess et al., 2020a; 2021; Vanderweele et al., 2014 ). 
7 Higgins’ 𝐼 2 is defined in relation to Cochran’s 𝑄 as 𝐼 2 = 𝑄 − ( 𝐿 − 1)∕ 𝑄 , 
here 𝐿 denotes the number of SNPs. It can be used to assess regression di- 

ution and expected bias (towards null) of the MR-Egger estimate. 

B  

a  

o
C  

6 
.1.7. Limitations 

Apart from limitations inherent in the modelling assumptions under-
inning Mendelian randomisation, there are issues that can arise from
he data itself, e.g., from the way data are collected and processed or in
erms of sample size and composition. 

Focusing on UK Biobank, several recent papers have reported find-
ngs that demonstrate non-random patterns in the data. For example,
aworth et al. (2019) have identified a geographical structure in UKB
enotype data. A coincidence of health outcomes and genetic variants
ith birth location can introduce biased associations and potentially

nvalidate modelling assumptions. Other studies have shown that popu-
ation structure ( Lawson et al., 2020 ) and selection bias ( Munafò et al.,
018 ) may play a non-negligible role in the composition of UKB sam-
les, and that genotypic information can predict participation in some
omponents of the UKB assessments ( Tyrrell et al., 2021 ). 

Many bias issues can be seen as different versions of selection bias
in the causal literature commonly referred to as collider bias), where
wo or more variables influence whether someone is selected for or takes
art in a data collection study. In statistical terms, this means that selec-
ion into the sample is conditional on a common cause of the variables
n question, thereby introducing a spurious association between these
ariables (see Fig. 2 G–I for a graphical representation). Selection and
ther biases, most notably pleiotropy in the case of MR, are discussed
n Section 2.4 . 

.2. Mediation analysis 

In mediation analysis the goal is to investigate the (potentially) in-
irect relationship between an exposure variable and an outcome vari-
ble, where the indirect causal effect of the exposure on the outcome
s mediated by a third variable. Standard mediation analysis estimates
otal, direct and indirect effects of the exposure on the outcome (see
ig. 2 B). Denote the total effect of the exposure on the outcome as 𝛽𝑡𝑜𝑡 ,
he effect of exposure on mediator as 𝑎 , and the effect of mediator on
utcome as 𝑏 . Estimates for 𝛽𝑡𝑜𝑡 , 𝑎 and 𝑏 are obtained by regressing the
utcome on the exposure ( ̂𝛽𝑡𝑜𝑡 ), the mediator on the exposure ( ̂𝑎 ), and
he outcome on both exposure and mediator ( ̂𝑏 ), respectively. The total
ffect simply takes into account all potential pathways from exposure to
utcome. The indirect effect accounts for the pathway from exposure to
utcome via the mediator (or set of mediators) and is often the quantity
f interest, for example when considering mediators as interventional
argets in cases where the exposure cannot be intervened upon. The re-
aining effect of the exposure on the outcome that acts via pathways
ot including the mediator is captured by the direct effect (denoted as
in Fig. 2 B), which can be estimated by controlling for the mediator in
n outcome-on-exposure regression. 

Traditional methods to estimate the mediated effect ( 𝛽𝑚𝑒𝑑 ) are i) sub-
racting the direct effect from the total effect (difference method, 𝛽𝑚𝑒𝑑 =
̂
𝑡𝑜𝑡 − 𝑐 ), or ii) multiplying the coefficient of the exposure–mediator asso-
iation with the mediator–outcome association (product of coefficients
ethod, 𝛽𝑚𝑒𝑑 = 𝑎̂ ̂𝑏 ). In scenarios involving only continuous outcomes

nd mediator variables, modelled with linear regression and fit via or-
inary least squares, the two methods are asymptotically equivalent
 VanderWeele, 2016 ). 

Returning to our previous example of how blood pressure affects
oronary artery disease, one can pose a related question in terms of
 mediation framework. For example, one might be interested in the
P-mediated effect of body mass index (BMI) on CAD. In this scenario,
MI is the exposure, BP the mediator and CAD again the outcome. It

s known that high BMI increases BP. However, BP can more easily be
ontrolled through medication and thus some of the harmful effects of
MI on cardiovascular health can be partially controlled. A mediation
nalysis could try to answer the question of how much of the total effect
f BMI on CAD is mediated by BP. Potential confounders of the BMI–
AD relationship, such as age, sex, smoking, physical activity, diet, etc.,
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Table 1 

Summary of essential steps in a comprehensive MR and sensitivity analysis. Items marked by ∗ are essential or strongly recommended. 

(0) DATA COLLECTION 
What Why How 

Individual-level data ∗ One-sample MR Genome-wide (or at least instrument-specific) 
genotype data 

OR 
Summary statistics (effect sizes, standard errors) ∗ One-sample or two-sample MR GWAS databases (e.g., IEU Open GWAS project , 

EBI ) 
SNP annotations Biological interpretation Reference databases 

(1) DATA PREPARATION 
What Why How 

Clumping and harmonisation of genetic variants ∗ Instrument validity Standard MR tools 
Proportion of variance explained in exposure ( 𝑅 2 ) Assessment of instrument strength Standard statistical tests 
Mean F-statistic of regressors (recommended 𝐹 > 10 ) Assessment of instrument strength Statistics; for MVMR see Sanderson et al. (2021b) 
Varying IV–exposure association threshold Robust effect estimate Standard MR tools 

(2) MR ANALYSIS 
What Why How 

IVW MR ∗ Standard, most efficient effect estimate Standard MR tools 
MR-Egger ∗ Robust effect estimate Standard MR tools 
Median- and/or mode-based MR ∗ Robust effect estimate Standard MR tools 
MR-PRESSO 

∗ Heterogeneity and outlier detection, 
robust effect estimate 

MR-PRESSO R package 

MR-Mix Robust effect estimate MRMix R package 
multivariable MR In case of multiple related exposures MVMR R package 
Any additional robust / novel MR methods Different underlying assumptions, 

triangulation of evidence 
See, for example, methods listed in 
Sanderson et al. (2022) 

Bi-directional MR ∗ In case of potential reverse causation Standard MR tools 

(3) SENSITIVITY ANALYSIS 
What Why How 

MR-Egger intercept ∗ Heterogeneity detection Standard MR tools 
Cochran’s 𝑄 , Higgins’ 𝐼 2 statistic ∗ Heterogeneity detection Statistics 
Steiger filtering Reverse causation Standard MR tools 
Meta-analytic IVW MR variants Heterogeneity detection Standard MR tools 
Leave-one-out or IV-subset analysis ∗ Heterogeneity detection Standard MR tools 
Single-SNP analysis Heterogeneity detection Standard MR tools 
MR-RAPS Outlier detection mr.raps R package 
Radial-MR Outlier detection RadialMR R package 
Scatter plot of IV–outcome vs. IV–exposure associations ∗ Heterogeneity and outlier detection Plotting tools 
Funnel, forest and radial plots of individual effect 
estimates ∗ 

Heterogeneity and outlier detection Plotting tools 

Prior knowledge about biological mechanisms Validity of results Literature 
Triangulation of evidence ∗ Reliability of results Literature, complementary methods 
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ould also need to be included in the regression models. For a detailed
ediation study of this very question, see for example Lu et al. (2015) .

