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Abstract: Altered intestinal health is also associated with the incidence and severity of many chronic
inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However,
little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources
(beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of
C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing
in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA),
(ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden
fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these
diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until
termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and
MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health
biomarkers was increased by both n-3 PUFA-enriched diets including Relmβ and REG3γ compared to
SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and
only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX
and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased
goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA
expression of Relmβ and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2
compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary
n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health
development in early life. The differential effects between plant and marine sources warrants further
investigation for optimizing health.

Keywords: n-3 polyunsaturated fatty acids; early life; intestinal morphology; intestinal health; crypt
length; goblet cells; fish oil; flaxseed oil

1. Introduction

The gastrointestinal (GI) microenvironment comprises both the microbiome and the
host intestinal defense elements that co-exist, and combined, can profoundly influence
host health and physiological function both locally (i.e., within the GI) and systemically
(i.e., extra-intestinally) [1]. The mucosa (combined epithelium and lamina propria) of
the small intestine and colon structure is the critical tissue at the interface between the
microbiome and the host. The contributions of the host toward maintaining balance
within the GI microenvironment include critical defense elements and/or physical barriers
that protect the mucosa, including (i) the secreted mucus layer/barrier, (ii) the intestinal
cellular barrier (i.e., the epithelium), and (iii) an immunological barrier composed of an
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aggregation of innate and adaptive immune cells with the mucosa (predominantly in
the lamina propria) [2–4]. Importantly, the mucus layer is composed of mucins secreted
by goblet cells that act as a physical barrier between the microbiome and the cellular
barrier [5,6]. Additionally, various antimicrobial peptides and proteins are secreted into
the mucus layer by the cells within the intestinal epithelium to further fortify this defense
element and maintain physical separation between the microbiota and the host [4,7,8].
The intestinal barrier, extending throughout the small intestine and colon regions of the
gastrointestinal tract, comprises a single-cell layer that separates the luminal contents from
accessing the submucosal layers and the ability to reach the circulatory system and gain
access to extra-intestinal tissues [4,7]. The intestinal barrier is predominantly composed of
epithelial cells but also contains mucus-secreting goblet cells, enteroendocrine cells, Paneth
cells, and stem cells [2,4,7]. Therefore, capacity to sustain these critical elements involved in
intestinal barrier function and defense represent important biomarkers of intestinal health.
Reduced expression and/or function in GI barrier defense elements can lead to intestinal
epithelial barrier dysfunction characterized by increased barrier permeability (i.e., leaky
gut) and the translocation of luminal elements (pathogens, bacteria, bacteria cell wall
components (e.g., lipopolysaccharide), or bacterial-derived metabolites, pro-inflammatory
substances, toxins, antigens, etc.) across the epithelial barrier that can adversely impact host
physiological function including triggering or exacerbating host inflammatory responses
and metabolic dysfunction [3,4,9]. Therefore, increased intestinal permeability is a common
element in many chronic diseases including, but not limited to, inflammatory bowel
disease (IBD) and other intestinal disorders, obesity, liver diseases (e.g., non-alcoholic
fatty liver disease and non-alcoholic steatohepatitis), type 1 diabetes, and cardiovascular
disease [2,4,7–10]. Therefore, identifying interventions that promote intestinal health and
defenses while reducing epithelial barrier permeability are needed [2,9].

