Skip to main content
. 2024 Feb 21;24(5):1391. doi: 10.3390/s24051391
Algorithm 2  Fuzzy Deep learning
  • Input: All time-invariant vector y¯I(i) and time-varying set Y¯V(i), with i=1,2,,M.

  • Output: Nc DNN models, Θi, with i=1,2,,Nc, which forecasts future

  •                 load consumption.

  •   Step 1: Initialize the parameters, Nc, m, A¯, and ||·||A¯, and the threshold, ϵ.

  •   Step 2: Generate the Nc cluster centres, V¯={v¯1,v¯2,,v¯Nc}, using

  •             the FCM in Algorithm 1.

  •   Step 3: Determine the membership of y¯I(i) to the kth cluster, u^k(yI(i)) using (15).

  •   Step 4: Determine the index vector, p^j={p(j,1),p(j,2),,p(j,Oj)} using (16),

  •             with j=1,2,,M, which indexed the time-varying sets in the jth cluster.

  •   Step 5: Use all time-varying sets Y¯Vp(j,k) with k=1,2,,Oj to develop the

  •             DNN model, Θj, using deep learning.

  •   Step 6: Return The DNN models Θj with j=1,2,,Nc.