Standard mediation analysis relies on strong, essentially untestable
ssumptions regarding the absence of unmeasured confound-
ng, exposure–mediator interactions and measurement errors.
arter et al. (2021) review two increasingly popular ways in which
R can be applied to mediation analysis in order to estimate direct

nd indirect effects. The first approach, multi-variable MR (MVMR)
 Sanderson, 2020 ) treats the original exposure and the mediator (or set
f mediators) as multiple exposures, using a common set of instrumen-
al variables. In MVMR, the direct effect is estimated by controlling
or the mediator, and the indirect effect can be obtained similarly as
n the difference method. In the second approach, two-step MR, two
eparate MR analyses are performed (one for the exposure–mediator
elationship and one for the mediator–outcome relationship). The
ndirect effect is then estimated by forming the product of these two
ausal effect estimates, analogous to the product of coefficients method.
or a detailed exposition of how MR techniques can be applied in a
ediation framework, we refer the interested reader to the excellent

eview by Carter et al. (2021) . 
Fundamentally, Mendelian randomisation as well as mediation anal-

sis are linear regression models. The causal interpretation of coeffi-
ients and effect estimates requires the validity of a set of strong (al-
hough often plausible) assumptions for each of the two frameworks.
 a  

7 
he difficulty lies in reasonably justifying these assumptions whenever
ausal claims are concerned. 

.3. Bayesian networks 

Bayesian networks (BN) describe the conditional independence re-
ationships of a set of variables with the help of a directed acyclic
raph (DAG), which provides a graphical representation of the esti-
ated causal structure ( Fig. 2 C), and an accompanying joint probabil-

ty distribution. Mathematically, the factorisation of the joint probabil-
ty over all variables is equivalent to graphical independence proper-
ies ( d-separation ). Recent review articles ( Bielza and Larrañaga, 2014;
aly et al., 2011; Glymour et al., 2019; Kyrimi et al., 2021 ) survey the
urrent state and ongoing research activities regarding graphical causal
odelling alongside the advances of the field over recent decades. 

Various algorithms have been developed to infer the DAG that
est fits the data. Broadly speaking, causal discovery algorithms can
e grouped into i) constraint-based and ii) score-based methods.
onstraint-based approaches start with a fully connected graph and
arry out a series of marginal and conditional independence tests to iter-
tively remove edges that fail these tests. The PC and FCI algorithms are
lassic representatives of this class and are widely used in causal infer-
nce applications. Constraint-based methods estimate a Markov equiv-
lence class, that is, a set of DAGs (often more than one) with different

https://gwas.mrcieu.ac.uk/
https://www.ebi.ac.uk/gwas/downloads/summary-statistics
https://github.com/rondolab/MR-PRESSO
https://github.com/gqi/MRMix
https://github.com/WSpiller/MVMR
https://github.com/qingyuanzhao/mr.raps
https://github.com/WSpiller/RadialMR
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ausal structures that satisfy the same conditional independence rela-
ions. Score-based methods, on the other hand, require a likelihood and
erform a model search in graph space with the aim of optimising the
core of a chosen score function, for example the Bayesian information
riterion (BIC). 

An important distinction has to be made between probabilistic and
ausal graphical models when interpreting the associations entailed in
 (causal) Bayesian network ( Pearl, 2009 ). A causal interpretation re-
uires three key assumptions to be satisfied: i) Every variable is indepen-
ent of its non-descendants conditional on its parents (causal Markov as-
umption); ii) There exist no other conditional independence relations
ther than the ones implied by the causal DAG (causal faithfulness as-
umption); and iii) There are no hidden common causes of two or more
ariables (causal sufficiency assumption). Additionally, it is assumed
hat there is no measurement error in the observed values of the model
ariables. 

For a review of studies that have used Bayesian networks in health-
are in general and with neuroimaging data in particular, see for exam-
le, citeBielza2014 and Kyrimi et al. (2021) . Several well established
oftware implementations of graphical model algorithms exist, such as
he bnlearn ( Scutari and Denis, 2021 ) and pcalg ( Kalisch et al.,
012 ) R packages. 

Ancestral graphs are an extension of DAG models and are based on
stimating the transitive closure of a graph (i.e. not only including an
dge between a node and its direct causes but also every indirect cause
r ancestor). While standard Bayesian networks estimate a direct causal
ffect between two variables, ancestral graph methods estimate the total
ausal effect on any given node. 

Most standard methods require the absence of confounders, i.e., la-
ent (non-measured) variables that are common causes of any two or
ore variables in the model. An exception is the FCI algorithm which
roduces asymptotically correct results even in the presence of con-
ounding ( Glymour et al., 2019 ). FCI is based on ancestral graphs and
an identify spurious associations caused by latent confounding. How-
ver, due to underlying assumptions, this is restricted to scenarios that
nly involve jointly Gaussian distributed variables, a limitation that is
nlikely to hold in the case of neuroimaging data ( Grosse-Wentrup et al.,
016 ). Whereas a DAG consists of only directed edges, representing an
ssociation between the parent (cause) and child (effect) variable when
ll other variables are held constant, the representation of an equiva-
ence class (a partially directed DAG or PDAG) can also contain undi-
ected or bidirected edges. 

Several algorithms ( Colombo et al., 2012; Kalisch and Bühlmann,
014; Zhang, 2008 ) have been proposed to estimate the ancestral graph
tructure, including FCI, RFCI, IDA and LV-IDA which are implemented
n the pcalg R package. 

.3.1. Bayesian networks vs. Mendelian randomisation 

A recent paper ( Howey et al., 2020 ) demonstrated that MR and BN
ethods can be used as complementary approaches in causal inference

pplications where pleiotropic effects and confounding may play a sig-
ificant role. The authors showed, using both simulations and real data,
hat the use of directional anchors can greatly improve graphical struc-
ure estimation with standard BN algorithms, and that under certain
onditions, BN approaches can give more accurate results than MR. 

Unlike Mendelian randomisation, which can be used with both indi-
idual and summary-level data, Bayesian networks require individual-
evel data (or other sources of distributional information, e.g., covari-
nce or conditional dependency matrices). This makes them less appli-
able when only summary statistics from GWAS databases are available.
owever, BN methods can be considered complementary to MR-based

nvestigations, as the two approaches use very different algorithms for
ausal inference, rely on different sets of assumptions, produce differ-
nt outputs and, when using summary-level MR methods, are based on
ifferent kinds of data. 
8 
Bayesian networks have the additional advantage that directional
nchors can easily be implemented in the form of a white-list (and/or
lack-list ) of required (excluded) edges, which can be interpreted as
rior knowledge about causal (in)dependencies between specific vari-
bles. Especially for larger networks, including/excluding known edges
an substantially reduce the search space of possible causal models and
elp identify the correct model within an equivalence class. In a typical
xample using SNPs as directional anchors, edges from SNPs known to
e associated with a variable to the corresponding GWAS targets would
e white-listed and any edges directed into SNPs black-listed. Additional
omain knowledge can be used analogously to orient individual edges
nd exclude biologically unreasonable or impossible connections. 

Bayesian network methods are limited by their strong dependence
n the set of chosen measurable covariates that are included in the
odel. Further, scalability is an issue, preventing the inclusion of large

ets of variables in most practical applications. Standard BN approaches
re generally not robust against hidden confounders and require spe-
ific distributional assumptions. Importantly, the causal relationships
mplied by each graphical model are only strictly valid under strong
often untestable) assumptions. Mendelian randomisation (and instru-
ental variable analysis in general) is a dramatically different approach

n that it uses the assumed (albeit very simple) causal structure given in
ig. 1 A to justify a projection of the problem into the space of variance
xplained by the instruments. Put another way, a Bayesian network will
lways have more variance at its disposal to estimate relationships, but
t the cost that it relies on much broader assumptions than MR. 

