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Biophysical models that attempt to infer real-world quantities from data usually have many free parameters. This over-parameterisation can result in degeneracies in 

model inversion and render parameter estimation ill-posed. However, in many applications, we are not interested in quantifying the parameters per se , but rather in 

identifying changes in parameters between experimental conditions (e.g. patients vs controls). Here we present a Bayesian framework to make inference on changes 

in the parameters of biophysical models even when model inversion is degenerate, which we refer to as Bayesian EstimatioN of CHange (BENCH). 

We infer the parameter changes in two steps; First, we train models that can estimate the pattern of change in the measurements given any hypothetical direction 

of change in the parameters using simulations. Next, for any pair of real data sets, we use these pre-trained models to estimate the probability that an observed 

difference in the data can be explained by each model of change. 

BENCH is applicable to any type of data and models and particularly useful for biophysical models with parameter degeneracies, where we can assume the change 

is sparse. In this paper, we apply the approach in the context of microstructural modelling of diffusion MRI data, where the models are usually over-parameterised 

and not invertible without injecting strong assumptions. Using simulations, we show that in the context of the standard model of white matter our approach is able 

to identify changes in microstructural parameters from conventional multi-shell diffusion MRI data. We also apply our approach to a subset of subjects from the 

UK-Biobank Imaging to identify the dominant standard model parameter change in areas of white matter hyperintensities under the assumption that the standard 

model holds in white matter hyperintensities. 
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. Introduction 

Modelling diffusion MRI (dMRI) data comes in two flavours.

henomenological models, such as diffusion tensor imaging (DTI)

 Basser et al., 1994 ) and diffusion kurtosis imaging (DKI) ( Jensen et al.,

005 ) attempt to describe the diffusion signal in a structured mathe-

atical form, while (bio)physical models such as the standard model

 Novikov et al., 2019a ), NODDI ( Zhang et al., 2012 ), Ball and Rackets

 Sotiropoulos et al., 2012 ) and AxCaliber ( Assaf et al., 2008 ) attempt to

nfer properties of the tissue microstructure given the data. This active

eld of research relies on the inversion of biophysical forward mod-

ls, but it is also notoriously difficult to overcome model degeneracies

 Jelescu et al., 2016 ). To resolve these degeneracies, the conventional

pproach is to constrain a subset of the parameters and only make infer-

nces on the remaining parameters ( Zhang et al., 2012 ). However, when

he assumptions are not accurate (e.g., in diseased tissue), they will bias

he estimated model parameters and cause errors in interpretation. As

 result, not only is there a limit to the number of microstructural pa-

ameters that can be estimated, but the reliability of the estimated pa-

ameters can also be questionable ( Jelescu et al., 2016; Lampinen et al.,

019; Reisert et al., 2017 ). 
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It is worth mentioning that there are efforts on acquiring complemen-

ary information using for example multiple diffusion encoding ( Coelho

t al., 2019; Lampinen et al., 2020; Reisert et al., 2019 ), as well as in-

roducing more biophysically informed priors to limit the search space,

o provide enough constraints to uniquely estimate the parameters of

he standard model. However, here we adopt the standard model of

hite matter fitted to conventional multi-shell diffusion MRI data as a

ell-studied degenerate model merely as a toy example to illustrate the

oncept. 

However, in many real-world applications, the model parameters

ay not be of direct interest. Rather, we are often interested in the

change ” in the parameters under different experimental conditions. For

xample, to study mechanisms underlying a disease one might compare

he parameter estimates of biophysical models between patient and con-

rol groups. However, the parameter estimation is only tractable when

he model of interest is invertible given the data. This limits one to sim-

le biophysical models or requires injection of prior assumptions. 

In this work, we show that we can make precise inferences on the

hange in model parameters even in complex degenerate models. We ar-

ue that, using a sparsity assumption on the pattern of change, we can

imit the hypothesis space, and so circumvent the degeneracy in the pa-
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Fig. 1. Illustration of the inversion-free inference on change (BENCH). Consider a toy model with two parameters and two measurements  ( 𝑣 1 , 𝑣 2 ) = [ 𝑚 1 , 𝑚 2 ] . Each 

oval in the parameter space (left) corresponds to a single point in the measurement space (right) with the same colour; meaning that there is a one to many mapping 

from measurements to parameters (i.e., the model is degenerate). Despite the degeneracies we are able to estimate which of the parameters best explains the change 

in the measurements. We do so by comparing the observed change ( Δ𝑦 ) with the expected change in the measurements ( 𝜇1 , 𝜇2 ) as a result of each hypothesised 

pattern of change ( ̂Δ𝑣 1 , ̂Δ𝑣 2 ). 
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W  
ameter estimation (see Fig. 1 , also refer to Appendix A for more details

bout directly inferring changes). Our approach proceeds in two steps:

irst, we use simulated data generated from a forward model to train

odels that calculate how each parameter affects the measurements.

nce these models of change have been trained for all hypothetical pat-

erns of change, we use them to infer the posterior probability of which

attern of change in parameter(s) can best explain the change between

eal datasets. We call this approach BENCH, which stands for Bayesian

stimatioN of CHange. 

When confronted with a degenerate biophysical model, BENCH

akes a different set of assumptions from the traditional approach of

xing some parameters and identifying any change in the remaining

ree parameters. When comparing patients and controls, the traditional

pproach assumes that the prior values for the fixed parameters hold

cross the region of interest in both groups. Hence, any change of sig-

al across the region of interest between the two groups is assumed

o be fully explained by the predetermined set of free parameters. In

ontrast, by not relying on model inversion, BENCH can work directly

ith the degenerate biophysical model without fixing any parameters.

owever, this comes at the price of limiting the change to some prede-

ermined set of possible patterns set by the user (e.g., parameter A could

hange, or parameter B increases by the same amount as parameter C

ecreases). While the number of such proposed microstructural changes

an be large, each of them has to be sparse (i.e., they have fewer degrees

f freedom than the number of free parameters that could be estimated

sing the conventional approach). In this work, we will limit ourselves

o changes of just one parameter at a time for the sake of simplicity of

xplanation. 

BENCH is applicable to any situation where we are interested in

omparing the parameters of a generative (bio)physical model across

ifferent conditions. Here we apply the framework to diffusion MRI mi-

rostructure modelling. As an example use case, we studied microstruc-

ural changes in White Matter Hyperintensities (WMH), which are extra

right regions that are commonly seen in T2-weighted images at spe-

ific brain regions in elderly people. Despite the abundance and clinical

mplications of WMHs ( Debette and Markus, 2010; Prins and Scheltens,

015 ), the underlying changes in the histopathology and microstructure

emain unknown ( Gouw et al., 2011; Wardlaw et al., 2013 ). 

The structure of this paper is as follows. In the Theory section, we

resent the general inference method and how we train the models of

hange. In the Methods section, we cover the diffusion-specific materi-

a  

2 
ls including the computation of summary measurements that are used

o represent diffusion data and the microstructural model for diffusion

RI. In the Results section, we first demonstrate the ability of our model

n detecting the underlying parameter changes using simulated data. We

hen apply the method to study microstructural changes in white mat-

er hyperintensities as an example application. In the Discussion section,

he potential applications, limitations, and possible future directions of

his work are presented. 