Dietary interventions represent a critical and non-invasive way to alter not only the
microbiota composition but also affect host intestinal permeability and promote intestinal
barrier defensive function [3,4,10]. Therefore, many studies emphasize the barrier integrity
promoting effects of microbiota-accessible carbohydrates and the production of short-
chain fatty acids and various polyphenolic compounds, as reviewed in [3,4]. With respect
to dietary lipids, there is considerable research on the adverse effects of a high fat diet
(60% fat as kcal, predominantly comprising saturated fatty acids) on intestinal epithelial
barrier integrity and function, as reviewed in [3,4]. This highlights, in part, the relevance
of the high-fat diet model to recapitulate the critical features of human obesity in the
intestinal microenvironment and the adipose tissue in a diet-induced rodent model [11–15].
The addition of long-chain n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid
(20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) to a high-fat diet at 5.3% kcal
from menhaden fish oil has been shown to not only improve the adipose tissue obese
inflammatory phenotype, but to also increase ileum and colon gene expression of critical
biomarkers of intestinal health compared to obese (high-fat diet-fed) controls [11]. Thus,
in addition to modifying the microbiota composition, n-3 PUFA supplementation also
increased expression of apical junctional complex components that promote intestinal
epithelial barrier integrity, mucins, and antimicrobial proteins [11]. Therefore, different
types of dietary fatty acids, apart from saturated fatty acids, can also impact intestinal
health. Furthermore, in epithelial cell culture models, n-3 PUFA including α-linolenic
acid (ALA, C18:3 n-3) from dietary plant sources and marine-derived EPA and DHA were
shown to impact intestinal permeability to a similar degree as the n-6 PUFA linoleic acid
(LA, C18:2 n-6) and arachidonic acid (AA, C20:4 n-6) [16,17]. However, little is known
about the effects of n-3 and n-6 PUFA on intestinal health biomarkers in vivo, particularly
during the early stages of life when the host intestinal defenses are developing, apart from
studies conducted in livestock species [18,19].

Early life intestinal health represents a critical developmental period [20–24] that can
impact mucosal infection susceptibility [24–26] and/or disease susceptibility later in life. As
a part of this connection, PUFAs are necessary for normal growth and development, cellular
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function, immune response, and may be critical for the prevention of chronic inflammation
and many chronic diseases [27]. Lifelong dietary exposure to n-3 PUFA, namely in utero (via
maternal dietary intake) and continued dietary exposure in the offspring, has been shown
to impact mammary gland development and breast cancer severity later in life [28–31].
However, there is limited knowledge about the effects of plant- versus marine-derived
PUFA in other tissues, such as the small intestine and colon. Therefore, in the current
study we investigated the effects of lifelong dietary exposure (namely from in utero to
weaning at 3 weeks of age) of n-3 PUFA as ALA (plant-derived n-3 PUFA) and EPA/DHA
(marine-derived n-3 PUFA) on early life host intestinal health biomarkers.

2. Materials and Methods
2.1. Mice, Housing, and Diets

Adult C57BL/6 mice were housed in ventilated cages in a temperature- and humidity-
controlled animal facility and were exposed to a 12 h light/12 h dark cycle. Mouse harems
comprising one male and three females were randomly assigned to one of three isocaloric
experimental diets wherein the formulation was modified from the AIN-93G formulation
and contained the same amount of fat (10% w/w) but differed in the sources of fat (Research
Diets Inc., New Brunswick, NJ, USA). The compositions of the three experimental diets
are shown in Table 1 and included the following: (i) 10% safflower oil (SO, enriched in n-6
PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA diet), or (iii) 3%
menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA diet).

Table 1. Diet composition 1.

SO
(D04092701)

MO
(D04092703)

FX
(D04092711N)

Macronutrient g% kcal% g% kcal% g% kcal%

Protein 21 20 21 20 21 20
Carbohydrate 60 58 60 58 60 58
Fat 10 22 10 22 10 22

Ingredient g/kg kcal g kcal g kcal

Casein 200 800 200 800 200 800
L-Cystine 3 12 3 12 3 12
Corn starch 337 1347 337 1347 337 1347
Maltodextrin 10 132 528 132 528 132 528
Sucrose 100 400 100 400 100 400
Cellulose, BW200 50 0 50 0 50 0
Safflower oil 97 873 68 611 68 611
Menhaden oil 0 0 29 263 0 0
Flax oil 0 0 0 0 29 263
t-Butylhydroquinone 0.02 0 0.02 0 0.02 0
Mineral Mix S10022 G 35 0 35 0 35 0
Vitamin Mix V10037 10 40 10 40 10 40
Choline bitartrate 2.5 0 2.5 0 2.5 0
Total 966 4000 966 4000 966 4000

1 AIN-93G rodent diets were modified to contain 10% safflower oil (SO), 3% menhaden oil + 7% safflower oil
(MO), or 3% flaxseed oil + 7% safflower oil (FX).