.4. Common sources of bias and confounding in Mendelian randomisation

All statistical models depend on assumptions, but since the premise
f Mendelian randomisation is causal inference from observational data,
here is particular scrutiny on MR assumptions. Sources of bias and con-
ounding can broadly be attributed to either i) data and study design is-
ues (selection bias, family or dynastic effects, etc.), ii) methodological
nd statistical issues (weak instruments, sample overlap, small sample
ize, etc.) or iii) model mis-specification (e.g. pleiotropy, reverse causa-
ion). 

Pleiotropy, specifically horizontal pleiotropic effects , i.e., pathways
rom genetic variants to the outcome that do not go through the expo-
ure ( Fig. 2 D) are a major concern in MR studies. Vertical or mediated
leiotropy ( Fig. 2 E), that is, when the effect of the instrument on the
xposure is mediated by one or more additional variables, is generally
ot problematic, unless the exposure in question is considered as a tar-
et for intervention and the goal of the MR analysis is to estimate the
xpected effect size. 

Horizontal pleiotropy is often exacerbated when considering high-
evel phenotypes that are far removed from the level of genes and pro-
eins ( Swerdlow et al., 2016 ). It is generally easier to study associations
arlier in the biological chain where genetic effect sizes and specificity of
ssociations are greater. More complex phenotypes require larger sam-
le sizes and more careful checking for possibly confounding effects.
asily obtainable indicators of horizontal pleiotropy are a non-zero in-
ercept in the MR-Egger regression, heterogeneity tests via Cochran’s 𝑄
tatistic, and asymmetry in the funnel plot of single-variant effect es-
imates. Funnel plots are commonly used in meta-analyses. They show
nstrument strength ( 1∕ 𝑆𝐸 denotes the inverse standard error and is a
easure of precision of the estimated effect, which increases with sam-
le size) on the y-axis and the single instrument estimate on the x-axis,
nd are based on the assumption that more precise estimates are less
ariable, creating a triangular envelope. 

Symmetry in the funnel plot indicates balanced pleiotropy, whereas
symmetry is a sign of directional (unbalanced) pleiotropy. See, for ex-
mple, Fig. 5 B. In the presence of pleiotropic pathways, the overall
ausal effect may still be unbiased if, on average, positive and nega-
ive pleiotropic effects balance out ( Burgess et al., 2017a ). To avoid
orizontal pleiotropy, MR-PRESSO and other outlier-robust methods
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 Slob and Burgess, 2020 ) should be used. Additionally, one can assess
ssociations of exposure and outcome variables with covariates that are
otentially on pleiotropic pathways. 

Additionally, down-weighting or removal of outliers can provide
ore robust estimates ( Hemani et al., 2018a ). In cases where pleiotropic
athways are known, multi-variable MR can control for SNP–outcome
ssociations via multiple exposures. Recently, MR methods have been
roposed that try to accommodate certain levels of pleiotropy while still
iving valid causal estimates (see, for example, Berzuini et al. (2020) ;
atel et al. (2021) , and references therein). 

In line with the IV assumptions, an instrumental variable is assumed
o be marginally independent of any confounder. When conditioning on
 collider of the instrument and a confounder, selection bias ( Cole et al.,
010; Munafò et al., 2018 ) can lead to a spurious association between
he exposure and the outcome ( Fig. 2 G), even in the absence of any true
ausal relationship between exposure and outcome. Selection based on
alues of the exposure ( Fig. 2 H) or values of the outcome ( Fig. 2 I) can
ead to spurious associations between the instrumental variable and the
utcome via unmeasured confounders. Direction and magnitude of the
ias are generally application-dependent but it has been shown that the
umber of false positives (type I error inflation) is more severe with
arger sample sizes or very strong instruments, and that a strong de-
endence of the selection process on either the outcome or the expo-
ure can have a large impact on estimated effect sizes and direction
 Gkatzionis and Burgess, 2019 ). One way to address selection bias after
ata collection is via inverse-probability weighting, where each obser-
ation is weighted inversely according to its predicted probability of
nclusion in the model. 

Survivor bias ( Schooling et al., 2021; Smit et al., 2019 ) is a partic-
lar type of selection bias where selection effects are due to mortality.
his can be an issue if GWAS data is based on an older population. If

t is possible to identify competing risk factors and common causes of
urvival and the outcome of interest, then these can be controlled in the
WAS. Alternatively, multi-variable MR or negative control outcomes
an be used ( Sanderson et al., 2021a ). The latter would be able to detect
he presence of population stratification in the GWAS of the phenotype
f interest. 

Bias due to sample overlap occurs in two-sample MR when the SNP–
xposure and SNP–outcome associations are not based on completely
istinct subjects. However, this issue is considered to be less problem-
tic because any bias of the effect estimate due to sample overlap is in
irection of the null ( Burgess et al., 2016 ). For one-sample settings and
verlapping samples, the estimate is asymptotically unbiased but can
xhibit substantial bias due to finite sample effects. Closely related and
ith the same implications as sample overlap is weak instrument bias ,
hich is generated by statistically weak SNP–exposure associations and

elated to the “winner’s curse ” problem ( Haycock et al., 2016 ). A recent
reprint ( Sadreev et al., 2021 ) examines the impact of weak instrument
ias and winner’s curse in UK Biobank. Instrument strength is commonly
easured via the F-statistic and a value of 𝐹 > 10 is conventionally con-

idered to guard against weak instrument bias ( Burgess and Thompson,
011; Davey Smith et al., 2020 ). In order to avoid bias from sample over-
ap, weak instruments and winner’s curse, a three-sample MR approach
an be taken where, in addition to disjoint data for the SNP–exposure
nd SNP–outcome associations, the initial step of selecting genetic vari-
nts as instruments is based on a third dataset ( Burgess et al., 2020a ).
owever, three-sample MR analyses remain the exception. 

Bias can also arise due to reverse causation if the effect of the ge-
etic variant on the exposure is not primary ( Burgess et al., 2021 ). In
ases where a causal effect exists but the true causal direction between
hypothesised) exposure and (hypothesised) outcome is unknown, i.e.,
hen it is not clear from background knowledge which variable is the

ause and which variable the effect, then both SNP–exposure and SNP–
utcome associations may reach genome-wide significance. Selecting
he “wrong ” variable as the exposure means the model is mis-specified,
eading to erroneous effect estimates. Furthermore, time-dependent
9 
ausal effects and feedback mechanisms can lead to causal links in the
everse direction. To avoid model misspecification, bi-directional MR
 Timpson et al., 2011 ), which requires knowledge of valid instruments
or both exposure and outcome, or Steiger filtering ( Hemani et al., 2017 )
an be used as indicators for the correct causal direction. 

In terms of the overall validity of genetic variants as instrumental
ariables, there exists potential bias due to non-random inheritance or
ssortative mating, giving rise to so-called “dynastic ” effects. Within-
amily MR methods ( Davies et al., 2019 ) have been proposed to adjust
or mean parental genotypes. However, these biases predominantly af-
ect socially influenced variables such as educational attainment and are
arely an issue in MR for many biological processes ( Brumpton et al.,
020; Davey Smith et al., 2020 ). 

Lastly, when possible, covariate-adjusted summary associations in
R should be avoided, as conditioning on a collider or on heritable co-

ariates can bias GWAS outcomes ( Hartwig et al., 2021 ). However, stan-
ard sources of confounding that pose major challenges for neuroimag-
ng data (e.g., MRI artifacts, age, scanning parameters, etc.) should not
e problematic in the context of MR analyses. 