. Theory 

.1. Inference on change in parameters 

Given a baseline measurement (y), an observed change in the mea-

urement ( Δ𝑦 ), and a generative biophysical model (  ), we aim to in-

estigate what pattern of change ( Δ̂𝑣 ) in the model parameters ( 𝑣 ) can

est explain this observed change in the measurements ( Fig. 1 ). A pat-

ern of change is a unit vector in the parameter space, e.g. it can be a

hange in a single parameter or any linear combination of the model

arameters. For simplicity of the explanations and notation, we only

ssume a single parameter change in the rest of paper, but all the equa-

ions apply to any linear combination of the parameters. If the model

s invertible, we may directly estimate Δ𝑣 by inverting the model on y

nd 𝑦 + Δ𝑦 to get the corresponding parameter estimates and calculate

he differences. Alternatively, in BENCH we estimate 𝑃 ( Δ̂𝑣 ∣ 𝑦, Δ𝑦 ) , that

s the posterior probability for the pattern of change Δ̂𝑣 conditioned on

he observed baseline ( 𝑦 ) and change in the data( Δ𝑦 ). Using Bayes’ rule:

 ( Δ̂𝑣 ∣ 𝑦, Δ𝑦 ) = 

𝑃 (Δ𝑦 ∣ 𝑦, Δ̂𝑣 ) 𝑃 ( Δ̂𝑣 ∣ 𝑦 ) ∑
Δ̂𝑣 ′ 𝑃 (Δ𝑦 ∣ 𝑦, Δ̂𝑣 

′) 𝑃 ( Δ̂𝑣 ′ ∣ 𝑦 ) 
(1)

We assume no prior preference between the patterns of change given

he baseline measurements(i.e. 𝑃 ( Δ̂𝑣 ∣ 𝑦 ) is uniform), so to estimate the

osterior probabilities we only need to estimate the likelihood term

 (Δ𝑦 |𝑦, Δ̂𝑣 ) . The pattern of change Δ̂𝑣 represents the direction but not

he amount of the change in the parameters. We therefore marginalize

he likelihood with respect to the amount of change ( |Δ𝑣 |) : 
 (Δ𝑦 ∣ 𝑦, Δ̂𝑣 ) = ∫ 𝑃 ( |Δ𝑣 |) 𝑃 (Δ𝑦 ∣ 𝑦, Δ̂𝑣 , |Δ𝑣 |) 𝑑 |Δ𝑣 | (2)

e assume that the prior distribution for the amount of change follows

 log-normal pdf with a fixed mean and scale parameter (adjustable
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Fig. 2. Distribution of derivatives. The way measurements change as a result of a particular change in the parameters can only be calculated if we know the baseline 

parameters. When we are only given the measurements, there are several instances of equally likely derivative directions depending on the underlying baseline 

parameters. We model all of these derivatives given the baseline measurements as a random variable with a presumed distribution. This allows us to transfer the 

uncertainty due to the inverse model degeneracy into the measurement space. The blue oval in the parameter space (left) represents all the parameter settings that 

map onto the same blue point in the measurement space(right). Each of these parameter settings can produce a different derivative direction in the measurements 

space. The collection of such derivatives of change Δ̂𝑣 for the measurement 𝑦 are modelled as a Gaussian distribution with mean 𝜇Δ̂𝑣 ( 𝑦 ) and covariance ΣΔ̂𝑣 ( 𝑦 ) . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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yper parameters). A log-normal PDF is chosen to allow for changes

cross several order of magnitudes. 

The likelihood term inside the integral, 𝑃 (Δy |y , Δ̂v , |Δv |) , defines

ow the measurements change as a result of a fully characterised vector

f change in the parameters with the given direction ( Δ̂𝑣 ) and amount

 |Δ𝑣 |). To relate this parameter change to a change in data one also

eeds to know the baseline parameters ( 𝑣 ), as 

𝑦 =  ( 𝑣 + |Δ𝑣 |Δ̂𝑣 ) −  ( 𝑣 ) + 𝜖 (3)

here 𝜖 is the measurement noise. However, for a degenerate biophys-

cal model, we cannot estimate a unique set of baseline parameters 𝑣

or which to estimate Eq. (3) . While, one could integrate over all pos-

ible values of 𝑣 , this is a very high-dimensional integral, which would

e very computationally expensive. Instead, we propose an alternative

ay to avoid the need of estimating the baseline parameters to estimate

he likelihood. 

Assuming that |Δ𝑣 | is reasonably small, and  is behaving smoothly

.r.t 𝑣 , using a Taylor expansion we can express Δ𝑦 as: 

𝑦 = ∇ Δ̂𝑣  ( 𝑣 ) |Δ𝑣 | + 𝜖 (4)

here ∇ Δ̂𝑣  ( 𝑣 ) is the derivative of  in the direction of Δ̂𝑣 at point 𝑣 ,

nd 𝜖 is the measurement noise. Given the baseline measurements ( 𝑦 ),

ut not the baseline parameters ( 𝑣 ), there can be an infinite number of

 Δ̂𝑣  ( 𝑣 ) for a degenerate model ( Fig. 2 ). To account for all instances

f the derivative, we model ∇ Δ̂𝑣  given 𝑦 as a random variable that

ollows a normal distribution with hyperparameters 𝜇( 𝑦 ) and Σ( 𝑦 ) , i.e. 

 Δ̂𝑣  ( 𝑦 ) ∼ 𝑁( 𝜇Δ̂𝑣 ( 𝑦 ) , ΣΔ̂𝑣 ( 𝑦 )) (5)

here 𝜇Δ̂𝑣 represents the average expected change in the measurements

s a result of change in parameters in the direction Δ̂𝑣 , ΣΔ̂𝑣 represents

he uncertainty around this expectation due to the unknown baseline

arameters ( Fig. 2 ), and 𝑁( 𝑚, 𝐶) represents a Gaussian PDF with mean

 and covariance 𝐶. This formulation allows us to transfer the uncer-

ainty in the baseline parameters to an uncertainty in the measurement

pace, which we can model and predict. In the next section we will de-

cribe a method for estimating 𝜇Δ̂𝑣 ( 𝑦 ) and ΣΔ̂𝑣 ( 𝑦 ) by training regression

odels using simulated data. Once we compute these hyperparameters,

y inserting Eq. (5) back into Eq. (4) we can compute the likelihood
3 
erm inside the integral by 

 (Δ𝑦 ∣ 𝑦, Δ̂𝑣 , |Δ𝑣 |) = 𝑁( |Δ𝑣 |𝜇Δ̂𝑣 ( 𝑦 ) , |Δ𝑣 |2 ΣΔ̂𝑣 ( 𝑦 ) + Σ𝑛 ) (6)

here Σ𝑛 is the noise covariance matrix. 

Finally, by computing the integral over the size of the parameter

hange in Eq. (2) numerically, we are able to approximate the likeli-

ood function 𝑃 (Δ𝑦 ∣ 𝑦, Δ̂𝑣 ) which we can then use in Eq. (1) yielding

he desired posterior distribution on the change in parameters. More-

ver, using the approximation of the likelihood function in Eq. (6) the

osterior probability of the amount of change for each direction is pro-

ortional to 

 ( |Δ𝑣 | ∣ Δ𝑦, 𝑦, Δ̂𝑣 ) ∝ 𝑃 (Δ𝑦 ∣ 𝑦, Δ̂𝑣 , |Δ𝑣 |) 𝑃 ( |Δ𝑣 |) (7)

ote that this likelihood function is unnormalized so a high or low value

oesn’t necessarily reflect the quality of the change model in explain-

ng the data. For such measure please refer to Appendix B . We can still

stimate the most likely amount of change in the parameter given the

easurements by finding the |Δ𝑣 | that maximizes the above posterior

robability (maximum a posteriori estimation). Alternatively, we can

stimate the expected value of the amount of change by integrating this

osterior probability distribution multiplied by |Δ𝑣 | over |Δ𝑣 |. 
.2. Training models of change 

In this section we describe how to train a regression model to esti-

ate the hyperparameters of the distribution of ∇ Δ̂𝑣  ( 𝑣 ) , namely the

verage ( 𝜇Δ̂𝑣 ( 𝑦 ) ) and uncertainty ( ΣΔ̂𝑣 ( 𝑦 ) ) of change in the measurement

 𝑦 ) for a parameter change ( Δ̂𝑣 ). 
Given some baseline parameters ( 𝑣 ) one can calculate the baseline

easurements as 𝑦 =  ( 𝑣 ) and approximate the derivative in direction
̂𝑣 using 

 Δ̂𝑣  ( 𝑣 ) ≈ lim 

𝑡 →0 

 ( 𝑣 + 𝑡 Δ̂𝑣 ) −  ( 𝑣 ) 
𝑡 

(8)

Therefore, by sampling 𝑣 from the parameter space using a prior

istribution, we generate a simulated dataset of pairs [ 𝑦, ∇ Δ̂𝑣  ] that we

se for training regression models. 

We use a regression model parameterised by 𝑤 𝜇Δ̂𝑣 
to estimate 𝜇Δ̂𝑣 

s: 

Δ̂𝑣 ( 𝑦 ; 𝑤 𝜇Δ̂𝑣 
) = 𝐹 ( 𝑦 ) .𝑤 𝜇Δ̂𝑣 

(9)
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here 𝐹 ( 𝑦 ) is the design matrix, which depends on arbitrary affine

r non-linear transformations of 𝑦 . Note that the subscript 𝜇Δ̂𝑣 of the

eights indicates that each pattern of change in the parameters has its

wn set of weights. 