Diet pellets were stored at −20 ◦C and thawed prior to feeding. Mice were provided
with fresh diet pellets every two days. All mice had ad libitum access to food and double-
distilled water. Diet fatty acid composition was confirmed with gas chromatography and is
shown in Supplemental Materials (Table S1). Mothers remained on their same experimental
diets throughout pregnancy, and equal numbers of male and female offspring (n = 14/diet;
7 males and 7 females) were continued on the same parental diet until termination at
3 weeks of age. Once the offspring were terminated, small intestine (ileum) and proximal
colon tissue samples were collected and fixed for histology (described below) or snap-frozen
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in liquid nitrogen and stored at −80 ◦C to await further analyses. All animal protocols and
procedures were performed under Animal Utilization Protocol #4368, which was approved
by the Animal Care Committee of the University of Guelph under the governance of the
Canadian Council on Animal Care.

2.2. Phospholipid Fatty Acid Analysis

Lipids were extracted from ileum via the Folch Method [32] and phospholipid fractions
were separated by thin layer chromatography (TLC) as previously described [29]. Briefly,
samples were spotted on H-plates (EMD Chemicals, Gibbstown, NJ, USA) to separate
phospholipid species. Bands corresponding to lyso-phosphatidylcholine (lyso-PC), sphin-
gomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol
(PI), and phosphatidylethanolamine (PE) were collected and methylated with 14% boron
trifluoride-methanol (Fisher Scientific, Mississauga, ON, Canada). Fatty acid methyl esters
were separated on a DB-FFAP fused-silica capillary column (15 m, 0.1 m film thickness,
0.1 mm i.d.; Agilent, Mississauga, ON, Canada) and quantified on an Agilent 6890 gas
chromatograph. Peaks were identified by retention times of fatty acid methyl ester stan-
dards (Nu-Chek-Prep, Elysian, MN, USA) using EZchrom Elite version 3.2.1 software.
Fatty acid results were calculated as percent composition or ug/0.1 g tissue with 10 µg of
heptadecanoic acid (17:0) added to each fraction for the internal standard.

2.3. RNA Isolation and qRT-PCR

Ileum and proximal colon tissue was homogenized in the lysis buffer provided in
the RNA/Protein Purification Plus Kit (Norgen Biotek Corp., Thorold, ON, Canada) and
RNA was isolated following the manufacturer’s instructions. The high-capacity cDNA
reverse transcription kit (Applied Biosystems, Foster City, CA, USA) was used to make 2 µg
of cDNA. Real-Time PCR was performed using a CFX Real-Time PCR System (Bio-Rad,
Mississauga, ON, Canada) as previously described [33]. Primers were designed using
the Universal Probe Library Assay Design Center (Roche Applied Sciences, Penzberg,
Germany), and validated primer efficiencies were between 90% and 105%. All primer
sequences have been published previously [34–37]. Results were normalized to the house-
keeping gene RPLP0 (ribosomal protein, large, P0) and relative differences in gene expression
(expressed in arbitrary units) between treatment groups were determined according to the
calculation 2(40−Ct).

2.4. Ileum and Colon Morphology

For tissue morphology analyses, proximal colon and ileum tissues were fixed using
formalin, embedded in paraffin, cross-sectioned (5 µm), and placed on glass slides. All
morphology assessments were made in a blinded manner. Cross-sections were stained
with Hematoxylin and Eosin (Millipore-Sigma, Oakville, ON, Canada) for analysis of crypt
and villi length. Crypt length measurements in the proximal colon were assessed using
approximately 20 fully elongated and intact crypt structures per mouse (n = 14/group)
at 40× magnification. Villi length and crypt depth measurements were taken from cross-
sections of the ileum using a minimum of 10 fully elongated and intact villi and crypt
structures per mouse (n = 12/dietary group) at 40× magnification. The villus length was
measured from the baseline to the tip of the villus and the crypt depth was measured from
the baseline of the villus to the muscle layer, with villi:crypt length ratios calculated by
dividing villus length by crypt depth, as described previously [38]. Ileum and proximal
colon cross-sections were also stained with Alcian Blue/Nuclear Fast Red (Millipore-Sigma)
to permit quantification of goblet cells per tissue cross-section field of view, with a min-
imum of 4–5 fields of view per mouse (n = 5–6 mice/dietary group in the ileum and
n = 10 mice/dietary group in the proximal colon). Images were collected at 40× magnifica-
tion. All images of tissue cross-sections were captured using EVOS M7000 Imaging System
(Thermo Fisher Scientific, Mississauga, ON, Canada) and analyzed using the National
Institute of Health Image J software (version 1.51h).
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2.5. Statistical Analysis