. Neuroimaging data: Examples and applications 

Any MR analysis should start with a hypothesis about a putative
ausal relationship between an exposure variable and an outcome vari-
ble. In neuroimaging, it may not be obvious a priori whether an image-
erived phenotype (IDP) is the putative cause or the effect (or part of
 feedback loop) in relation to other phenotypes. In some cases, a bio-
ogically plausible hypothesis for the true causal direction may be used
s a basis for the MR model. For example, one may start by assuming
hat blood pressure causally affects certain IDPs, rather than variation
n an IDP being a cause for changes in blood pressure levels; or one
ay assume that dMRI-derived connectivity features influence cogni-

ive abilities, rather than the reverse being the case. However, without
ull knowledge of the biological pathways involved, bi-directional MR
nalyses (i.e., testing and comparing model fits for both causal direc-
ions) should be employed to guard against ill-specified models due to
everse causation. 

From a modelling perspective, some common characteristics of neu-
oimaging data can exacerbate the challenges one may encounter in
n MR analysis. First, one of the most prominent challenges of using
endelian randomisation on neuroimaging data – now and for the fore-

eeable future – is sample size. MR requires huge sample sizes on the
rder of (at least) tens of thousands of individuals. This is only fea-
ible with population-scale datasets. Even with datasets such as UK
iobank ( 𝑁 ≈ 500 k ), the imaging cohort is typically much smaller (cur-
ently 𝑁 img ≈ 45 k ). Small sample size means reduced power to identify
NPs (via GWAS) as potential instrumental variables for MR, and conse-
uently reduced power to detect a causal effect. In MR analyses where
DPs are used as exposure, fewer (and weaker) instruments lead to bias
owards the null in the MR estimate, as a consequence of regression
ilution. If IDPs are used as outcome variables, higher variance in the
NP–outcome association leads to larger weights on individual SNP es-
imates in the IVW MR model and again a bias towards null. Higher
ariance in SNP–exposure and SNP–outcome associations will also in-
rease confidence intervals of the final estimate. 

A second challenge relates to weak instrument bias (possibly as a
esult of small sample size). Weak instrument bias can play a signifi-
ant role in cases where IDPs are used as the exposure and only few,
eakly associated SNPs are available as instruments. For instance, a re-

ent study did not find any causal effects of IDPs on depression, but the
uthors note that a greater number of genome-wide significant SNPs as-
ociated with IDPs are needed before confident conclusions can be made
 Shen et al., 2020 ). 

A third challenge stems from the nature of brain phenotypes as
high-level ” traits. In the biological causal chain, IDPs are far removed
rom the direct effects of genetic variation. Compared to “low-level ”
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8 The Neale lab results offer a confidence metric for each heritability result 
of None, Low, Medium or High, based on sample size, standard error, potential 
sex bias and other possible issues. 
iomarkers (for example, proteins and their expression levels), SNPs
re likely to be weaker instruments and more prone to pleiotropic bias
hen paired with biologically more distant phenotype exposures. Us-

ng IDPs (or other high-level phenotypes) as variables of interest in MR
herefore means that the IV-assumptions are more likely to be violated.
onversely, a direct effect (short pathway) between SNP and exposure,
nd SNP and outcome generally reduces the possibilities of additional
leiotropic pathways. Neuroimaging MR analyses in particular are thus
ikely to require careful consideration of potential pleiotropic effects.
ecent studies have relied on multi-variable MR approaches to account

or (known) pleiotropy between multiple IDPs ( Mo et al., 2021 ). Ad-
itionally, high-level phenotypes can be assumed to be more likely to
xhibit non-linear associations. Non-linear MR approaches ( Staley and
urgess, 2017 ) may therefore be particularly suited to causal inves-
igations involving IDPs. Neuroimaging phenotypes may also be suit-
ble candidates for an MR analysis based on polygenic risk scores
 Dudbridge, 2021 ) as an alternative to multiple highly correlated IDPs.

Further considerations when planning an MR analysis on neuroimag-
ng data may involve (i) heritability and (ii) unwanted confounding.
irstly, MR analyses using highly heritable phenotypes will have greater
ower to detect a causal effect. For example, white matter microstruc-
ure has higher SNP heritability (2060%) compared with other neu-
oimaging modalities, indicating a greater genomic contribution to indi-
idual differences in phenotypes ( Elliott et al., 2018 ). On the other hand,
ead movement and head size are usually adjusted for as nuisance co-
ariates. Both are heritable attributes and known to be associated with
ertain personality traits. Conditioning on any nuisance covariate that is
ssociated with the outcome and the instrumental variables, and/or the
xposure, can introduce a spurious association between SNPs and out-
ome (collider bias, ( Munafò et al., 2018 ). Therefore, deconfounding of
ertain imaging confounds can lead to adding rather than eliminating
ources of bias in the context of MR. 

Confounds are a major nuisance in neuroimaging applications and
nclude motion artefacts, age, scanner- and site-specific factors, head
ize and various other potential confounding variables. In theory, assum-
ng the IV-assumptions hold and the SNPs used for analysis are valid in-
truments, MR estimates are not biased by confounders of the exposure–
utcome relationship, thereby removing the necessity to deconfound
euroimaging phenotypes prior to analysis. In practice, GWAS asso-
iation estimates involving IDPs are routinely deconfounded for large
ets of covariates ( Alfaro-Almagro et al., 2021 ). This can introduce bias
n MR outcomes if the covariate is a collider (common effect) on the
athway linking the SNP to the IDP of interest ( Hartwig et al., 2021 ).
he most likely source of confounding, however, stems from popula-
ion stratification. A recent study on UK Biobank data has shown that
election bias may be compounded in the case of imaging phenotypes
ompared to other variables ( Lyall et al., 2021 ). And since only a few
opulation-wide (and openly available) datasets exist, any inherent bias
s more likely to influence results across multiple studies, as independent
esearch groups rely on the same data for their analyses. 

Finally, the potential impact of time-dependent effects should be
aken into account in neuroimaging applications. Feedback cycles and
ime-varying exposures ( Shi et al., 2022 ) are commonly ignored in MR
ethods, but may have a non-negligible influence in certain imaging

ontexts. For example, longitudinal imaging data would be necessary
o determine the interplay of neurodevelopmental and neurodegener-
tive factors of a disease mechanism. In aetiological disease research,
R can help to investigate differences between environmental and ge-

etic disease risks ( Storm et al., 2020 ). While one cannot expect that
stimated MR effect sizes will predict the effect size of a medical inter-
ention (gene–environment non-equivalence) – since the SNPs represent
 life-time exposure to a weak version of the risk factor – MR can still
e used to discover risk factors that are potential drug targets for drug
evelopment, without the limitations of observational studies and the
mplications of carrying out RCTs. However, one should be aware that
R effect size estimates are unlikely to correspond to effect magnitudes
10 
f a medical intervention, and the pathways involved are almost cer-
ainly different. 

In the following sections, we look at three different real-data ap-
lications (selected via a wide-ranging exploratory analysis) in which
euroimaging features (IDPs) play a role as exposure or outcome in
endelian randomisation analyses. 