We also employ a regression model for the uncertainty hyperparam-

ter ΣΔ̂𝑣 parameterised by 𝑤 ΣΔ̂𝑣 
. However, ΣΔ̂𝑣 must be positive defi-

ite, which would not be guaranteed when directly estimating ΣΔ̂𝑣 by

raining an element-wise regression model. To account for the positive

efinite nature of ΣΔ̂𝑣 , we instead train regression models for elements

f the lower triangular matrix of its Cholesky decomposition ( 𝐿 ). Also,

ince the diagonal elements of the lower-triangular matrix in Cholesky

ecomposition must be non-negative, we use their log-transform in the

egression model. Hence 

Δ̂𝑣 ( 𝑦 ; 𝑤 ΣΔ̂𝑣 
) =  ( 𝐹 ( 𝑦 ) .𝑤 ΣΔ̂𝑣 

) (10)

here  denotes the transformation of the regressed vector to the full

ovariance matrix that includes the arrangement of elements, expo-

entiation of the diagonals, and the matrix multiplication for inverse

holesky decomposition. 

Putting back the above regression models into Eq. (5) the likelihood

f observing pairs of baseline measurements and derivatives in terms of

he parameters of regression models is: 

 ( 𝑤 𝜇Δ̂𝑣 
, 𝑤 ΣΔ̂𝑣 

) = 

∏
𝑖 

𝑁(∇ Δ̂𝑣  𝑖 ; 𝐹 ( 𝑦 𝑖 ) .𝑤 𝜇Δ̂𝑣 
,  ( 𝐹 ( 𝑦 𝑖 ) .𝑤 ΣΔ̂𝑣 

)) (11)

Accordingly, we estimate the optimal weights 𝑤 𝜇Δ̂𝑣 
, 𝑤 ΣΔ̂𝑣 

by max-

mizing the above likelihood function for the simulated pairs of

 𝑦 𝑖 , ∇ Δ̂𝑣  𝑖 ] using a combination of the BFGS and Nelder-Mead meth-

ds as implemented in SciPy ( Virtanen et al., 2020 ). 

This procedure is repeated for each hypothetical pattern of change,

ielding two sets of weights for the average and uncertainty of change,

hich we refer to as a “change model ”. Once we estimated these

eights, for any given baseline measurement we use the regression mod-

ls in Eqs. (9) and (10) to estimate the distribution of derivatives and

hen the desired probability distributions. Figure 3 shows a schematic

verview of the inputs, outputs and steps that are required to train a

hange model, as well as how to use them to infer the change in param-

ters. 

In this work, we used a second degree polynomial function of the

ata for the regression models that estimate the mean change ( 𝜇Δ̂𝑣 )

rom the baseline measurements. For the uncertainty parameter ( ΣΔ̂𝑣 ) a

rst degree (linear) model is chosen as we expect less variability across

amples for this hyperparameter. The weights for the regression models

ere estimated using a maximum likelihood optimization and a training

ataset with 100,000 simulated samples. 

.3. Biophysical model of diffusion 

In this section we explain the biophysical model of diffusion that

e used to model brain microstructure with diffusion MRI data. The

iffusion signal 𝑆 in the brain is conventionally modelled as the sum

f signals from multiple compartments. We will here adopt the three-

ompartment standard model ( Novikov et al., 2019a ) consisting of an

sotropic free water (denoted by the subscript “iso ”), an intra-axonal

 “in ”), and an extra-axonal ( “ex ”) compartment: 

 = 𝑆 𝑖𝑠𝑜 𝐴 𝑖𝑠𝑜 + 𝑆 𝑖𝑛 𝐴 𝑖𝑛 + 𝑆 𝑒𝑥 𝐴 𝑒𝑥 (12)

here 𝑆 𝑖 represents the baseline signal contribution (at 𝑏 = 0 ), and 𝐴 𝑖 

epresents the signal attenuation due to the diffusion weighting in each

ompartment ( Fig. 4 ). 

The attenuation for the isotropic compartment is modelled as an ex-

onential decay: 

 𝑖𝑠𝑜 = 𝑒 − 𝑏𝑑 𝑖𝑠𝑜 (13)

here 𝑑 is the diffusion coefficient of free water. 
𝑖𝑠𝑜 

4 
The intra-axonal compartment is modelled as a set of dispersed iden-

ical sticks with no perpendicular diffusivity. The stick response function

or gradient direction 𝑔 and b-value 𝑏 is given by 

 ( 𝑏, 𝑔; 𝜇, 𝑑 𝑖𝑛,𝑎 ) = 𝑒 − 𝑏𝑑 𝑖𝑛,𝑎 ( 𝜇
𝑇 𝑔) 2 (14)

here 𝑑 𝑖𝑛,𝑎 is the diffusion coefficient along the orientation of the stick

. 

The fibre Orientation Distribution Function (fODF) is modelled with

 Watson distribution, which is defined as 

( 𝑥 ) = 

1 
𝑐 
𝑒 𝜅( 𝜇

𝑇 𝑥 ) 2 (15)

here 𝜇 is the average orientation, 𝜅 is the concentration coefficient

nd 𝑐 is a normalization constant. To assimilate the dispersion coeffi-

ient to the notion of variance and limit it to a bounded range, we use

he change of variable from 𝜅 to Orientation Dispersion Index (ODI) as

𝐷𝐼 = 

2 
𝜋
arctan ( 1 

𝜅
) . Unlike 𝜅 which is unbounded, 𝑂𝐷𝐼 is limited to the

ange (0 , 1) , where higher 𝑂𝐷𝐼 values correspond to more dispersion.

o, the diffusion signal for this compartment is the spherical convolution

f the fibre response function with the Watson ODF: 

 𝑖𝑛 = ∬𝑆 2 
𝑒 − 𝑏𝑑 𝑖𝑛,𝑎 ( 𝑔 

𝑇 𝑛 ) 2 1 
𝑐 
𝑒 
𝑐𝑜𝑡 ( 𝜋2 𝑂𝐷𝐼) ( 𝜇

𝑇 𝑛 ) 2 
𝑑𝑛 (16)

here the integral is over the surface of the unit sphere 𝑆 2 representing

ll possible fibre orientations in 3D. 

The extra-axonal compartment is modelled similar to the intra-

xonal compartment, with the addition of a non-zero diffusion perpen-

icular to the fibre orientation. The fibre response function in this case

s given by 

 = 𝑒 − 𝑏 [ 𝑑 𝑒𝑥,𝑎 ( 𝜇
𝑇 𝑔) 2 + 𝑑 𝑒𝑥,𝑟 (1−( 𝜇𝑇 𝑔) 2 )] (17)

here 𝑑 𝑒𝑥,𝑟 ≤ 𝑑 𝑒𝑥,𝑎 are the radial and axial diffusion coefficients. To

void this dependence between the diffusivity parameters, the parame-

er 𝜏 defined as the ratio of perpendicular to parallel diffusivity is used

s a substitute to 𝑑 𝑒𝑥,𝑟 . The free parameter 𝜏 - subject to 𝜏 ∈ [0 , 1] to
aintain the inequality constraint for the diffusivities - can be consid-

red as a measure of tortuosity as it measures the extent to which water

iffusion perpendicular to the fibre orientation is hindered with respect

o the parallel diffusion. Therefore, the fibre response function for the

xtra axonal compartment is 

 = 𝑒 − 𝑏𝑑 𝑒𝑥,𝑎 [( 𝜇
𝑇 𝑔) 2 + 𝜏(1−( 𝜇𝑇 𝑔) 2 )] (18)

s the compartments share the same geometry, the same fibre orienta-

ion distribution is used. Accordingly, the signal attenuation for extra-

xonal compartment is given by 

 𝑒𝑥 = ∬𝑆 2 
𝑒 − 𝑏𝑑 𝑒𝑥,𝑎 [( 𝜇

𝑇 𝑔) 2 + 𝜏(1−( 𝜇𝑇 𝑔) 2 )] 1 
𝑐 
𝑒 
𝑐𝑜𝑡 ( 𝜋2 𝑂𝐷𝐼) ( 𝜇

𝑇 𝑛 ) 2 
𝑑𝑛 (19)

We use the confluent hypergeometric function of the first kind with

atrix argument to compute the integrals for both intra and extra axonal

ompartments similar to Sotiropoulos et al. (2012) . 

Table 1 summarises all the free parameters of the described biophys-

cal model along with their valid range. 