Gas chromatography data are presented as means ± SD. All other data are expressed
as means ± SEM. All data sets were investigated for an effect of sex but there were no
statistically significant differences in any outcome. Therefore, data from males and females
were pooled together and analyzed using a one-way ANOVA followed by Tukey’s multiple
comparison test for post hoc analysis between groups. The Shapiro–Wilk test was used to
test for normality. Data were transformed (where applicable) for normality and data that
were not normally distributed were analyzed using the Kruskal–Wallis test followed by the
Wilcoxon two-sample test. The upper limit of probability for statistical significance was set
at p ≤ 0.05. Statistical analyses were conducted using the SAS system for windows, version
9.1 (SAS Institute, Cary, NC, USA) and GraphPad Prism version 9.3. (GraphPad Software,
Inc., La Jolla, CA, USA).

3. Results
3.1. Final Body Weight

Weanling mouse final body weights were collected prior to sacrifice. Mice with lifelong
exposure to dietary n-3 PUFA-enriched diets (MO and FX) exhibited increased final body
weights compared to the n-6 PUFA-enriched SO dietary group (p ≤ 0.05); however, there
was no difference between the MO and FX dietary groups (p > 0.05). Specifically, final
body weight in the FX group (9.55 ± 0.09 g) was increased compared to SO (8.52 ± 0.10 g),
which translated into FX mice being 10.8% heavier. The final body weight in MO-fed
mice was 9.10 ± 0.56 g, which translated into these mice being 6.4% heavier compared to
SO-fed mice.

3.2. Ileum Fatty Acid Analysis

Total phospholipid and phospholipids fatty acid composition of lyso-PC, SM, PC, PS,
PI, and PE were measured in ileum of mice fed diets enriched in n-6 (SO) or n-3 PUFA (FX
and MO). The lipid concentration in each phospholipid class is shown in Figure 1. Mice fed
the MO diet had significantly lower total phospholipid levels than mice fed the SO or FX
diets (p ≤ 0.05). When examining the contribution of individual phospholipid species to
totally phospholipid levels, mice fed the MO diet had significantly lower PI and PE levels
when compared to the SO and FX diets (p < 0.05), which likely contributed to the decrease
in total phospholipid levels. However, this difference in phospholipid-specific levels across
dietary groups was not seen for the other phospholipid species, as lyso-PC, SM, PC, and PS
levels were the same across all three dietary groups. Further, there was no effect of diet on
the PC:PE ratio as the PC:PE ratio was the same across all dietary groups (Table S2).

Fatty acid composition of each phospholipid species was also determined. All fatty
acids detected in each phospholipid species across all dietary groups are shown in Sup-
plemental Materials (lyso-PC in Table S3; SM in Table S4; PC in Table S5; PS in Table S6;
PI in Table S7; PE in Table S8). The major n-3 and n-6 PUFA found in each phospholipid
species of mice fed the SO, FX, or MO diets are shown in Figure 2. Within each dietary
group and across all phospholipid species, fatty acid data were reflective of dietary PUFA
intake. Mice fed the diets high in n-3 PUFA (FX and MO) had significantly higher total
n-3 PUFA composition compared to mice fed the control n-6 PUFA diet (SO) across all
phospholipid species (p ≤ 0.05). In tandem with elevated n-3 PUFA, levels of arachidonic
acid (AA, 20:4 n-6) and docosapentaenoic acid (DPA, 22:5 n-6) were significantly lower in
the n-3 PUFA-fed mice compared to mice fed SO (p ≤ 0.05). Mice fed the FX diet (high in
α-linolenic acid [ALA, 18:3-n3]) had higher ALA incorporation in the SM, PC, PS, PI, and PE
phospholipid species when compared to the MO and SO diets (p ≤ 0.05), which is reflective
of the higher ALA content of the FX diet. Mice fed the MO diet (high in eicosapentaenoic
acid [EPA, 20:5n3] and docosahexaenoic acid [DHA, 22:6n3]) had higher EPA incorporation
in the PC, PS, PI, and PE phospholipid species and higher DHA incorporation in the SM,
PC, PS, PI, and PE phospholipid species when compared to the FX and SO diets, which is
reflective of the higher EPA and DHA contents in the MO diet (p ≤ 0.05). Mice fed the SO
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diet high in n-6 PUFA [LA, 18:2n6] had significantly higher total n-6 PUFA composition
compared to mice fed the diets high in n-3 PUFA (MO and FX) (p ≤ 0.05). As expected, mice
fed the SO diet also had significantly higher LA incorporation in the lyso-PC phospholipid
species and significantly higher n-6/n-3 PUFA ratios across all phospholipid species when
compared to the MO and FX diets (p ≤ 0.05). These phospholipid findings are similar to
the findings reported in mouse mammary gland and mammary tumors in other studies
utilizing similar dietary compositions [30].
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Figure 1. Lipid concentration in phospholipid classes. Bars (mean ± S.D.) represent total amount of
phospholipid (µg/0.1 g ileum tissue) found in mouse ileum of each dietary group. Different letters
denote significant differences between means, n = 6 per dietary group. Bars are further divided to
show the amount of each phospholipid class; lyso-PC (blue), SM (orange), PC (purple), PS (yellow) PI
(green), and PE (pink). The asterisk (*) denotes phospholipid classes that were significantly decreased
in the MO dietary group (p ≤ 0.05). Values for each phospholipid class and PC:PE ratio can be found
in Supplementary Materials (Table S2).