.1. Data 

We use the recently expanded UK Biobank GWAS database
 Smith et al., 2021 ) of summary statistics for over 17 million SNPs, to
dentify associations between genetic variants and brain imaging de-
ived phenotypes. The current release of multimodal imaging data com-
rises almost 4000 individual measures (IDPs) from over 33,000 par-
icipants. The full UKB cohort for which non-imaging data is available
as a sample size of about 500,000 ( Miller et al., 2016 ). Additionally,
e use openly available GWAS results from large international consortia
ia the MRC IEU OpenGWAS infrastructure ( Elsworth et al., 2020 ) when
sing two-sample MR to identify SNPs associated with non-imaging de-
ived phenotypes (nIDPs). Each GWAS controlled for different nuisance
ariables, which typically includes sex, age, and the main components
f genetic population variation. Additionally, all IDP data had extensive
uisance modelling as described in Alfaro-Almagro et al. (2021) . 

.1.1. Pre-selection of potentially causal associations 

Due to the large number of variables available in UK Biobank (UKB),
e employed a pre-selection procedure in order to reduce the num-
er of exposure–outcome pairs involving 3935 IDPs and 4178 nIDPs.
lthough not every possible combination is biologically plausible, for

he vast majority of imaging-related traits, causal links to other phe-
otypes and health outcomes are not yet established in the scientific
iterature. We therefore took an a priori agnostic approach to variable
election. 

Based on heritability estimates via LD score regression ( Bulik-
ullivan et al., 2015 ) for each nIDP (data made available by the Neale
ab ), we set the cut-off for the heritability significance level at 𝑝 < 0 . 05
nd required a confidence metric 8 of medium or higher. Additionally,
e set a maximum allowed value for the LD score intercept of 1 . 1 , as a

arger intercept value may indicate population stratification, confound-
ng or other sources of model misspecification. This resulted in 922
ighly heritable nIDPs with heritability estimates in the range of 0.05–
.40. A schematic description of the selection procedure in form of a
owchart is given in Fig. 12. 

IDPs were filtered analogously using heritability data published
longside GWAS results via Oxford’s BIG 40 Brain Imaging Genetics
erver ( Smith et al., 2021 ). Due to generally high heritability of brain
henotypes, the majority of IDPs (n = 2706) were retained. 

For a further selection step, we computed pairwise correlations be-
ween all IDP–nIDP pairs that survived the heritability selection. Filter-
ng the correlation results, we set a threshold for absolute correlation
alues at |𝜌| > 0 . 10 and a minimum significance level of − log 10 ( 𝑝 ) >
2 (noting that the Bonferroni threshold would be 7.7), resulting in
95 correlated IDP–nIDP pairs, with 365 unique IDPs and 133 unique
IDPs. 

In this unbiased approach we are not pre-specifying which variables
re outcomes and which are exposures. Typically, MR analyses start
ith a specific exposure and outcome of interest, often informed by
ackground knowledge on specific biological pathways. Here we adopt
 more exploratory approach. The reasons for this are two-fold: First,
he causal mechanisms involving imaging phenotypes are generally not
ell understood and thus there is limited prior information available

https://nealelab.github.io/UKBB_ldsc/index.html
https://open.win.ox.ac.uk/ukbiobank/big40/
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9 We note that all results should be interpreted with the caveat in mind that 
there exists an asymmetry in power due to sample size, meaning that MR analy- 
ses with IDPs as outcome (but not exposure) generally have higher power than 
MR analyses that involve IDPs as exposure. 
n which to base a well-formed hypothesis that could be tested via MR.
econd, we strongly emphasise the need for a rigorous sensitivity analy-
is (see Table 1 ) to reduce the possibility of the results being susceptible
o the problem of reverse causation and other biases. 

For illustrative purposes (see third example in Section 3.3 ), we also
andpicked a set of seven nIDPs related to cognition in UK Biobank.
hese include “duration to complete alphanumeric path ”, “duration to
omplete numeric path ”, “fluid intelligence score ”, “maximum digits re-
embered correctly, ” “mean time to correctly identify matches ”, “num-

er of puzzles correctly solved ” and “number of symbol digit matches
ade correctly. ” Here, we set the thresholds for correlations with IDPs

t |𝜌| > 0 . 05 and − log 10 ( 𝑝 ) > 10 . 

.1.2. Screening of potentially causal associations 

Next we carried out a preliminary screening for causal effects by run-
ing a standard IVW MR analysis on each of the 895 previously iden-
ified potential causal pairs, considering each variable as exposure and
utcome in turn, using the TwoSampleMR R package ( Hemani et al.,
018b ). For each variable, we used GWAS on European ancestry sub-
ects with largest sample sizes from the MRC IEU GWAS database to
dentify SNPs that are strongly associated with any of the nIDPs. In
any cases this meant that UKB GWAS results were chosen for both

DP and nIDP variables, thereby creating a sample overlap between ex-
osure and outcome GWAS summary statistics. Because the imaging co-
ort and thus sample size for IDP GWAS is much smaller than the to-
al UKB sample (to date, around 10% of UKB participants have been
maged), this can still be considered a two-sample MR setup. Potential
ssues due to sample overlap are expected to be small and may result
n reduced sensitivity to detect an effect (see Section 2.4 ). Genetic vari-
nts were harmonised using default parameters in the TwoSampleMR
ackage. 

We note that screening approaches, like the one we have used here,
hould only be considered in exploratory settings. Related to issues aris-
ng from multiple comparisons, there is a danger that results are se-
ected that are based on inflated associations due to random noise by
hance. 

Sufficiently strongly associated SNPs could not be identified for some
f the 895 variable pairs retained in the pre-selection step, thereby re-
ucing the number of available IDP–nIDP pairs to 620. The screening
ith IVW MR then resulted in a total of 1240 bi-directional causal es-

imates for 620 variable pairs. We selected three example scenarios in-
olving blood pressure, bone density and cognition, respectively, and
heir associations with various IDPs. These sets of variables are among
he strongest effects observed in the screening phase. 

Overall, we found 449 significant effects ( 𝑝 < . 05 ), 32 of which in-
olved an IDP as exposure, an nIDP as outcome and an average of 25
enome-wide significant SNPs as instruments (range 2–45). The major-
ty of exposure IDPs were volume-based measures (21), the rest were
iffusion-derived IDPs (10) and one surface measure. The remaining
17 significant effects involved an nIDP as exposure (with the largest
roup of 153 based on blood pressure) and an IDP as outcome, with
n average of 303 genome-wide significant SNPs (range 4–731) per MR
nalysis. The majority of outcome IDPs were based on diffusion-derived
etrics (267), with the rest including volume (121), intensity (24) and

urface measures (5). Detailed results of all MR screening analyses are
ncluded in the Supplement (Supplementary File 1). 

The example selection is also motivated by our intention to show-
ase different application scenarios and highlight potential challenges,
ogether with possible approaches of how to deal with these, involv-
ng existing software tools and statistical checks. The examples include
tructural as well as diffusion-based IDPs, and show cases in which IDPs
re hypothesised as being affected by biophysical phenotypes (blood
ressure and bone density) and one case in which IDPs may be assumed
s a putative cause of (small) differences in cognitive ability. The first ex-
mple shows a strong, statistically robust effect, whereas the other two
re less clear-cut, warranting careful and detailed sensitivity analyses. 
11 
.2. Methods 

For each of the three selected example scenarios, we performed a de-
ailed MR and sensitivity analysis. Additionally, we fitted Bayesian net-
orks for the first example, including a set of covariates which could be

xpected to act as confounders of the exposure and outcome association.
Apart from the standard IVW MR approach, we included weighted

edian- and mode-based MR as well as meta-analytic IVW variants with
xed and multiplicative random effects. The (multiplicative) random-
ffects model allows for over-dispersion in the regression model and
herefore can account for some heterogeneity in the causal estimates of
ndividual SNPs ( Burgess and Bowden, 2015 ). Robust methods included
R-Egger, MR-RAPS, MR-Mix and MR-PRESSO. 