.4. Summary measurements 

Diffusion MRI data are usually measured in multiple shells to cap-

ure tissue properties that are sensitive to diffusion of water molecules at

arious spatial scales. Within each shell, gradients are applied in several

irections to measure the geometrical structure of the tissue. However,

ince we are only interested in the microstructural characteristics, any

rientation-related information is irrelevant. We therefore need sum-

ary measurements from each shell that are invariant to orientations.

e create these summary measurements using real spherical harmonics,

hich are analogous to the Fourier transform for the spherical domain.

Spherical harmonics are a complete set of orthonormal functions

ver the surface of a unit sphere. That is to say, any bounded real func-

ion that is defined over the unit sphere can be represented by a unique
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Fig. 3. Schematic flowchart for training and inference using change models. The blue, white and green blocks indicate user defined inputs, intermediate variables 

and outputs respectively. In the training phase for each parameter change, samples that are drawn from the provided prior distribution are passed through the forward 

model to estimate pairs of measurements and derivatives. Then, regression models are trained to estimate the distribution of derivatives given the measurements 

using a maximum likelihood estimation. This phase does not require real data and needs to be done only once. In the inference stage using these trained models we 

estimate the distribution of the derivatives for any given baseline measurements. We then calculate the posterior probability that change in each parameter caused 

the change in the measurements using the derivative distributions. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 4. Compartments of the diffusion model. We use a three compartment model that can describe diffusion MRI signals from various brain tissues namely CSF, 

white matter and gray matter. The isotropic compartment models unrestricted diffusion of water molecules outside of tissue (CSF) with a single free parameter 

𝑑 𝑖𝑠𝑜 . The intra-axonal compartment models the diffusion of water within axons as several sticks with identical parallel diffusivity parameter 𝑑 𝑖𝑛,𝑎 , and zero radial 

diffusivity, that are dispersed by a Watson distribution with orientation dispersion index 𝑂𝐷𝐼 . The extra-axonal compartment is also a Watson dispersed zeppelin 

with parallel diffusivity 𝑑 𝑒𝑥,𝑎 and perpendicular diffusivity 𝑑 𝑒𝑥,𝑟 = 𝜏𝑑 𝑒𝑥,𝑎 . Including the signal fraction parameters ( 𝑠 𝑖𝑠𝑜 , 𝑠 𝑖𝑛 , 𝑠 𝑒𝑥 ) this model has 8 free parameters, which 

are more than that can be fitted to a conventional dMRI data. 

5 
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Table 1 

Microstructural parameters of the diffusion model. All diffusion coefficients are 

in 𝜇𝑚 2 ∕ 𝑚𝑠 . 

Parameter Description Range 

𝑠 𝑖𝑠𝑜 Signal fraction for isotropic (free water) diffusion 

compartment 

[0 , 1] 

𝑠 𝑖𝑛 Signal fraction for intra-axonal compartment [0 , 1] 
𝑠 𝑒𝑥 Signal fraction for extra-axonal compartment [0 , 1] 
𝑑 𝑖𝑠𝑜 Isotropic (free water) diffusivity coefficient [0 , ∞] 
𝑑 𝑖𝑛,𝑎 Parallel diffusivity for the intra-axonal compartment [0 , ∞] 
𝑑 𝑒𝑥,𝑎 Parallel diffusivity for the extra-axonal compartment [0 , ∞] 
𝜏 radial to axial diffusivity ratio for the extra-axonal 

compartment 

[0 , 1] 

𝑂𝐷𝐼 Orientation dispersion index [0 , 1) 
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f  
inear combination of these functions with real coefficients. Each real

pherical harmonic is denoted by 𝑌 𝑙,𝑚 ( 𝜃, 𝜙) where 𝑙 = 0 , 1 , 2 , … is the de-

ree and 𝑚 = − 𝑙, … , 𝑙 is the order, and 𝜃 ∈ [0 , 𝜋] , 𝜙 ∈ [− 𝜋, 𝜋] are the

olar and longitudinal angles in standard spherical coordinate system

espectively. The diffusion signal at each shell is decomposed as: 

( 𝜃, 𝜙) = 

∞∑
𝑙=0 

𝑙 ∑
𝑚 =− 𝑙 

𝐶 𝑙,𝑚 𝑌 𝑙,𝑚 ( 𝜃, 𝜙) (20)

ince the harmonics are a linear basis, one can easily calculate the coef-

cients for the signal in each shell by inverting the design matrix formed

y the harmonics sampled at the gradient directions. 

The coefficients are not orientationally invariant. However, the total

ower in each degree, which is defined as the vector norm of all the cor-

esponding coefficients, is rotationally invariant ( Kazhdan et al., 2003;

ovikova et al., 2018; Zucchelli et al., 2020 ). Also, since the diffusion

ignal is symmetric around the origin and the harmonics of odd degree

re odd functions (anti-symmetric w.r.t origin), all odd degrees have

ero coefficients. 

Consequently, for each shell of diffusion data, we calculate the mean

quares of all coefficients for degrees 𝑙 = 0 , 2 , 4 , … as the orientationally-

nvariant summary measurements. 

 𝑙 = 

1 
2 𝑙 + 1 

𝑙 ∑
𝑚 =− 𝑙 

𝐶 2 
𝑙,𝑚 

(21)

he mean is chosen over the norm to make the scale equal across all

egrees. For the case of 𝑙 = 0 , we simply use the only coefficient (with-

ut the square), so that it represents the mean signal. The higher order

ummary measurements quantify the signal anisotropy; with greater 𝑙

eing more sensitive to sharper changes. We used a logarithm transfor-

ation on the anisotropy measurements to make the distribution of the

easurements for real data closer to a Gaussian and also being more

ensitive to smaller changes. 

. Methods 

.1. Simulations 

For all the simulations we used the acquisition protocol conducted by

he UK Biobank (UKB) ( Alfaro-Almagro et al., 2018; Miller et al., 2016 )

hich includes two shells of diffusion ( 𝑏 = 1 , 2 ms 
μm 2 ) with linear diffusion

ncoding. Each shell consists of 50 gradient directions distributed uni-

ormly over the surface of the unit sphere, in addition to 5 acquisitions

ith 𝑏 = 0 , yielding a total of 105 measurements. 

We used the rotationally invariant summary measurements com-

uted from spherical harmonics for signal representation. The summary

easurements for each shell are norms of coefficients at 𝑙 = 0 (abso-

ute value) and 𝑙 = 2 (log mean squared). This produces 5 rotational in-

ariant summary measurements from a diffusion data, namely b0-mean,

1-mean, b1-l2, b2-mean , and b2-l2 . 

The described standard model for diffusion is used for both simulated

est data and for training models of change. The prior distributions for
6 
he parameters are shown in Fig. 5 . We note that these priors are not

sed for constraining the model parameters but rather they are used to

enerate training samples for the regression models. The choice of the

rior distributions is arbitrary as long as they can reflect all hypothetical

arameter combinations that can produce measurements similar to real

ata. 

The standard model is not invertible given a conventional multi-

hell diffusion data with linear diffusion encoding ( Jelescu et al., 2016;

ovikov et al., 2019a ). Typically, additional constraints are imposed to

ender the model invertible, e.g. in NODDI ( Zhang et al., 2012 ), the

iffusion coefficients are fixed to a prior value as follows: 

 𝑖𝑠𝑜 = 3 𝜇𝑚 

2 

𝑚𝑠 
, 𝑑 𝑖𝑛,𝑎 = 𝑑 𝑒𝑥,𝑎 = 1 . 7 𝜇𝑚 

2 

𝑚𝑠 

dditionally, the tortuosity parameter 𝜏 is coupled to the signal frac-

ions: 

= 

𝑠 𝑖𝑛 

𝑠 𝑖𝑛 + 𝑠 𝑒𝑥 
(22) 

ccordingly, this constrained model has four free parameters: 𝑠 𝑖𝑠𝑜 , 𝑠 𝑖𝑛 , 𝑠 𝑒𝑥 
nd 𝑂𝐷𝐼 . 

For both the constrained and unconstrained models, we generated

 test dataset containing pairs of simulated diffusion signals, such that

n each pair at most one microstructural parameter is different. To gen-

rate each pair, we sample a baseline parameter setting from the prior

istributions and change one of the parameters by an effect size of 0.1.

e also generate pairs of data where no parameter changes and the dif-

erence between the two samples is only due to the addition of noise.

e then apply the forward model to both parameter settings to produce

iffusion MRI signals. Gaussian noise with standard deviation 𝜎𝑛 = 0 . 01
SNR = 100) is added to all diffusion signals. For a typical single-subject

NR of around 30–40, an SNR of around 100 would already be reached

hen averaging across ∼10 subjects. 