When further examining the fatty acid composition of the phospholipid fractions, the
majority of the PE phospholipid fraction was composed of PUFA (compared to MUFA
and SFA), with approximately half (52–54%) of all lipid species being PUFA. This, coupled
with the higher levels of total n-3 PUFA in the PE fraction of mice fed the diets high in n-3
PUFA (MO and FX) and higher total n-6 PUFA in the PE fraction of mice fed the SO diet,
suggests preferential incorporation of dietary PUFA (both n-3 and n-6 PUFA) into the PE
phospholipid species of ileum tissue.

3.3. Effect of n-3 PUFA on Biomarkers of Intestinal Health in the Ileum

Ileum mRNA expression of biomarkers of intestinal health are shown in Figure 3.
Zonula occludens (ZO-1) mRNA expression was increased in the MO group compared
to SO (p ≤ 0.05), whereas the FX group exhibited an intermediate expression level that
did not differ from either SO or MO (p > 0.05; Figure 3A). Expression of trefoil factor 3
(TFF3) was significantly increased in the FX group, compared to both SO and MO (p ≤ 0.05;
Figure 3B). Resistin-like molecule β (Relmβ) mRNA expression was significantly increased
in both the FX and MO groups compared to SO (p ≤ 0.05), but the expression level did
not differ between the two n-3 PUFA-enriched dietary groups (Figure 3C). Krüppel-like
factor 4 (KLF4), mucin 1 (Muc1), and mucin 3 (Muc3) expression did not differ between
dietary groups (p > 0.05; Figure 3D,E,G), whereas mucin 2 (Muc2) expression was increased
in the FX group compared to both SO and MO (p ≤ 0.05; Figure 3F). Finally, Regenerating
family member gamma (REG3γ) mRNA expression was increased in both the FX and MO
groups compared to SO (p ≤ 0.05), wherein the expression level was significantly higher in
the FX group (p ≤ 0.05; Figure 3H).
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Outcomes from a histological analysis of ileum villi lengths and crypt depths are
shown in Figure 4. Villi length was significantly increased in both the MO and FX groups
compared to SO (p ≤ 0.05), wherein villi in the MO group were significantly longer com-
pared to the FX group (p ≤ 0.05; Figure 4A). Conversely, ileum crypt depths were signifi-
cantly increased in the FX group compared to both SO and MO (p ≤ 0.05) and there was no
difference in ileum crypt depth between the MO and SO groups (p > 0.05; Figure 4B). The
aforementioned two morphological measurements were used to assess the villi:crypt length
ratio, as shown in Figure 4C. Both n-3 PUFA-enriched dietary groups exhibited increased
villi:crypt length ratios compared to SO (p ≤ 0.05), wherein this ratio was significantly
higher in the MO group compared to FX (p ≤ 0.05). Ileum goblet cell counts in tissue
cross-sections did not differ between dietary groups (p > 0.05; Figure 4D).
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3.4. Effect of n-3 PUFA on Biomarkers of Intestinal Health in the Proximal Colon

