Skip to main content
. 2024 Feb 26;24(5):1509. doi: 10.3390/s24051509
Algorithm 1 EM algorithm
input: Given annotators’ label and error vector and priors for each pixel
output: The probability that the annotator marks the pixel correctly
priors = sum(segmentations)/len(segmentations)
errors = self._m_step(segmentations,np.round(priors), segmentation_region_size, segmentations_sizes)
Begin
for _ in range(self.n_iter):
  priors = self._e_step(segmentations, errors, priors)
  errors = self._m_step(segmentations, priors, segmentation_region_size, segmentations_sizes)
return priors > 0.5
End
Return priors, errors