The signal fraction parameters are constrained to sum up to 1 for

raining models of change. Note that whilst this imposes a constraint

hat the b0-mean for the baseline measurement is equal to 1, it does

ot constrain a change in that summary measurement. Accordingly, all

he summary measurements (both in the baseline and the change) are

ormalized by the b0-mean of the baseline measurement for any real

ata. This differs from the parameterization in conventional NODDI,

here there is a constraint on the signal fractions to sum up to 1, and

dd a separate b0 parameter that is directly estimated from b0 signal.

nstead, here we assume all the signal fraction parameters can change

ndependently. 

For the direct inversion approach, a maximum a posteriori algorithm

s employed to estimate the parameters of the constrained model from

ach diffusion signal separately. Then using a z-test across the param-

ter estimates in each pair, we calculate a p-value for the change in

ach parameter (corrected for multiple comparisons across parameters).

he parameter with the minimum p-value is identified as the changed

arameter. All the cases with minimum 𝑝 > 0 . 05 are identified as no

hange. 

We also used BENCH for identifying change on the same dataset. To

stimate the noise covariance in the summary measurements Σ𝑛 , 100

oisy instances of signals were generated, and the sample covariance of

he difference between summary measurements in each pair was esti-

ated. We then estimated the posterior probability of change in each

arameter using the trained models of change. The no change model has

 zero mean and covariance Σ𝑛 everywhere. The change model with the

aximum posterior probability is selected as the predicted change. 

.2. White matter hyperintensities 

We investigate the possible microstructural changes in white mat-

er hyperintensities (WMH) using BENCH and model inversion. In this

xperiment, we used diffusion MRI of 3000 randomly selected subjects

rom the UK biobank dataset. To account for the variability in overall
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Fig. 5. Prior distributions for the parameters of the standard model. These priors are used for generating pairs of measurements and derivatives for training the 

models of change. Also, the same priors are used for simulating test datasets. The priors are chosen such that they contain all probable parameter combinations that 

can produce measurements similar to real data. The delta function along with uniform distribution in the isotropic signal fraction is used to model pure tissue types 

as well as partial volume effect. In the training phase, the signal fractions are normalized to sum up to 1. A beta (shape parameters 𝛼 = 2 , 𝛽 = 5 ) distribution is used 

for 𝑂𝐷𝐼 to impose a nearly uniform distribution for effective fibre dispersion. The prior for isotropic and axial diffusivities are normal distributions with mean 3 and 

1.7 ( 𝜇𝑚 
2 

𝑚𝑠 
) and standard deviation 0.1 and 0.3 respectively; as we expect faster diffusion as well as less variability in the free water component. 
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a  
ntensity across subjects, we divided each subject’s diffusion data by the

verage intensity of the b0 image across the brain’s white and grey mat-

er extracted using FSL FAST ( Zhang et al., 2000 ). We then computed

he spherical harmonics-based summary measurements from the diffu-

ion MRI data for each subject and interpolated these measures into the

tandard MNI space using non-linear transformations estimated by FSL

NIRT ( Andersson et al., 2019; Woolrich et al., 2009 ). 

Segmentations of the WMHs were generated from T2 FLAIR images

sing FSL’s BIANCA ( Griffanti et al., 2016 ) as part of the UK Biobank

ipeline ( Miller et al., 2016 ). We computed the average summary mea-

urements for Normally Appearing White Matter (NAWM) that are vox-

ls within the white matter mask not classified as WMH and the WMHs

or all voxels that included more than 10 subjects with WMH. For each

oxel, subjects were split into two groups according to whether the voxel

as been classified as WMH or not. Averaging the summary measures

ithin groups provides us with the baseline measurement ( 𝑦 ) and the

bserved change ( Δ𝑦 ) related to WMH. The noise covariance ( Σ𝑛 ) in
ach voxel was estimated using the within group covariance matrix di-

ided by the number of subjects in the normal appearing white matter

roup. 

. Results 

.1. Summary measurements 

A representative axial slice of the normalized summary measure-

ents from a single subject are shown in Fig. 6 . The “mean ” sum-

ary measures represent the normalised average signal. The 𝑙2 measures

uantify the anisotropy in each voxel (similar to Fractional Anisotropy

aps in DTI). 

The bottom panels of Fig. 6 show histograms of the summary mea-

urements across the brain for the same subject, as well as distributions
7 
f simulated data based on prior distributions over the model parame-

ers. The distribution for the generated samples fully covers the range

f the data and follows a very similar density distribution. This verifies

hat the prior distributions are wide enough to capture the full range of

eal data. 

Figure 7 shows estimated derivatives of the summary measurements

t baseline data representative of putative voxels in the white matter and

rey matter. The error bars show estimated standard deviations of the

erivatives (the square root of diagonals of the estimated covariance

atrix). This variance is reflecting the uncertainty in the underlying

arameters that can generate these measurements, as well as residuals

f the regression model for the mean. 

.2. Validation 

We first employed simulated data to evaluate the performance of

he proposed approach in inferring microstructural changes from diffu-

ion MRI data. The details of experiment parameters are provided in the

ethods section. 

.2.1. Comparison with model inversion 

Figure 8 a shows the confusion matrix using model inversion (left),

nd our inversion-free approach (right) for an invertible model with

nly 4 free parameters. Each element of these matrices represents the

ercentage of times a change in the parameter represented at the cor-

esponding column is identified as a change in the corresponding row.

oth approaches were able to detect the true parameter change in most

f the cases. 

For the standard model with all 8 free parameters, Fig. 8 b shows the

onfusion matrices using the direct model inversion (left) and change

stimation (right). Since the uncertainties of the parameter estimates

re very large due to the model degeneracies, almost all of the changes
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Fig. 6. Maps of the summary measurements for a sample subject in the UK biobank dataset (top) and their histogram (bottom). The mean summary measurements is 

reflecting the average (across directions) diffusivity in each shell. The 𝑙2 summary measurements estimate the anisotropy, which is similar to the fractional anisotropy 

(FA), but computed with a linear transformation of the signal. Histograms show the distribution of these measurements across the brain; as well as the distribution 

of simulated data using the standard model and provided prior distributions. This shows that the simulations capture the full range of the summary measures from 

real data. 

Fig. 7. The estimated amount of change in the summary measurements as a result of a unit change in each parameter ( 𝜇Δ̂𝑣 ) for a sample white matter and grey 

matter voxel. The error bars show the estimated standard deviation of change. colours correspond to parameters and columns indicate summary measurements. Due 

to differences in the baseline, each voxel can have a different change vector for the same parameter change. This added degree of freedom can model the variability 

of parameters (e.g. diffusivities) across the brain, which is not considered in constrained models; e.g. NODDI. 

8 
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Fig. 8. a) The numbers indicate the percentage of time a change in the corresponding column is identified as a change in the corresponding row. The diagonal 

elements show the accuracy in identifying true change. a) Both of the approaches performed near to ideal in detecting the true change in the case of constrained 

model. The change estimation has more false positives, but unlike the inversion approach, we did not explicitly define a false positive rate threshold. b) Given 

diffusion data at few shells, the full model is not invertible, i.e. the parameter estimates have a high variance. Therefore, almost no significant change is detected 

using parameter estimates. On the other hand, the change estimation approach can still identify changes in all the parameters of the restricted model. Although there 

remains confusion between a subset of the parameters since these have similar effects on the diffusion signal. 
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i  
re confused with no change when using direct inversion. However, the

nversion-free approach is able to identify changes in 𝑠 𝑖𝑠𝑜 , 𝑠 𝑖𝑛 , 𝑠 𝑒𝑥 and

𝐷𝐼 . Although, there is confusion between the remaining parameters

ompared to the restricted model, here we do not make any strong as-

umptions on the value of those parameters. Also, most of the confusions

or these parameters are between them, meaning that we are able to dis-

inguish a change in those parameters (e.g. the diffusivity parameters)

rom others. Change in isotropic diffusivity is mostly confused with the
 s  

9 
o change model. This is due to the 𝑏 -values in the UKB protocol which

re too high for this parameter; a change in this parameter has minimal

ffect on the signal. 