Proximal colon mRNA expressions of intestinal health biomarkers are shown in
Figure 5. The MO group exhibited significantly higher mRNA expression of both Relmβ
and REG3γ compared to both SO and FX (p ≤ 0.05; Figure 5C,H, respectively). There
was no difference in Relmβ and REG3γ mRNA expression between the SO and FX groups
(p > 0.05). Conversely, both the MO and FX groups exhibited significantly higher mRNA
expression of Muc2 compared to SO (p ≤ 0.05; Figure 5F); however, the expression level
did not differ between the two n-3 PUFA-enriched dietary groups (p > 0.05). There were
no differences in mRNA expression between any dietary groups for other intestinal health
biomarkers including ZO-1, TFF3, KLF4, Muc1, or Muc3 (p > 0.05; Figure 5).
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Figure 5. Proximal colon mRNA expression of intestinal health biomarkers ZO-1 (A), TFF3 (B), Relmβ

(C), KLF4 (D), Muc1 (E), Muc2 (F), Muc3 (G), and REG3γ (H). Bars represent means ± SEM. Data were
analyzed with one-way ANOVA followed by Tukey’s multiple comparison test (n = 10–12/dietary
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Proximal colon crypt lengths were increased in both the MO and FX groups compared
to SO (p ≤ 0.05; Figure 6A), wherein crypt lengths were significantly longer in the FX group
compared to MO (p ≤ 0.05). Analysis of goblet cells within the proximal colon were higher
in the MO group compared to SO (p ≤ 0.05; Figure 6B); however, there was no difference in
goblet cells in the FX group compared to either SO or MO (p > 0.05).
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4. Discussion

This study demonstrates the effects of lifelong (beginning in utero with the maternal
diet) exposure to dietary n-3 PUFA from either plant (FX diet enriched in ALA) and marine
(MO diet enriched in EPA and DHA) sources on critical gene expression and histomor-
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phology biomarkers of intestinal health in early life, specifically in 3-week-old weanling
mice. Proper nutrition during critical periods of growth and development may significantly
impact an individuals’ short- and long-term health outcomes [39] and establishment of a
functional intestinal barrier in early life/weanling stage is critical for mediating resistance
to mucosal infection [24–26]. As such, lifelong dietary exposure, beginning in utero, has
the potential to not only impact fetal development, but may also impact growth, the estab-
lishment of intestinal health, and either susceptibility to or severity of disease outcomes
developing later in life. However, many of the studies that have assessed the relation-
ship between dietary PUFA exposure and various disease outcomes have not examined
the impact of lifelong exposure, as dietary interventions are typically introduced in the
post-weaning period [40,41]. The limited studies that have examined the relationship be-
tween lifelong dietary exposure to n-3 and n-6 PUFA and developmental or disease-related
outcomes have shown that diet influences the fatty acid composition of extra-intestinal
tissues in mice as young as 3 weeks of age [28,29]. Moreover, lifelong exposure to n-3 PUFA
has been shown to beneficially impact mammary gland development, terminal end bud
numbers, and in later life, breast cancer severity [28–31]. Limited evidence from livestock
species suggests a positive benefit on intestinal health [18,19]. Feeding pigs a maternal diet
enriched in ALA from linseed oil during pregnancy and lactation did not affect newborn
offspring intestinal morphology; however, n-3 PUFA impacted intestinal permeability and
increased ZO-1 protein expression [19]. Furthermore, broiler chicks fed n-3 PUFA during
the growth phase post-hatch also exhibited no change in intestinal morphology (apart from
decreased distance between villi); however, mRNA expression of Muc2 was increased [18].
Interestingly, increased villi height was positively correlated with Muc2 expression and
final body weight [18]. In contrast to the studies in livestock species that showed no effect
of n-3 PUFA on body weight [18,19], body weights in the current study were modestly
increased in both FX-fed and MO-fed mice compared to SO controls. This aligns with
previous findings that have shown increased body weights in n-3 PUFA-fed mice [28,42].
Early life (i.e., until weanling) establishment of the intestinal microenvironment, which
includes contribution from both microbiota and the host that grow in tandem and can
affect both early life growth and overall intestinal health [20,21,24,43–45]. The transition
from suckling to weanling and the consumption of solid food is a critical period for both
whole body and intestinal growth, specifically, the development of an intact epithelial
and mucus barrier and reduced barrier permeability [20–24]. Furthermore, establishment
of intestinal barrier defenses is critical for early life protection from mucosal infections
that are associated with diminished intestinal barrier defenses in early life [24–26], and
thus, identifying dietary approaches that promote early life intestinal health and growth
are needed.