The sensitivity analysis included the Steiger directionality test, out-
ier detection and removal via MR-PRESSO and heterogeneity tests via
ochran’s 𝑄 statistic for several MR methods. We also varied the SNP–
xposure association threshold for instrument selection. In addition to
he commonly used default of 𝑝 < 5 × 10 −8 , the MR analysis was repeated
ith a more liberal ( 𝑝 < 10 −6 ) and a more conservative ( 𝑝 < 10 −12 ) se-

ection threshold. In cases where only weak associations with the expo-
ure of interest could be identified from GWAS data (mostly affecting
DPs), the stringent and default threshold options were omitted as they
ould result in an empty selection set, and only the liberal threshold was
sed. 

Estimation of Bayesian networks and the corresponding graphical
tructures was carried out with the bnlearn R package ( Scutari, 2010 ).
pecifically, we used the hill-climbing algorithm with BIC ( Scutari and
enis, 2021 ), which includes necessary distributional assumptions
bout continuous (normally distributed) and discrete (multinomially
istributed) variables in the network. Bootstrapping of the data re-
ulted in 1000 replications per setting, which were used to esti-
ate the likelihood of edge inclusion, following a similar setup as in
owey et al. (2020) . The probability of an edge existing, and the prob-
bility of the edge being in a particular direction (given that it exists)
ere estimated by counting the proportion of times that such events
ccurred amongst the 1000 resulting best-fit bootstrap networks. 

.3. Results 

.3.1. Example 1: Blood pressure 

The strongest MR effect estimates based on the screening of can-
idate exposure–outcome pairs resulted from using blood pressure re-
ated measures as exposure. Modelling blood pressure as the exposure
ather than the outcome in an MR analysis can reasonably be moti-
ated using biological arguments. In order to investigate the poten-
ial effects of blood pressure on different parts of the brain, we fo-
used in the detailed analysis on the following three IDPs that showed
ome of the strongest IVW MR effects: i) volume of white matter hy-
erintensities (WMH) measured on T2 FLAIR images, ii) mean diffu-
ivity in the superior longitudinal fasciculus, and iii) mean diffusiv-
ty in the external capsule. Bi-directional effect estimates are shown
n Fig. 4 using 396 SNPs for the forward analysis (panel A) and 7
NPs for the reverse direction (panel B). The reverse direction re-
ults are not significant, having confidence intervals that mostly cover
ero. 9 

To illustrate the steps laid out in Table 1 , Figs. 5 and 13 show several
lots from a sensitivity analysis for the effect of systolic blood pressure
BP) on the mean diffusivity (MD) in the right external capsule as mea-
ured by diffusion MRI (UKB-ID 25136). The forward-direction results
n Fig. 4 suggest a causal effect of BP on these IDPs of 0.01 to 0.03; for
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Fig. 4. Bi-directional MR analysis of the relationship between systolic blood pressure and selected IDPs: Shown are causal effect estimates for six MR methods. (A) 
Causal effect estimates of BP on IDPs. (B) Causal effect estimates of IDPs on BP. Errorbars show 95% confidence intervals. 

Fig. 5. MR sensitivity analysis of the causal effect of systolic blood pressure (exposure) on mean diffusivity of the external capsule WM tract R (UKB-ID 25316). (A) 
Scatter plot showing associations of individual SNPs with exposure and outcome variables, with dotted cross-hairs indicating standard errors. Coloured lines indicate 
effect estimates from regression fits using different MR methods. (B) Funnel plot of single-SNP effect estimates and corresponding inverse standard errors. 
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xample, for every SD difference in BP, approximately a 0.02 SD differ-
nce in external capsule MD is expected. Visual inspection of the scatter
lot in Fig. 5 A reveals a consistently strong positive causal effect of BP
n the right external capsule. 

The MR-Egger intercept was not significantly different from zero
 𝑝 = 0 . 1 ), indicating a lack of evidence for horizontal pleiotropy and sup-
orting the exclusion assumption that the only pathway from selected
NPs to the outcome is via the exposure. Statistical heterogeneity tests
sing Cochran’s 𝑄 statistic ( 𝑄 = 596 , 𝑑𝑓 = 395 , 𝑝 = 2 × 10 −10 ) indicate
ubstantial heterogeneity in the individual effect estimates. However,
s can be seen in the funnel plot in Fig. 5 B, there is no strong pattern of
symmetry and therefore no clear indication of unbalanced, directional
leiotropy that could bias the final effect estimate. The non-significant
12 
R-Egger intercept together with the approximately symmetric distri-
ution of individual effects in the funnel plot may indicate that, overall,
leiotropic effects balance out and thus are unlikely to invalidate the
R result. 

The MR-PRESSO outlier test found three potentially problematic
NPs. Removing these three SNPs resulted in a similar causal effect
stimate ( 𝛽 = 0 . 02 ) and a higher significance level ( 𝑝 = 5 × 10 −21 vs.
 uncorr. = 5 × 10 −18 ). Single-SNP and leave-one-out analysis (Fig. 13) also
o not show substantial outliers that would indicate that the effect esti-
ate is driven by any single SNP. 

A Steiger directionality test ( 𝑝 = 0 . 0049 ) indicated that the more
ikely causal direction is such that BP affects the external capsule and
ot the other way around. As can be seen in the effect estimates for the
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Fig. 6. Bayesian network estimates involving systolic blood pressure (BP), mean diffusivity of the external capsule WM tract (EC) and three covariates (Age, Income, 
grey matter (GM) volume). Estimated edges are denoted with dashed arrows. (A) Standard BN estimate using the hill-climbing algorithm with BIC in bnlearn . Five 
SNPs (with known associations with the connected phenotype) are used as genetic “anchors ”, i.e., the known associations are provided as prior information and are 
represented as fixed edges in the graph (indicated as solid arrows). Edges between SNPs and those that would have Age or any SNP as effect (endpoint of an arrow) 
were excluded a priori . (B) Ancestral graph estimate based on the RFCI algorithm in the pcalg R package; no prior information on presence or absence of individual 
edges was provided. No edges were found for two SNPs. Dotted, bi-directional arrows indicate the presence of a common cause. An edge without arrowheads means 
that directionality of the relationship could not be determined from the data (e.g., Age–Income). A ⋆ next to an edge indicates the potential presence of a latent, 
unmeasured variable. 
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everse causal direction ( Fig. 4 B, 𝑛 SNP = 7 ), there is no indication for
 causal pathway originating with an IDP and causing changes in BP.
nfortunately, due to the much weaker SNP–IDP association strengths

partly due to lower sample size), it is difficult to ascertain whether
his reflects a truly uni-directional influence of BP or simply insufficient
ower to detect a causal influence in the reverse direction. 

Performing the same MR analysis with a stricter SNP–exposure asso-
iation threshold reduced the number of instruments from 396 to 219,
ith similar causal effect estimates for all MR methods and slightly in-

reased corresponding p-values. 
Taken together, the results from robust MR methods and sensitiv-

ty analyses described above do not indicate the presence of strong
leiotropic effects or other sources of systematic bias that could substan-
ially influence the MR results. Consistent results from standard, robust
nd outlier-removal MR variants, combined with the absence of direc-
ional pleiotropy as assessed by the MR-Egger intercept and the meta-
nalytic funnel plot, strongly support a causal effect of systolic blood
ressure on the external capsule. Furthermore, there is no evidence for
everse causation, which is in line with what could reasonably be ex-
ected in terms of biological pathways. 