.2.2. Sensitivity to change in each parameter 

To evaluate the sensitivity of the approach to the amount of change

n each parameter, we generated test datasets with variable effect sizes

tarting from 0 to 0.1 with step sizes of 0.01. Figure 9 a shows the aver-
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Fig. 9. a) Each plot shows the estimated probabilities when the corresponding parameter on the 𝑥 − 𝑎𝑥𝑖𝑠 has changed between two datasets. Red curves show the 

average posterior probability of change in the actually changed parameter versus the amount of change. The gray curves show the probability for other parameters. 

Shaded areas show the 10 to 90 percentile range. Larger absolute amount of change results in higher posterior probability for the true parameter change. Change 

in the signal fraction parameters and 𝑂𝐷𝐼 is distinguishable for effect sizes as small as 0.05. However, changes in diffusivity parameters even at very large effect 

sizes is cluttered with other parameters. b) Each plot shows the maximum a posteriori estimation of the amount of change vs the actual change in the parameter. 

The shaded areas show the 10 to 90 interval. The estimated change in the signal fractions follow the identity line (dashed gray line). The estimated change in 𝑑 𝑖𝑠𝑜 is 

mostly around zero with a high variance as the posterior distribution is very flat and symmetric around zero. The change in 𝑑 𝑒𝑥,𝑎 𝜏 and 𝑂𝐷𝐼 is systematically biased 

at higher effect sizes. 
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ge posterior probability of change in each parameter versus the effect

ize. In all types of change, at very small effect sizes ( < 0 . 01 ) the change

s confused with no change, but as the effect size increases the proba-

ility of identifying the true change (red curves) increases. Changes in

ll signal fraction parameters and in the fibre dispersion are identified

ith high accuracy even at very small effect sizes. However, changes in

iffusivity parameters are confused with each other (but not with signal

raction parameters) even at larger effect sizes. It is worth mentioning

t  

10 
hat effect size and SNR are two important factors (both unknown in

eal data) that affect the performance of detection in a similar way. So,

hen SNR is lower (resp. higher) the approach can be more (resp. less)

ensitive to the change. Here we show the results for SNR = 100. 

.2.3. Estimating the amount of change 

So far we have only examined the posterior probabilities relating to

he identity of the parameters that can best explain a change. However
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ur framework also allows us to estimate the posterior probability on

he amount of change for each parameter 𝑃 ( |Δ𝑣 | ∣ 𝑦, 𝑑𝑦, Δ̂𝑣 ) (Eq. (7) ).

igure 9 b shows the estimated (maximum a posteriori estimation) versus

ctual change in each parameter for different effect sizes. 

.3. White matter hyperintensities 

.3.1. Model inversion 

We inverted the NODDI model using non-linear fit implemented in

MIPY ( Fick et al., 2019 ) in all subjects and ran a voxel wise glm

o estimate the differences between white matter hyperintensities and

ormally appearing white matter (NAWM). Unlike in BENCH, NODDI

equires fixing the diffusivity parameters. Usually, they are fixed to

 𝑎,𝑖𝑛 = 𝑑 𝑎,𝑒𝑥 = 1 . 7 𝜇𝑚 
2 

𝑚𝑠 
(and 𝑑 𝑖𝑠𝑜 = 3 . 0 𝜇𝑚 

2 

𝑚𝑠 
). However, it has been recently

uggested that the axial diffusivity should be higher based on several

tudies attempting to directly measure their value ( Howard et al., 2020;

unz et al., 2018 ). We have therefore run the same analysis also with

 𝑎,𝑖𝑛 = 𝑑 𝑎,𝑒𝑥 = 2 . 5 𝜇𝑚 
2 

𝑚𝑠 
. 

The z-maps for the contrast of WMH vs the baseline for all the pa-

ameters are shown in Fig. 10 . The strongest changes are seen in 𝑓 𝑖𝑛𝑡𝑟𝑎 
nd it is consistent in both high and low diffusivity regimes. The direct

nversion also suggests changes in the other two parameters ( 𝑓 𝑖𝑠𝑜 and

𝐷𝐼). However, interestingly, changing the pre-specified diffusivities

n NODDI alters the story for 𝑓 𝑖𝑠𝑜 and 𝑂𝐷𝐼 which go in opposite direc-

ions(see scatter plots in 10 many points(voxels) lie in the 2nd or 4th

uarter). These results demonstrate that the choice of fixed parameter

alues can affect the inferred change in other parameters. 

.3.2. BENCH 

We used the trained models of change on the parameters of the full

standard) model to infer changes in WMH. Figure 11 a shows the ob-

erved change in the summary measurements (normalized by b0 mean

f the baseline) in white matter hyperintensities (dashed line) as well

s predictions from each model of change(coloured bars) for average

ata from a small patch of white matter. For each parameter, the best

mount of change given the baseline, the observed change and the noise

ovariance is estimated using Eq. (3) . In other words, the bars indicate

he closest change in the measurements that can be produced when only

hat parameter has changed. 

This plot suggest that the observed change in WMH is an increase in

he b0_mean and b1_mean as well as an increase in anisotropy for the b1

hell. This pattern of change is better aligned with a positive change in

 𝑒𝑥 than in any other parameter. 

Figure 11 b shows the estimated probability of change 𝑃 ( Δ̂𝑣 ∣ Δ𝑦, 𝑦 )
or each parameter of the standard model for an axial slice of the brain

n voxels that included more than 10 WMH samples(subjects). These

robabilities are normalized to sum up to 1 for each voxel. The colours

ndicate the probability that a change in the corresponding parameter

an explain the observed changes in WMHs. 

Figure 12 a shows the best explaining model of change in each voxel

n a few axial slices of the brain. To check for the reproducibility of

he results, we have divided subjects in two batches of equal size (1500

ach) and repeated the whole pipeline. The inferred changes were highly

imilar in the two batches with average error of 0.4% in the estimated

robability of change. 

In more than 65% of the voxels, that are mostly in deep white mat-

er, the best model is a change in 𝑠 𝑒𝑥 . However, in voxels adjacent to the

entricles, all other models compete and there is not a dominantly win-

ing model. This might be due to a true difference in microstructure in

hese periventricular voxels, or may be caused by high variability across

ubjects due to CSF partial volume effects. 

Figure 12 b shows the estimated amount of change in 𝑠 𝑒𝑥 in voxels

here this was the most probable parameter. In most of the voxels an

ncrease in 𝑠 𝑒𝑥 between 0 and 0.4 explains the observed change in WMH.

he bottom right panel shows that the amount of change increases with
11 
istance from the ventricles, whereas in deep white matter the average

mount of change remains relatively constant. 

. Discussion 

We presented a Bayesian framework to directly infer changes in pa-

ameters of a biophysical model from observed changes in a set of mea-

urements. We applied the method to microstructural modelling of dif-

usion MRI, where biophysical models usually require many free param-

ters and are often degenerate. 

.1. Comparison with model inversion 

The traditional approach to overcome these degeneracies is to con-

train some of the parameters to biologically plausible values so that

ther parameters can be estimated using a conventional measurement

e.g., fixing the diffusivities in NODDI, Zhang et al., 2012 ). Such as-

umptions reduce the full model parameter space to a restricted sub-

pace, where the model is invertible. This direct inversion approach has

he advantage that it gives parameter estimates and that it can model

ny parameter change in this restricted subspace. However, violation of

hese assumptions can significantly bias the parameter estimates. 

Our proposed approach allows the initial set of parameters to lie any-

here within the full model parameter space (restricted only by broad

ser-defined priors); and any of these parameters might change. This ex-

ra flexibility comes at the price that the parameter changes are assumed

o lie along 1D lines in parameter space defined by the user-provided

atterns of change Δ̂𝑣 . For each of these hypothesized 1D change mod-

ls, we estimate the posterior probability of such a change as well as the

ost likely amount given the baseline data and the change in it. 

To compare this assumption with that made by direct inversion, let

s consider a biophysical model with 8 free parameters. Let us further

ssume that, due to the limited degrees of freedom in our model, we

an only fit 3 out of these 8 parameters. In this case direct inversion

ould require assuming that the microstructural change is limited to

 subset of three parameters, i.e., a 3-dimensional subspace of the full

-dimensional parameter space. In contrast, BENCH assumes by default

hat the change is caused by one out of the 8 parameters, which corre-

ponds to the microstructural change lying in one of 8 one-dimensional

ines in parameter space. This suggests that if one has prior knowledge

f which microstructural parameters are likely to change, it might make

ense to use direct inversion with those parameters as free parame-

ers. BENCH would have the advantage in a more exploratory approach,

here any of the underlying parameters might have changed. However

ote that this comparison between approaches is complicated by the fact

hat using model inversion requires setting a subset of the parameters

o some fixed value, which might cause a bias in the free parameters if

naccurately fixed ( Jelescu et al., 2016; Novikov et al., 2019b ). 