The intestinal-health-promoting effects of n-3 PUFA supplementation have been stud-
ied in the context of established conditions with compromised intestinal health, such as
obesity [11], obesity-associated colitis [46], or IBD/experimental colitis studies using long-
chain n-3 PUFA from marine/fish oil [47–50] or plant/flaxseed oil [47,51–53], with some
studies reporting no beneficial effects [54–56]. Additionally, there is evidence that n-3 PUFA
can also promote intestinal healing and restoration of the intestinal epithelial barrier [48,54].
This indicates that the overall effect of n-3 PUFA within the intestinal microenvironment can
both strengthen intestinal barrier defenses and promote resolution of compromised barrier
defenses, but the specific mechanisms in an unchallenged intestinal microenvironment
need to be determined. Importantly, the aforementioned studies utilized n-3 PUFA as a di-
etary intervention to attenuate established intestinal disease severity, where n-3 PUFA was
consumed concurrent with intestinal disease development, and therefore, did not address
the significance of utilizing n-3 PUFA from a prevention standpoint to improve intestinal
health prior to disease onset. In this connection, the intestinal health priming effect of
consuming whole ground flaxseed (enriched in ALA but also non-digestible carbohydrates
and phenolic compounds) was demonstrated to improve critical biomarkers of intestinal
health in healthy unchallenged adult mice [35], which could alter the responsiveness of
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the intestinal microenvironment upon the initiation of an intestinal-health-compromising
condition. Although the effects of whole flaxseed cannot be attributed exclusively to ALA,
the results provide support for the potential intestinal health priming effects of n-3 PUFA
(from either plant or marine sources) that could attenuate disease severity later in life. From
this perspective, conditions like obesity and IBD/colitis are associated with compromised
intestinal health and increased epithelial barrier permeability, as reviewed in [3,4], and
therefore, adequate intakes of dietary n-3 PUFA prior to the development of intestinal
conditions that compromise intestinal health could attenuate disease severity, although
further study is required. Thus, determining the intestinal-health-promoting effects of n-3
PUFA through a lifelong exposure model, from a disease prevention standpoint, increases
the translational potential of this research.