We have not explicitly considered the potential for correlated
leiotropy. In case of the current application, a hypothesised corre-
ated pleiotropic pathway could include BMI, which is known to be
n important determinant of blood pressure. If BMI also has an effect
n the outcome, it could bias the MR estimate but might not be easily
etected if more than a few outlying SNPs are affected. This could be
ddressed through multivariable MR or via an approach that is robust
o correlated pleiotropy such as MR-CAUSE, which has been shown to
educe false positives when correlated pleiotropic pathways are present
 Morrison et al., 2020 ). 

In addition, a Bayesian network analysis can be used to corroborate
ndings from the MR analysis or, conversely, MR results can provide
rior knowledge about (i.e., constraints on) the presence or absence of
irected edges in the underlying graph structure. In this example, the
et of variables to estimate the graph structure included systolic blood
ressure (BP) and MD in the external capsule (EC) as primary variables
f interest, as well as additional covariates Age, Grey Matter volume
GM) and Income (selected to reflect associations with socio-economic
ackground). Five SNPs that are strongly associated with either BP, GM
r EC were included as directional anchors to increase the identifiability
f edges in the graph. 
t  

13 
The Bayesian network shown in Fig. 6 A was estimated using the hill-
limbing algorithm in the bnlearn R package and is based on 1000
ootstrap samples. A threshold of 0 . 8 for edge-inclusion was used, i.e.,
equiring that a candidate edge is present in at least 80% of bootstrap
amples. A comparison (not shown) between the bootstrapped graph
nd a single estimation on the full data was used to highlight any dis-
repancies or inconsistencies (none were found in this case). Using di-
ectional anchors (indicated as solid arrows in Fig. 6 A), the BN esti-
ate results in a DAG with a strong edge from BP to the external cap-

ule. Similarly the ancestral graph estimate ( Fig. 6 B) confirms the ex-
ected causal direction from BP to EC, albeit with the caveat that one
r more latent, unmeasured variables may be present in the path from
P to EC. 

.3.2. Example 2: Bone mineral density 

The second example looks at bi-directional effects involving heel
one mineral density (UKB-ID 3148) and various IDPs. A priori, one
ould not necessarily expect brain phenotypes to have a causal influ-

nce on bone density. However, the reverse direction is not biologically
bvious either, and one might hypothesise that indirect effects may play
 role. We set the default “forward ” direction of any causal relationship
s going from bone density to IDP. Results from a bi-directional MR in-
estigation are shown in Fig. 7 , highlighting six IDPs with the strongest
verall effect estimates. 

Fig. 7 A shows positive and negative effect estimates of bone den-
ity on both structural and diffusion-based IDPs. On the other hand,
here is no indication for reverse causation for most IDPs except for two
reesurfer measures related to brain volume. 

For the remainder of this example, we focus on T1 normalised pe-
ipheral cortical grey matter (GM) volume generated via FSL (UKB-ID
5001) and show results from a sensitivity analysis. The scatter plot of
NP associations for the forward direction ( Fig. 8 A) shows much more
onsistent effect estimates across different MR methods than the same
lot for the reverse direction ( Fig. 9 A). Substantial heterogeneity is de-
ected by Cochran’s 𝑄 test in both directions, although it is more severe
or the reverse effect estimates ( 𝑄 = 400 , 𝑑𝑓 = 30 , 𝑝 < 10 −66 ) than for the
orward direction ( 𝑄 = 734 , 𝑑𝑓 = 433 , 𝑝 < 10 −18 ). Strong heterogeneous
nd asymmetric effects can also be seen in the funnel plot in Fig. 9 B. 

Scrutiny of the MR-Mix ( Qi and Chatterjee, 2019 ) output demon-
trates the discrepancy in effect estimates. The density fit in Fig. 9 C for
he reverse direction is much narrower and suggests a high confidence
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Fig. 7. Bi-directional MR analysis of the relationship between heel bone mineral density (UKB-ID 3418) and selected IDPs: Shown are causal effect estimates for six 
MR methods. (A) Causal effect estimates of heel bone mineral density on IDPs. (B) Causal effect estimates of IDPs on heel bone mineral density. Errorbars show 95% 

confidence intervals. ( ⋆ ) MR-Egger estimate ( 2 . 9 ± 0 . 8 ) not in plotting range. 

Fig. 8. MR sensitivity analysis of a potentially causal effect of heel bone mineral density (UKB-ID 3148) on T1 peripheral cortical GM volume (UKB-ID 25001). (A) 
Scatter plot showing associations of individual SNPs with exposure and outcome variables. Coloured lines indicate effect estimates from regression fits using different 
MR methods. (B) Funnel plot of single-SNP effect estimates and corresponding inverse standard errors. (C) Probability density of the estimated causal effect using a 
mixture model approach with MR-Mix. The dashed red line indicates the causal effect estimate. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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hat the effect is close to zero. 10 Furthermore, the MR-PRESSO fit flags
4 out of 31 SNPs in the reverse analysis as potential outliers, and a
teiger directionality test indicates the forward direction as the more
lausible pathway. 

Overall, evidence from this analysis points more strongly towards
 forward causal effect of bone mineral density on GM volume rather
han the reverse. However, feedback mechanisms cannot be fully ruled
ut and the potential existence of a common cause that is also associ-
ted with the selected instruments (violation of the exclusion restriction)
ould severely bias the MR results. 

In cases like this, domain knowledge and other sources of evidence
re crucial and will increase confidence in any findings from an MR
nalysis and help in the interpretation of results. 
10 Note that, although not present here, bi-modality in the MR-Mix output can 
e an indication that the wrong exposure–outcome direction has been speci- 
ed. In the present example, a second peak away from zero would point to the 
xistence of a non-zero effect in the forward direction. 

f  

a  

t  

a  
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.3.3. Example 3: Cognition 

For this example, we use a set of variables related to cognitive func-
ion to demonstrate some of the challenges that may arise in the study of
ausal relationships of brain phenotypes, especially when using IDPs as
xposures in an MR framework. During the preliminary screening of po-
ential causal variable pairs, a reaction time measure, “mean time to cor-
ectly identify matches ” (MTCIM, UKB-ID 20023), showed the strongest
ssociations with IDPs. Fig. 10 gives causal effect estimates with MTCIM
s (A) the exposure and (B) the outcome variable, respectively. Unlike in
he previous two examples, effect estimates are more variable and gen-
rally closer to zero, meaning that statistical significance as measured by
-values is lower. Lower levels of significance and higher variability can
n part be attributed to fewer and weaker instruments being available
or a high-level trait such as cognition, compared to phenotypes such
s blood pressure, for example, which are arguably biologically closer
o the direct effect of genetic variants. For the vast majority of IDPs,
nd based on currently available GWAS data, only a handful of SNPs
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Fig. 9. MR sensitivity analysis of the effect of T1 peripheral cortical GM volume (UKB-ID 25001) on heel bone mineral density (UKB-ID 3418). (A) Scatter plot showing 
associations of individual SNPs with exposure and outcome variables. Coloured lines indicate effect estimates from regression fits using different MR methods. (B) 
Funnel plot of single-SNP effect estimates and corresponding inverse standard errors. (C) Probability density of the estimated causal effect using a mixture model 
approach with MR-Mix. The dashed red line indicates the causal effect estimate. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 10. Bi-directional MR analysis of the relationship between the mean time to correctly identifying matches in a cognitive test (UKB-ID 20023) and selected IDPs: 
Shown are causal effect estimates for six MR methods. (A) Causal effect estimates of the cognitive trait on IDPs. (B) Causal effect estimates of IDPs on the cognitive 
trait. Errorbars show 95% confidence intervals. 
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re strongly associated with an IDP in any given case, thus limiting the
ower to detect true causal effects. 