It is important to note that the user-defined prior distributions for pa-

ameters do not directly imply a prior value for the parameters. These

riors are used to train the regression models and are required to be wide

nough to capture all possible underlying parameter settings. Neverthe-

ess, using broader priors only requires more complex machine learning

odels that can capture the variation in the relation between the mea-

urements and their derivatives. 

In the proposed approach we train the models with simulated data

nce (without requiring any real data) and use the trained models to

stimate the desired probabilities for any real data with the same acqui-

ition protocol. This precomputation saves one from having to integrate

ver all possible initial parameters when inferring the parameter change

n each voxel. Therefore, the inference on real data which only consist

f a few 1d integrations for each voxel, runs much faster than the non-

inear optimizations in alternative inversion approaches. 

The results from simulations suggest that we are able to identify

hanges in signal fraction accurately for the given brain-like measure-

ent. However, there is a considerable confusion in the diffusivities,
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Fig. 10. NODDI parameter estimates. Top) z-maps for the difference between WMH and normally appearing white matter with the assumption 𝑑 𝑖𝑛𝑡𝑟𝑎 = 𝑑 𝑒𝑥𝑡𝑟𝑎 = 𝐷 = 
1 . 7 𝜇𝑚 

2 

𝑚𝑠 
. Middle) The same maps with the assumption 𝑑 𝑖𝑛𝑡𝑟𝑎 = 𝑑 𝑒𝑥𝑡𝑟𝑎 = 𝐷 = 2 . 5 𝜇𝑚 

2 

𝑚𝑠 
. Bottom) Scatter plot of the z-values for the two cases. The results show the assumed 

fixed value for the diffusivity significantly affects the estimated change between WMH and normal tissue for 𝑓 𝑖𝑠𝑜 and 𝑂𝐷𝐼 . However, the observed decrease in 𝑓 𝑖𝑛𝑡𝑟𝑎 
is fairly robust to the difference in diffusivities, and this is inline with the results from BENCH. 

m  

o  

n  

s  

f  

s  

i  

d  

n  

a  
eaning that the change in these parameters is not distinguishable from

ne another. In simulations, we have only accounted for measurement

oise, but in real data, particularly in cross-sectional studies, between-

ubject variability also contributes to noise. Hence, the reported per-

ormances and sensitivity to changes in parameters in the simulations
12 
ection are more reliable when the between-subject variability is less

mportant, for instance, in longitudinal studies. These accuracy values

epend on the baseline measurements, underlying parameters, and the

ature of how each parameter affects the measurements. Nevertheless,

n important point is even in the case of full confusion in diffusivities,
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Fig. 11. a) Each panel shows the estimated amount of change in the measurements if only the corresponding parameter changes, along with the actual observed 

change in hyperintensities for a patch of voxels in white matter. Each bar is scaled with the best estimated amount of change for that parameter. The observed change 

in WMH is an increase in the mean-b0 and, to a lesser extent, and increase in mean-b1 , and a positive change in the l2 measurements. This is best aligned with the 

pattern of change that an increase in 𝑠 𝑒𝑥 can produce. b) Each map shows the estimated probability that change in the corresponding parameter can explain the 

observed change in the summary measurements between WMH and NAWM at a single axial slice of the brain. The no change model represents the null hypothesis 

that the change is better explained by noise rather than a change in any one of these parameters. In the majority of the voxels, the change model for 𝑠 𝑒𝑥 has a 

probability around 1 (yellow) and the remaining parameters are nearly zero(red). This means that a change in 𝑠 𝑒𝑥 is more likely to explain the observed change than 

any other single parameter change. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he results from the proposed approach is more reliable compared to the

odel inversion with fixed parameters. That is because a wrong prior for

he fixed parameters can bias the estimates for other parameters, while

n the proposed approach we avoid such assumptions. For example, in

ODDI any changes in the B0 signal are usually ignored (as a result of

he sum constraint on the signal fractions), but in our approach we al-

ow changes in the b0 signal to inform which microstructural parameter

ight have changed. 

In this paper we showed that setting a different value for diffusivi-

ies in NODDI can result in contradictory inference about changed pa-

ameters in white matter hyper intensities. The only consistent change

as a decrease in the ratio of intra and extra axonal signal fractions

hich is in line with the results of BENCH (an increase in 𝑠 𝑒𝑥 with no

hange in 𝑠 𝑖𝑛 ). This analysis thus illustrates one of the main benefits of

sing BENCH: the results do not depend on some prespecified value of
13 
 parameter as we integrate over all possible values for the parameters

ather than fixing them. Another advantage is that BENCH can provide a

ore specific explanation for the change, e.g. in this case as opposed to

ODDI that only identifies a change in the ratio of the signal fractions,

ENCH can specifically tell if it is a change in the extra axonal signal

raction. 

The fact that the approach doesn’t require the models to be invert-

ble makes it applicable to studying changes in over-parameterised mod-

ls or models without closed form analytical solution, e.g. simulation-

ased models. Such simulation-based models provide the opportunity

o explore more complex and realistic models of diffusion in a tissue.

here is no limitation in the number of parameters as long as they af-

ect the observed data in some way. If several parameters cause the data

o change in the same (or very similar way), this approach will give a

ist of possible parameters underlying the observed change with a prob-
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Fig. 12. a) The colours indicate which model of change could best explain, i.e. had the highest posterior probability given the observed change in the summary 

measurements between WMH and NAWM. In the majority of voxels ( 65%) a change in 𝑠 𝑒𝑥 explained the data better than any other model. However, in the regions 

very close to the ventricles there is no major winning model. This can be either because of high between subject variability or a different type of change that is not 

captured by the trained models of change. b) The maps show the estimated amount of change in 𝑠 𝑒𝑥 in voxels where 𝑠 𝑒𝑥 was the best model using a maximum a 

posteriori estimation Δ𝑠 𝑒𝑥 = 
argmax 
Δ𝑣 𝑃 (Δ𝑣 |𝑦, Δ𝑦, ̂Δ𝑠 𝑒𝑥 ). At most of the voxels the estimated amount of change is positive, meaning that an increase in 𝑠 𝑒𝑥 can explain the 

change in the summary measurements observed in the WMH voxels. The top right panel shows the distribution of estimated amount of change at the voxels where 

change in 𝑠 𝑒𝑥 was the best model. Most of the estimated changes are between 0 and 0.4. The bottom right panel shows the amount of change vs the distance (in 

millimeters) from the ventricles. 
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bility associated with each. The resulting probability estimates can be

sed to eliminate unlikely change scenarios. 

We utilized the trained models of change for the parameters of

he “standard ” model for diffusion to investigate which microstructural

hanges can explain white matter hyperintensities. The results suggest

hat the change can be associated with an increase in the extracellular

ignal. This is in line with other findings using more complex diffusion

ncodings ( Lampinen et al., 2019 ), who found an increase in the extra-

ellular T2, which would lead to an increase in the extracellular signal

ontribution. Comparing with the inversion approach, here we did not

ssume diffusivities are fixed in various brain regions, but we assumed

nly one of the parameters has changed as a result of white matter hyper-
14 
ntensity. However, it is possible that simultaneous changes in multiple

arameters can better explain the change in the data, which could be

ested in the same framework with the extended models of change. For

xample, a model with combination of the parameters might be able to

xplain a positive change in b0_mean and a negative change in b2_mean

s it was observed in some voxels. Furthermore, we are limited to de-

ect any changes within the constraints of the “standard ” model. Hence,

ny changes in the signal in the white matter hyperintensities due to

henomena not within the “standard model ” (e.g., exchange or non-

aussian diffusion) would be misinterpreted as changes in the “stan-

ard ” model parameters. 
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.2. Summary measures 

The choice of summary measurements to train change models is ar-

itrary, but this choice can affect the performance of the model. It is

ssential that the summary measurements are able to capture enough

nformation from the data such that they are sensitive to changes in the

arameters of interest and insensitive to other changes that are not part

f the model parameters. For example, in our simulations we did not

nclude the fibre orientation parameters as part of the free parameters,

nd therefore we required the summary measures to be rotationally in-

ariant. Hence the choice of decomposing the signals in each shell into

pherical harmonics to extract rotationally invariant summary measure-

ents. Of course one can instead use other signal representations, such

s measures derived from the diffusion tensor model, or the kurtosis

ensor model, etc, to compute the summary measurements. We chose

pherical harmonics over other choices as they are fast to calculate, and

he bases are orthogonal which leads to summary measures that capture

ifferent aspects of the data. 