In the current study, both plant and marine sources of dietary n-3 PUFA were shown
to modulate critical biomarkers of intestinal health used previously [18,19,35], including
intestinal morphology and gene expression of critical barrier defense elements. Changes
in intestinal morphology including lengthening of colonic crypts, elongation of intestinal
villi, and the villi:crypt length ratio are frequently interpreted to reflect an improvement in
intestinal health and in the small intestine to aid in improved digestion and absorption of
nutrients [57,58]. In the ileum, both the MO and FX diets improved the morphology of the
small intestine including increasing villus length and the villi:crypt length ratio compared
to SO (Figure 4), wherein the FX diet significantly increased crypt depth compared to
other dietary group. Proximal colon morphology was also affected by the n-3 PUFA
diets in a manner reflective of improved intestinal health. Both the MO and FX diets
increased crypt length measurements and the MO diet increased goblet cell counts, which
are the cell types responsible for increased mucin secretion (Figure 6). Relating to this
connection, Muc2 mRNA expression was increased by the FX diet in both the ileum
and proximal colon (Figures 3F and 5F), whereas the MO diet increased Muc2 mRNA
expression in only the proximal colon (Figure 5F). In relation to barrier defense, Muc2 is
the dominant secreted gel-forming mucin secreted by goblet cells to form the outer mucus
layer, and Muc2 knockout mice gradually develop colitis by six months of age [59]. This
emphasizes the critical role Muc2 contributes to mucus barrier defense mechanisms within
the gastrointestinal tract [60] and highlights how the mucus barrier plays a fundamental
role in epithelial barrier function and intestinal health homeostasis within the intestinal
mucosa [61]. The FX and MO diets had similar effects in both the ileum and proximal colon
on mRNA expression of REG3γ and Relmβ. Specifically, both n-3 PUFA-enriched diets
increased ileum expression of REG3γ and Relmβ (Figure 3C,H); however, only the MO
diet increased REG3γ and Relmβ mRNA expression in the proximal colon (Figure 5C,H,
respectively). REG3γ exerts its antimicrobial effects against Gram-positive bacteria, which
functions to maintain a physical segregation of the microbiota from the host tissues and
limits bacterial colonization of mucosal surfaces [7,62]. Therefore, REG3γ plays a key
role in shaping the microbial community structure and regulating host microbial defense
responses [7,62,63]. Relmβ is relevant for intestinal health as it functions to promote
mucosal barrier integrity via up-regulating mucin secretion to support and maintain the
protective mucus barrier, while also exerting immunoregulatory effects that attenuate
mucosal damage and inflammation by promoting noninflammatory adaptive responses to
intestinal infections [64–67]. Other diet-specific effects on mRNA expression of intestinal
health biomarkers included the increased ileum mRNA expression of ZO-1 in MO-fed mice
(Figure 3A) and the effect of FX in increasing ileum mRNA expression of TFF3 (Figure 3B).
This is functionally relevant as ZO-1 is an intracellular scaffold protein that binds to both
the actin cytoskeleton and to the cytoplasmic peripheral membrane proteins found in tight
junctions to form strong cross-links [7,68]. ZO-1 contributes to membrane integrity, and
although deletion of ZO-1 results in minor increases in barrier permeability, it has recently
been shown to contribute to intestinal health by playing an essential role in epithelial cell
proliferation and mucosal barrier repair [69,70]. TFF3 is expressed by goblet cells in the
small intestine and colon and is usually expressed with Muc2 [71]. Functionally, TFF3 has
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been shown to function through a paracrine signaling mechanism on nearby epithelial
cells to play a key role in both the maintenance and repair of the intestinal mucosa, in
part, via increasing epithelial barrier integrity and reducing permeability by modulating
tight junction protein expression [71–74]. There was no effect of diet observed on mRNA
expression of (i) Muc1, a transmembrane mucin that functions to protect the epithelial
barrier [64,75,76], (ii) Muc3, an inner mucus layer mucin that regulates epithelial layer
integrity and promotes epithelial restitution and wound healing [64,77,78], or (iii) KLF4,
which initiates goblet cell differentiation and plays a role in the regulation of epithelial
barrier homeostasis and morphology [79–81]. Collectively, the FX and MO diets improved
critical aspects of intestinal health including ileum and proximal colon morphology and
gene expression of antimicrobial proteins (REG3γ), secreted mucins (Muc2), and mediators
that play a key role in promoting mucosal barrier integrity (Relmβ, ZO-1, TFF3). Importantly,
the majority of intestinal health outcomes that were assessed herein were beneficially
affected by both plant-derived (i.e., ALA in the FX diet) and marine-derived n-3 PUFA
(i.e., EPA and DHA in the MO diet), with only gene expression of a few select outcomes
that differed between dietary groups, indicating that both plant and marine sources of n-3
PUFA can beneficially modulate early life intestinal health.

5. Conclusions

Further study is required to more comprehensively assess other critical elements
of intestinal health that were not assessed herein, for example microbiome sequencing,
functional measurements of barrier permeability, and protein expression of a more compre-
hensive assessment of barrier defense elements. Importantly, the current data highlight the
proof-of-concept that lifelong n-3 PUFA intakes from either plant or marine dietary sources
(starting in utero with the maternal diet and continuing through to weaning at 3 weeks of
age in the offspring) can improve early life intestinal health biomarkers that could help
either prevent or attenuate early life mucosal infections and/or intestinal disease severity in
later life. Having determined the beneficial effects of lifelong n-3 PUFA intakes on early life
intestinal health, it will also be useful to determine the influence of the timing of introducing
n-3 PUFA into the maternal diet on the development of the intestinal microenvironment
in the offspring. Further research is also warranted to better understand the fundamental
effects attributed individually to ALA, EPA, and DHA in early life intestinal health.
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