Looking at one IDP (cerebral white matter volume in the left hemi-
phere, UKB-ID 26553) in greater detail, we performed a similar sen-
itivity analysis as in previous examples. The plots in Fig. 10 show
ore reliable estimates for the forward direction (MTCIM effect on
M volume, 𝑛 SNP = 62 ) than for the reverse direction ( 𝑛 SNP = 13 ). The

unnel plots in Fig. 11 B,D show asymmetry in the single-SNP effect
15 
stimates for both directions, indicating the presence of directional
leiotropy. 

Cochran’s 𝑄 test showed greater heterogeneity in single-SNP esti-
ates in the forward direction and the Steiger directionality test was

nconclusive, i.e., estimating both directions as roughly equally likely
ased on the strength of the SNP–exposure and SNP–outcome associa-
ions. Single-SNP (Fig. 17A) and leave-one-out MR analysis (Fig. 17B)
id not reveal any clear outliers. 
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Fig. 11. Bi-directional MR sensitivity analysis of the potentially causal effect of correctly identifying matches (UKB-ID 20023) on subcortical white matter volume 
(UKB-ID 26553) (A-B) and vice versa (C-D). (A) and (C) Scatter plots showing associations of individual SNPs with exposure and outcome variables. Coloured lines 
indicate effect estimates from regression fits using different MR methods. (B) and (D) Funnel plots of single-SNP effect estimates and corresponding inverse standard 
errors. 
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A possible reason for the ambiguous bi-directional MR results could
ie in an upstream pleiotropic phenotype that is a common cause for
oth exposure and outcome (correlated horizontal pleiotropy). To give
ne potential example, educational attainment could be hypothesised to
ffect each of the phenotypes considered in the MR, and thus bias the
ausal effect estimate even though no clear outliers have been detected.

Perhaps counter-intuitively, a potential causal effect from MTCIM to
M volume appears more plausible based on these findings. However,

t is not clear what biological pathways may be involved. Additionally,
eedback loops and time-dependent mechanisms ( Burgess et al., 2021 )
ay also play a role here. Overall, without further corroborating evi-
ence, clear causal conclusions cannot be drawn. 

We urge caution when interpreting and reporting results from po-
entially under-powered MR analyses or when a thorough sensitivity
nalysis indicates underlying issues with outliers, heterogeneity and
leiotropy. The burden of establishing credible evidence is particularly
igh in cases where existing domain knowledge is limited, and claims
f newly discovered causal mechanisms are made. 

. Discussion 

The goal of this paper was to introduce Mendelian randomisation to
esearchers with a predominantly neuroimaging background, and illus-
rate the advantages and limitations of MR with three neuroimaging-
pecific example applications. Although often not stated explicitly,
ausal claims about biological mechanisms and disease pathways are
ommonly made implicitly. MR methods can provide a framework to
igorously test causal hypotheses in the absence of interventional data,
ut should not be considered as the only source of evidence (and are
16 
ot as bullet-proof as a randomised, controlled, interventional study).
dditional domain knowledge and the incorporation of results from dif-

erent methodologies are considered key ingredients for a triangulation

f evidence approach ( Howey et al., 2020; Lawlor et al., 2016; Munafò
nd Davey Smith, 2018 ). We briefly explored one such complementary
pproach in the form of Bayesian networks here. Causal Bayesian net-
orks can be used as hypothesis-generating approaches that result in

estable predictions about effects under an external manipulation of a
arent node on its descendants ( Grosse-Wentrup et al., 2016 ). These de-
endencies can in turn be corroborated or informed by findings from
R analyses. 

Recent recommendations for best practices in MR include prioritis-
ng investigations in which the associations between genetic variants
nd exposures of interest are both primary (e.g., direct SNP effect on
rotein level) and well-understood ( Burgess et al., 2021 ). In the field
f neuroimaging this is generally not the case. Nevertheless, Mendelian
andomisation can be used as a powerful tool to advance our knowledge
f existing causal pathways and discover new ones. We strongly believe
hat thorough consideration of underlying assumptions, general limita-
ions of MR, potential sources of bias alongside rigorous sensitivity anal-
ses and cautious interpretation of results are necessary components of
 careful MR investigation (see Table 1 ). 

To our knowledge this is the first MR study involving hundreds of
maging-derived phenotypes together with a wide range of health mea-
ures. The purpose of this exploratory investigation was to showcase the
otential of MR analyses when applied to neuroimaging data. We high-
ighted three exposure–outcome scenarios with the intention to demon-
trate some of the methodological limitations and inherent difficulties
ith ensuring reliable results. 
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Our first example involved systolic blood pressure and its effect on
arious IDPs. Particularly, we found evidence for a robust causal effect
f blood pressure on mean diffusivity in the external capsule. Results
rom sensitivity analyses corroborated this finding. We also compared
R results to graphical estimates using Bayesian networks in a comple-
entary analysis. 

In the second example, we focused on bi-directional effects involv-
ng bone density, either as possible exposure or possible outcome in an
R analysis. In the absence of clear, biologically grounded hypotheses

bout cause–effect directionality and robust one-directional effect esti-
ates, MR results can be inconclusive and extra care about potential

iolations of underlying assumptions need to be taken. We showed in
n extensive sensitivity analysis how one might use available software
ools, statistical tests and plotting of the data to further investigate MR
ndings. 

The third example was motivated by the possibility of (causally) re-
ating imaging-derived phenotypes to high-level traits such as cognition.
ighly variable effect estimates and low levels of statistical significance

evealed substantial challenges when investigating traits that are far re-
oved from the direct effects of genetic variation. Unfortunately, due to

he much weaker SNP–IDP association strengths (which are partly due to
omparatively small sample size of the imaging GWAS), most causal ef-
ect estimates involving IDPs, either as exposure or as outcome, are small
nd often inconclusive. Multi-variable MR methods, possibly combined
ith a dimensionality-reduction and orthogonalisation step for highly-

orrelated imaging exposures as recently proposed ( Mo et al., 2021 ), are
ne direction of ongoing methodological development to address some
f these issues. 

We emphasise that, apart from the first example, which showed a
obust and reliable causal effect of blood pressure on a measure of dif-
usivity in the right external capsule, our findings revealed only putative
ausal effects with indications of potential bias due to pleiotropy, weak
nstruments or reverse causation. Causal conclusions should therefore
e drawn cautiously. Furthermore, over-interpretation of effect size es-
imates should generally be avoided. Instead, MR analyses should focus
rimarily on identifying the existence and direction of causal pathways.

Ideally, any findings would be supported by background knowledge
n the underlying biology and, whenever possible, a triangulation of ev-
dence. The increasing availability of GWAS results on very large imag-
ng cohorts and advances in the understanding of pathways from ge-
etic variants to higher-level, imaging-related phenotypes in future will
llow for more detailed, robust and reliable analyses of the causal re-
ationships between genetic, clinical and imaging variables on one side
nd measures of health outcomes on the other. Mendelian randomisa-
ion techniques and other causal inference methods have the potential
o play a valuable role in identifying and interpreting these putative
ausal relationships. 
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