.3. Future developments 

While in the examples shown here these patterns of change only al-

ered a single parameter at a time, in the current framework the pattern

f change can be any vector in parameter space. In the future we plan to

xtend this framework to allow for parameter changes in 2D or 3D hy-

erplanes rather than just along 1D lines (see Appendix A for the feasibil-

ty of this extension). However, the dimensionality of these hyperplanes

ill always be lower than that of the restricted parameter subspace in

hich parameters can freely change with the direct inversion approach.

ote that computing posterior probabilities in a full Bayesian frame-

ork allows for comparison between models of change with different

omplexities without the need for arbitrary regularisation. 

In addition, the model of change can be extended to study continuous

hanges (e.g. ageing), as opposed to discrete group differences as shown

n this work. To do so, one first needs to estimate the rate of change in the

easurements with respect to the independent variable, e.g. time, using

 regression model. Then one can use the chain rule to relate the rate

f change in the measurements to the rate of change in the parameters.

uch an approach makes modelling continuous change a straightforward

xtension of this framework. 

Although here we mostly show how our method can be applied to

etect changes in parameters given the data, our framework can also

e used to optimize data acquisition protocols for detecting changes in

articular parameters of interest. For example, in the simulations we

how that it is difficult to detect a change in the free-diffusion parameter.

ur framework can be used to extend the acquisition (e.g. by adding

ower bvalues) and, using the output confusion matrices, establish an

ptimal set of b-shells to enable detection of change in free diffusion. 

Finally, while we applied the framework to the specific problem of

tudying microstructural changes using diffusion MRI in the brain, the

ramework is general meaning that it can be applied in any field where

iophysical models are available. For example, the same approach as de-

cribed in this paper can be applied to dynamical causal models (DCM)

 Friston et al., 2003 ) for fMRI or MEG/EEG. These are notoriously over-

arameterised, but often, are applied in a context where the values of

he inferred parameters is of lesser interest than the change in the pa-

ameters under different experimental conditions, and its reasonable to

ssume the change is sparse; the ideal scenario for BENCH. 

. Software 

BENCH is an open source software implemented in python and avail-

ble at https://git.fmrib.ox.ac.uk/hossein/bench . 
c  
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ppendix A. Toy example: Inferring changes in 2D 

Consider the forward model 

( 𝑥 ) = 𝑎𝑥 3 + 𝑏𝑥 2 + 𝑐𝑥 + 𝑑 (23)

he model has 4 free parameters ( 𝑎, 𝑏, 𝑐, 𝑑) . Given 3 measurements

his model is degenerate, i.e., one cannot estimate all the parameters

niquely. Now consider two instances of this model with parameters

 𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ) and ( 𝑎 2 , 𝑏 2 , 𝑐 2 , 𝑑 2 ) with 3 measurements for each. Obvi-

usly, this system is degenerate and parameter estimation is ill posed.

owever, if we are only interested in comparing two model instances,

e can still infer changes by assuming that the change is sparse. This is

he premise of BENCH. 

Now we will demonstrate that despite the model degeneracy, we can

ot only detect changes in a single parameter, but also infer simultane-

us changes in pairs of parameters. Consider ( 𝑎 1 = 1 , 𝑏 1 = 1 , 𝑐 1 = 1 , 𝑑 1 =
) and ( 𝑎 2 = 1 . 2 , 𝑏 2 = 0 . 8 , 𝑐 2 = 1 , 𝑑 2 = 1) , i.e., Δ𝑎 = +0 . 2 , Δ𝑏 = −0 . 2 , Δ𝑐 =
𝑑 = 0 . 

When using Monte Carlo simulations to infer parameters for each

odel given three independent measurements, the posterior distribu-

ion is clearly degenerate as shown in Fig. 12 a. In this figure, the blue

resp. red) distribution shows the parameter estimates for (a, b) for the

rst (resp. second) data set. The intensity of each point encodes the log

osterior probability for the estimated parameters. The stars show the

rue parameter values. The plot demonstrates that parameter estimates

re highly correlated (i.e. the model is degenerate). 

In contrast, Fig. 13 b shows Monte Carlo samples for Δ𝑎 and Δ𝑏 for

he change model that allows a and b to change and fixes c, d between

atasets. The plot demonstrates that the estimated parameter changes

re distributed around the true change value and each sample has a

omparatively high posterior probability value. It is therefore possible

o infer the true, 2-dimensional change. 

We also considered an alternative change model where a and b are

xed and c and d can change. The estimated samples for Δ𝑐 and Δ𝑑 are

hown in Fig. 13 c. In this case the estimated samples have much lower

osterior probabilities (lower intensities) than the a,b change model.

hus, we can use the change model to assess not only the amount of

hange in 2D, but also which pair of parameters best explains these

hanges. The changes are still sparse, but not necessarily 1-dimensional.

https://git.fmrib.ox.ac.uk/hossein/bench
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Fig. 13. a) Parameter estimation. Each set of dots shows parameter estimates for one instance of the model using MCMC and intensities represent the log posterior 

probability. The parameter estimates for each data set are highly correlated and all of the points on the lines explain the data equally well, i.e. the models are 

degenerate and it is not possible to directly compare the parameter estimates. B) Inferred change with the correct model. We ran MCMC with the assumption that 

change has a particular shape (only a and b changed). The estimated values for Δ𝑎 and Δ𝑏 are centred around the correct change (green star) and the unnormalized 

posterior probabilities are comparatively high. C) Inferred change using a wrong model. We run a similar MCMC but this time assuming 𝑐 and 𝑑 can change. In 

this case the estimated posterior probabilities are much smaller compared to the previous change model, i.e. this model of change cannot explain the change in the 

measurements as well as the model in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In BENCH we integrate the approximations of this unnormalized pos-

erior probabilities to compute the the desired probabilities for each

odel of change in Eq. (1) . Hence, it this example BENCH (once ex-

ended to allow multi-dimensional changes) would correctly infer that

t was the parameters a and b that changed, and not the parameters c

nd d. 

ppendix B. Estimating Quality of Fit 

The estimated probability in Eq. (1) tells how well each model ex-

lains the observed change compared to all other defined change mod-

ls, but it doesn’t necessarily reflect to what extent the observed and

redicted change are matched. In other words, a model with a poor

uality of fit to the data can get a high probability value because its

rediction is the closest to data compared to all other models. Also, it is

ossible that more than one change model predict the data accurately

nd hence all get low probabilities in Eq. (1) . 

To estimate how well a change model can explain the change in data

ne can look at the chi-squared distance between the predictions of the
16 
hange model and the measured change: 

 = (Δ𝑦 − 𝜇) 𝑇 Σ−1 (Δ𝑦 − 𝜇) (24)

n the above expression, Δ𝑦 is the observed change in the data, and 𝜇 and

are the mean and covariance of change in the measurements predicted

y the best model. This statistic follows a chi-squared distribution and

 higher 𝑑 means more discrepancy between the observed change and

he predicted change. 

Figure 14 shows the distribution of 𝑑 for the case of one parame-

er change that is explained by the correct model (blue) and the case

f two parameter change that is mistakenly identified as a single pa-

ameter change (orange). Accordingly, our recommendation when the

iscrepancy is high is to consider revising the change models, as the win-

ing model is poorly explaining the observed change. For example, one

an define biologically feasible linear combinations of the parameters

s change directions. 
Fig. 14. Distribution of distance for the correct change model 

(blue) and a wrong model(orange). Given a baseline mea- 

surement ( 𝑦 ) and a change ( Δ𝑦 ), we estimate the most likely 

change in the parameters as well as the most likely amount 

of change in that direction using our trained change mod- 

els. These estimates can then be used to predict the distri- 

bution of expected change in the measurements. Using the 

discrepancy between this prediction and the actual observed 

change, we can determine the quality of the change model in 

explaining the data. The histograms are showing the Maha- 

lanobis distance (i.e., the offset normalised by the covariance 

matrix as defined in 24 ) between the actual and the predicted 

change in the measurement when the correct change model is 

used (blue) and when a wrong change model is used (orange) 

for several instances of simulated data. The blue curve shows 

the pdf of 𝜒2 distribution with 𝑑𝑓 = the number of measure- 

ments. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this 

article.) 
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